
IPSJ SIG Technical Report

Computing the pathwidth of directed graphs with small
vertex cover

Yasuaki Kobayashi1,a)

Abstract: We give an algorithm that computes the pathwidth of a given directed graph D in 3τ(D)nO(1) time where n is
the number of vertices of D and τ(D) is the number of vertices of a minimum vertex cover of the underlying graph of
D. This result extends that of [Chapelle et al., 2013] for undirected graphs to directed graphs. Moreover, our algorithm
is based on a standard dynamic programming with a simple tree-pruning trick, which is extremely simple and easy to
implement.

1. Introduction
Chapelle et al. [7] proved the following theorem.
Theorem 1 ([7]). The pathwidth of an undirected graph G can
be computed in 3τ(G)nO(1) time where n is the number of vertices
of G and τ(G) is the size of the minimum vertex cover of G.

The notion of pathwidth is also defined on directed graphs. In
this paper, we extend Theorem 1 to directed graphs.
Theorem 2. The pathwidth of a directed graph D can be com-
puted in 3τ(D)nO(1) time where n is the number of vertices of D
and τ(D) is the size of the minimum vertex cover of the underly-
ing graph of D.

It is known that the pathwidth of an undirected graph G equals
the pathwidth of a directed graph G′ where G′ is obtained from
G by replacing each edge {u, v} of G by a pair of anti-parallel arcs
(u, v) and (v, u) (see [1], for example).

Computing pathwidth is NP-hard [10] for undirected graphs
and for directed graphs, and is also considered in parameterized
complexity. A problem is said to be fixed parameter tractable
(FPT) if there is an algorithm for the problem with running time
f (k)nO(1) where n is the size of instance and k is a parameter
(see [8], for more information). The decision version of the path-
width problem, deciding whether the pathwidth of a given undi-
rected graph is at most a parameter k, is FPT [3], [6]. However,
the fixed parameter tractability of the directed case remains un-
clear. It is only recently that XP algorithms for the decision prob-
lem on directed graphs are found by [13], [15].

The algorithm of [6] is, in fact, an FPT algorithm for pathwidth
parameterized by treewidth. The running time is, however, some-
what large even when the treewidth of an input graph is small.
It is natural to ask whether there is a faster FPT algorithm for
pathwidth using more restricted parameters such as vertex cover
number. Chapelle et al. [7] positively answered this question by
proving Theorem 1.

1 Gakushuin University, Toshima-ku, Tokyo, Japan 171-8588
a) yasuaki.kobayashi@gakushuin.ac.jp

Our result is along this line. We give an FPT algorithm that
computes the pathwidth of a given directed graph parameterized
by vertex cover number. Our algorithm is a standard dynamic
programming for vertex ordering problems [5] with a simple tree-
pruning trick (some variants of this trick can be found in the re-
cent work for exact algorithms for pathwidth [12], [14], [15]). Al-
though our analysis is basically based on the same idea with [7],
our algorithm is much simpler than theirs. In particular, we use
a vertex cover in the analysis but not in the algorithm, while the
algorithm of [7] uses a vertex cover explicitly. Moreover, our al-
gorithm works on undirected and directed graphs. It is not clear
if the algorithm in [7] can be adapted to directed graphs. On the
other hand, [7] not only proved Theorem 1 but also gave an FPT
algorithm for treewidth parameterized by vertex cover number.

2. Preliminaries
Let D = (V, A) be a directed graph with n = |V |. For a ver-

tex x ∈ V , we denote by N−(x) the set of in-neighbors of x
and, for X ⊆ V , by N−(X) the set of in-neighbors of X, i.e.
N−(X) =

∪
x∈X N−(x) \ X.

Let σ be a sequence of vertices in V . We assume all the se-
quences of vertices in this paper have no repetition, that is, the
vertices in σ are distinct from each other. The length of σ is
denoted by |σ|. We will write the sequence as a list of vertices
σ = (v1, v2, . . . , v|σ|). For 0 ≤ i ≤ |σ|, the prefix of σ of length i,
denoted by σi, is the sequence consisting of the first i vertices in
σ appearing in the same order as in σ. The set of vertices in σ is
denoted by V(σ). A permutation of D is a sequence consisting of
all the vertices in V . For an integer k, we say σ is k-feasible for D
if |N−(V(σ′))| ≤ k for all prefix σ′ of σ and is strongly k-feasible
for D if there is a k-feasible permutation τ of D such that σ is a
prefix of τ. We extend these notations to vertex sets: a subset U
of V is (strongly) k-feasible if there is a (strongly) k-feasible se-
quence σ with V(σ) = U. We may drop the reference to D when
the reference is clear. The vertex separation number of D is the
minimum integer k such that V is k-feasible.

1ⓒ 2014 Information Processing Society of Japan

Vol.2014-AL-148 No.16
2014/6/14

IPSJ SIG Technical Report

For every directed graph D, the vertex separation number of D
equals its pathwidth [16] (the undirected version of this fact can
be found in [11]). Because of this fact, we work on the vertex
separation number.

Our algorithm is based on the following standard dynamic pro-
gramming algorithm. Fix an integer k. It is straightforward to see
that a proper subset U ⊂ V is strongly k-feasible if and only if
there exists a vertex u ∈ V \ U such that U ∪ {u} is also strongly
k-feasible. Given this relation, the vertex separation number of D
can be computed in 2nnO(1) time.

In order to reduce the running time, we run this dynamic pro-
gramming only on some subsets of V . To this end, we need the
following notions. An expansion U∗ of U ⊆ V is recursively
defined as:
(1) U∗ = U if there is no vertex u ∈ V \ U with N−(u) ⊆

U ∪ N−(U);
(2) U∗ = (U ∪ {u ∈ V \ U : N−(u) ⊆ U ∪ N−(U)})∗ otherwise.
We say U is relevant when U∗ = U. It is easy to see that, for
each U ⊆ V , there is a unique expansion U∗ of U. The key to our
dynamic programming is the following lemma.
Lemma 1. Let U be a k-feasible subset of V. Then the expansion
U∗ of U is also k-feasible. Moreover, if U is strongly k-feasible,
so is U∗.

Proof. By the definition of expansion, the first statement is clear
as N−(X) ⊆ N−(U) for every X with U ⊆ X ⊆ U∗. Thus, in the
following, we prove the second statement.

When U∗ = U, the lemma is obvious. Next, assume there is a
vertex v ∈ V\U such that N−(v) ⊆ U∪N−(U). Since U is strongly
k-feasible, there is a k-feasible permutation π = (v1, v2, . . . , vn) of
D such that U = V(π|U |). Let j be such that v j = v. Since v ∈ V\U,
we have j > |U |. Let

τ = (v1, v2, . . . , v|U |, v j, v|U |+1, . . . , v j−1, v j+1, . . . , vn).

In words, τ is obtained from π by moving v to the position
immediately after v|U |. Since πi = τi for 1 ≤ i ≤ |U | and
N−(V(πi) ∪ {v}) ⊆ N−(V(πi)) for |U | < i ≤ n, τ is k-feasible and
hence U ∪ {v} is strongly k-feasible. A straightforward induction
proves the lemma. □

This lemma is a special case of Lemma 5 in [15]. Similar spe-
cial cases appeared in [12], [14].

3. Proof of Theorem 2
Given a directed graph D = (V, A) with n vertices and an in-

teger k, our algorithm decides whether V is k-feasible or not in
3τ(D)nO(1) time where τ(D) is the size of a minimum vertex cover
of the underlying graph of D. The algorithm uses a straight-
forward dynamic programming over relevant sets, which is de-
scribed as follows. Let U be a strongly k-feasible relevant subset
of V . Then there exists v ∈ V \ U such that U ∪ {v} is strongly
k-feasible. By Lemma 1, the expansion of U ∪ {v} is also strongly
k-feasible and is relevant. This discussion immediately gives us a
dynamic programming over k-feasible relevant subsets of V . The
correctness of this dynamic programming is straightforward.

In what follows, fix a minimum vertex cover C of the underly-
ing graph of D. The next lemma is crucial for our running time

analysis.
Lemma 2. There is an injective mapping from the relevant sub-
sets of V to the collection of ordered tripartitions of C.

Proof. Let (L,M,R) be an arbitrary ordered tripartition of C. We
show that there is at most one relevant set U such that L = U ∩C
and M = N−(U) ∩ C. Suppose U is such a set. Let v ∈ V \ C.
Since C is a vertex cover of the underlying graph of G, we have
N−(v) ⊆ C. Since U is relevant, we have v ∈ U if and only if
N−(v) ⊆ L ∩ M. Thus, U satisfying above conditions is unique,
when one exists. □

It is easy to see that the running time of our dynamic program-
ming is in |R| · nO(1) where R is the set of all relevant subsets of
V . By Lemma 2, |R| is bounded by 3! · 3|C| and hence Theorem 2
follows.

Acknowledgments
The author thanks Hisao Tamaki for his suggestions for im-

proving the presentation of the paper.

References
[1] Barát, J.: Directed path-width and monotonicity in digraph searching,

Graphs and Combinatorics 22(2), 161–172 (2006).
[2] Bodlaender, H. L.: A tourist guide through treewidth, Acta Cybernet-

ica 11, 1–23 (1993).
[3] Bodlaender, H. L.: A linear-time algorithm for finding tree-

decompositions of small treewidth SIAM Journal on Computing 25(6),
1305–1317 (1996).

[4] Bodlaender, H. L., Fomin, F. V., Koster, A. M. C. A, Kratsch, D., Thi-
likos, D. M.: On exact algorithms for treewidth, ACM Transactions on
Algorithms 9(1), 1–12 (2012).

[5] Bodlaender, H. L., Fomin, F. V., Koster, A. M. C. A, Kratsch, D., Thi-
likos, D. M.: A note on exact algorithms for vertex ordering problems
on graphs, Theory of Computing Systems 50(2), 420–432 (2012).

[6] Bodlaender, H. L, Kloks, T.: Efficient and constructive algorithms for
the pathwidth and treewidth of graphs, Journal of Algorithms 21(2),
358–402 (1996).

[7] Chapelle, M., Liedloff, M., Todinca, I., Villanger, Y.: Treewidth and
pathwidth parameterized by the vertex cover number, In Proceedings
of WADS 2013, LNCS, vol. 8037, pp. 232–243 (2013).

[8] Downey, R. G., Fellows, M. R.: Parameterized Complexity, Springer
(1998).

[9] Fellows, M. R., Lokshtanov, D., Misra, N., Rosamond, F. A.,
Saurabh, S.: Graph layout problems parameterized by vertex cover, In
Proceedings of ISAAC 2008, LNCS, vol. 5369, pp. 294–305 (2008).
Addison-Wesley, 2nd edition (1973).

[10] Kashiwabara, T., Fujisawa, T.: NP-completeness of the problem of
finding a minimum-clique-number interval graph containing a given
graph as a subgraph, In Proceedings of ISCAS 1979, pp. 657–660
(1979).

[11] Kinnersley, N. G.: The vertex separation number of a graph equals its
path-width, Information Processing Letters 42(6), 345–350 (1992).

[12] Kitsunai, K., Kobayashi, Y., Komuro, K., Tamaki, H., Tano, T.: Com-
puting directed pathwidth in O(1.89n) time, In Proceedings of IPEC
2012, LNCS, vol. 7535, pp. 182–193 (2012).

[13] Nagamochi, H.: Linear layouts in submodular systems In Proceedings
of ISAAC 2012, LNCS, vol. 7676, pp. 475–484 (2012).

[14] Suchan, K., Villanger, Y.: Computing pathwidth faster than 2n, In Pro-
ceedings of IWPEC 2009, LNCS, vol. 5917, pp. 324–335 (2009).

[15] Tamaki, H.: A polynomial time algorithm for bounded directed path-
width, In Proceedings of WG 2011, LNCS, vol. 6986, pp. 331–342
(2011).

[16] Yang, B., Cao, Y.: Digraph searching, directed vertex separation and
directed pathwidth, Discrete Applied Mathematics 156(10), 1822–
1837 (2008).

2ⓒ 2014 Information Processing Society of Japan

Vol.2014-AL-148 No.16
2014/6/14

