
IPSJ SIG Technical Report

Exact Algorithms for 0-1 Integer Programs
with Linear Equality Constraints

Kenya Ueno1,a)

Abstract: In this paper, we show an O(1.415n)-time exact algorithm for the feasibility problem of 0-1 integer pro-
grams whose constraints are only linear equalities. The algorithm is quadratically faster than exhaustive search and
also almost quadratically faster than the algorithm for an inequality version of the feasibility problem by Impagliazzo,
Lovett, Paturi and Schneider (arXiv:1401.5512), which motivated our work. Rather than improving the time complex-
ity, we advance to a simple direction as inclusion of many NP-hard problems in terms of exact exponential algorithms.
We also extend our algorithm to the optimization problem of 0-1 integer programs with linear equality constraints.

1. Introduction
1.1 The Feasibility Problem

The existence of integer solutions for a certain system of equa-
tions has been discussed as one of the fundamental problems in
the theory of computation. A prominent example is the Hilbert
10th problem on Diophantine equations [14].

In this paper, we study the feasibility problem of 0-1 integer
programs whose constraints are only linear equalities as follows:
Problem 1.1 (Feasibility of 0-1 Integer Programs with Linear
Equalities).

Find x ∈ {0, 1}n which satisfies a given set of linear equalities
Ax = b.

We give an exact exponential algorithm running in O(1.415n)-
time and thus achieve a quadratic speedup compared to exhaus-
tive search (brute-force search) running in O(2n)-time. Our algo-
rithm can store the data of all the feasible solutions in O(1.415n)-
space, even if the number of solutions is more than O(1.415n).

The problem can be seen as a database search where the struc-
tured set of data is given by B = {b | Ax = b and x ∈ {0, 1}n}. As s
similar problem, there is a quantum algorithm known as Grover’s
algorithm, which can achieve quadratic speedup for the unstruc-
tured database search problem [9]. The Grover’s algorithm gives
a correct answer with high probability, but our algorithm do not
use randomness and always gives a correct answer. Recently,
probabilistic polynomial algorithms solving a system of linear
equations has been discussed by Raghavendra [16] and Fliege [5].
If we eliminate the 0-1 constraints, we can give a polynomial time
algorithm by the Gaussian elimination.

1.2 The Optimization Problem
Then, we extend our algorithm for the following standard op-

timization problem running in O(1.415n)-time:

1 The Hakubi Center for Advanced Research, Kyoto University
a) kenya@i.kyoto-u.ac.jp

Problem 1.2 (Optimization of 0-1 Integer Programs with Linear
Equalities).

min cT x
s.t. Ax = b,

x ∈ {0, 1}n.

We know that there are many sophisticated ideas (e.g., the
branch-and-bound method and the cutting-plane method) improv-
ing algorithms and implementations for computing 0-1 integer
programs [8], [15]. However, there are no improvements of
worst-case time complexity for integer programs from the ex-
haustive search to the best of our knowledge.

1.3 Exact Algorithms for NP-hard Problems:
Since there are no polynomial time algorithms for NP-hard

problems unless P=NP, many researchers have studied exact ex-
ponential time algorithms which are faster than exhaustive search
for NP-hard problems [6], [11], [13], [19].

Integer programs include many NP-hard problems as special
cases [7]. For instance, the subset sum problem is a special case
of Problem 1.1 in which the number of constraints is exactly one.

Among several such problems whose exact algorithms have
been studied, some problems (e.g., the subset sum problem [17])
have the same time complexity as Problem 1.1, and some other
problems (e.g., the exact satisfiability problem [3] and the exact
hitting set problem [4]) have algorithms faster than O(1.415n)-
time. In particular, the exact satisfiability problem, which is also
a special case of Problem 1.1, has been intensively studied by
several researchers [3], [4].

On the other hand, it seems to be difficult to improve the time
complexity of our algorithms due to a similar reason of NP-
hardness. In other words, if we can improve our algorithms,
then we simultaneously improve the time complexity of exact al-
gorithms for many NP-hard problems which can be reduced to
Problem 1.1.

c⃝ 2014 Information Processing Society of Japan 1

Vol.2014-AL-148 No.10
2014/6/13

IPSJ SIG Technical Report

1.4 Circuit Lower Bounds from Moderately Exponential Al-
gorithms

Very recently, Impagliazzo, Lovett, Paturi and Schneider [10]
studied the feasibility problem for the inequality version of 0-1
integer programs stated as follows:
Problem 1.3 (Feasibility of 0-1 Integer Programs with Linear In-
equalities).
Find x ∈ {0, 1}n which satisfies a given set of linear inequalities

Ax ≥ b.
Impagliazzo, Lovett, Paturi and Schneider [10] gave an algo-

rithm solving Problem 1.3 in O(2(1−poly(1/c))n))-time where cn is
the number of constraints. It improves an algorithm for Prob-
lem 1.3 by Impagliazzo, Paturi and Schneider [12], which is faster
than O(2n)-time only when the number of inequalities is smaller
than 0.136n.

The work by Impagliazzo, Paturi and Schneider [12] is moti-
vated from the challenge initiated by Williams [18] for proving
lower bounds for certain circuit models. In this context, it is im-
portant to give only a modest improvement of the exponential
factor from the O(2n)-time exhaustive search.

1.5 Our Techniques
Our algorithms are built on a simple combination of basic tech-

niques on exact algorithms for NP-hard problems. In particular,
we use a classic technique called the 2-table method studied in
[17]. This method splits n-variables into the two sets of n/2-
variables, and lists all possible 2n/2-assignments for each set. This
preprocessing enables us to give algorithms which run faster than
O(2n)-time for certain problems.

On the other hand, there are some technical problems to apply
the method to Problem 1.1. One problem is how we construct the
2-table for algorithms. Another problem is how we give analy-
sis to bound the time complexity The ideas introduced in the two
papers [10], [12] allow us to overcome these technical problems.

To construct the 2-table for Problem 1.1 and 1.2, we introduce
a notion of the vector equality problem, a variation of the vector
domination problem studied by Impagliazzo, Paturi and Schnei-
der [12]. To analyze the time complexity, we need to incorpo-
rate an idea using the weighted median (or the weighted sorting),
which is introduced very recently by Impagliazzo, Lovett, Paturi
and Schneider [10]. Furthermore, we complete our analysis of
the time complexity by setting a suitable choice of complexity
measure, which is a novel point of this paper, for the search space
in the 2-table method.

Another novel point is an extension of the feasibility problem
to the optimization problem by using the 2-table method. This is
achieved by post-processing after solving the feasibility problem
with extra storage of the objective function. There are no extra
blow-up of the exponential time complexity.

We hope that our contribution will be useful in practice as well
as theoretical analysis of algorithms.

1.6 Organization of This Paper
This paper is organized as follows. In Section 3, we introduce

a notion of the vector equality problem and show a recursive al-
gorithm solving the problem. Then, we give analysis of its time

complexity. In Section 4, we describe how we solve the feasi-
bility problem and the optimization problem by reducing them to
the vector equality problem. In the last section, we conclude this
paper and list some open problems.

2. Notations
Throughout the paper, we use the following notations. We de-

note m× n constant matrices by A, and i, j-th element of a matrix
A by Ai, j. We use b and c as constant vectors. cT is the transpose
of c. We also use x, u and v as variable vectors. We denote j-th
element of a vector x by x j. The same notation applies for other
constant and variable vectors.

The function poly(n) is some polynomial for n. Following the
convention in the theory of exact algorithms, we measure the time
complexity by the function of n, which is the number of vari-
ables. We assume m ∈ O(poly(n)) since otherwise the input size
is super-polynomial to n.

3. The Vector Equality Problem
In this section, we consider the following problem:

Definition 3.1 (Vector Equality). Given two sets of m-
dimensional vectors U and V, the vector equality problem is the
problem of finding two vectors u ∈ U and v ∈ V such that u = v.

To solve the vector equality problem efficiently, we need to use
a notion of the weighted median to bound the time complexity of
our algorithms.
Definition 3.2 (Weighted Median). The weighted median for a
set of weighted numbers is a number such that both the total
weight of numbers smaller than the weighted median and the total
weight of numbers larger than the weighted median are at most
half of the total weight of all the numbers.

Then, we consider the following recursive algorithm (Algo-
rithm 1) computing the vector equality problem.

Following a linear time algorithm for the unweighted median
problem [2], we can give a linear time algorithm for the weighted
median problem [1], which is also indicated in [10].
Lemma 3.3 ([1], [10]). The weighted median of N numbers can
be computed in O(N)-time.

In the next section, we will give algorithms for 0-1 integer pro-
grams with linear equality constraints by reducing them to the
vector equality problem. Before that, we analyze the time com-
plexity of Algorithm 1 for the vector equality problem in the fol-
lowing lemma.
Lemma 3.4. The vector equality problem can be computed in
O(mN log N)-time where |U | = |V | = N by starting Algorithm 1
at VectorEquality(U,V, 1,m).

Proof. In Algorithm 1, we find the weighted median k of the i-
th coordinates of U ∪ V where all the elements in U and V have
weight |V | and |U |, respectively.

Then, we partition U into three sets:

U+ = {u | ui > k},

U= = {u | ui = k},

U− = {u | ui < k}.

c⃝ 2014 Information Processing Society of Japan 2

Vol.2014-AL-148 No.10
2014/6/13

IPSJ SIG Technical Report

Algorithm 1 VectorEquality(U,V, i,m)
Require: Two sets of m-dimensional vectors and an index i and the dimension m
Ensure: A list of two sets of m-dimensional vectors

if U = ∅ or V = ∅ then
return an empty list

else if i > m then
return a singleton list of (U,V)

else
(1) Find the weighted median k of the i-th coordinates of U ∪ V with weight |V | and |U | for each element in U and V , respectively.
(2) Partition U into three sets:

(a) U+ = {u | ui > k},
(b) U= = {u | ui = k},
(c) U− = {u | ui < k}.

(3) Partition V into three sets:
(a) V+ = {u | vi > k},
(b) V= = {u | vi = k},
(c) V− = {u | vi < k}.

(4) Solve the following three subproblems:
(a) L1 = VectorEquality(U+,V+, i,m)
(b) L2 = VectorEquality(U=,V=, i + 1,m)
(c) L3 = VectorEquality(U−,V−, i,m)

return the concatenation of the three lists L1, L2, and L3
end if

We also partition V into three sets:

V+ = {u | vi > k},

V= = {u | vi = k},

V− = {u | vi < k}.

Two vectors u ∈ U and v ∈ V can be equal in one of the fol-
lowing three cases:

(1) u ∈ U+ and v ∈ V+,
(2) u ∈ U= and v ∈ V=,
(3) u ∈ U− and v ∈ V−.

We solve smaller subproblems of the vector equality problem for
the three cases as in Figure 1. In particular, we decrease the di-
mension m to m − 1 in the case of (2).

The rule of the partition immediately gives the following equa-
tion:

|V | · (|U+| + |U=| + |U−|) + |U | · (|V+| + |V=| + |V−|)
=|V | · |U | + |U | · |V |.

Dividing it by |U | · |V |, we have

|U+| + |U=| + |U−|
|U | +

|V+| + |V=| + |V−|
|V | = 2.

For some constants s and t such that 0 ≤ s ≤ 1 and 0 ≤ t ≤ 1, we
have

|U+|
|U | +

|V+|
|V | = 1 − s,

|U−|
|U | +

|V−|
|V | = 1 − t,

|U=|
|U | +

|V=|
|V | = s + t

because we partitioned U and V at the weighted median. Since

α + β ≥ 2
√
αβ for any α, β ≥ 0, we have

|U+|
|U | ·

|V+|
|V | ≤

1
4
· (1 − s)2,

|U−|
|U | ·

|V−|
|V | ≤

1
4
· (1 − t)2,

|U=|
|U | ·

|V=|
|V | ≤

1
4
· (s + t)2.

Collecting these inequalities, we have

|U+| · |V+| · 2m + |U−| · |V−| · 2m + |U=| · |V=| · 2m−1

≤1
4
· {(1 − s)2 · 2m + (1 − t)2 · 2m + (s + t)2 · 2m−1} · |U | · |V |

=
1
4
· {(1 − s)2 + (1 − t)2 +

1
2
· (s + t)2} · |U | · |V | · 2m.

It means that the search space |U | · |V | · 2m decreases by the factor
of

f (s, t) =
1
4
· {(1 − s)2 + (1 − t)2 +

1
2

(s + t)2}

= 0.5 − 0.5s − 0.5t + 0.375s2 + 0.375t2 + 0.25st

at each recursion.
We can conclude f (s, t) ≤ 1

2 in the domain of 0 ≤ s ≤ 1 and
0 ≤ t ≤ 1 as in Figure 2. Strictly speaking, we can formally
analyze by taking the partial derivatives,

∂ f (s, t)
∂s

= −0.5 + 0.75s + 0.25t,

∂ f (s, t)
∂t

= −0.5 + 0.25s + 0.75t.

If ∂ f (s,t)
∂s > 0 (equivalently, t > 2 − 3s), then the function f (s, t)

is monotonically increasing in the direction of s. If ∂ f (s,t)
∂s < 0

(equivalently, t < 2 − 3s), then the function f (s, t) is monotoni-
cally decreasing in the direction of s. The same thing applies for
t instead of s.

c⃝ 2014 Information Processing Society of Japan 3

Vol.2014-AL-148 No.10
2014/6/13

IPSJ SIG Technical Report

U+

U=

U−

V+ V= V−

Fig. 1 Partition of the Two Sets of Vectors U and V

Fig. 2 f (s, t) = 0.5 − 0.5s − 0.5t + 0.375s2 + 0.375t2 + 0.25st

c⃝ 2014 Information Processing Society of Japan 4

Vol.2014-AL-148 No.10
2014/6/13

IPSJ SIG Technical Report

Therefore, we can verify that it is maximized at two edges
(s, t) = (0, 0), (1, 1) as f (s, t) = 0.5 and minimized at the mid-
dle point (s, t) = (0.5, 0.5) as f (s, t) = 0.25. Moreover, max-
imal points except the two edges are only two points (s, t) =
(0, 1), (1, 0) as f (s, t) = 0.375.

The recursions occur at most log2(|U | · |V | · 2m) ∈ O(m log N)
depth. At each depth d of the recursion, we need to solve at most
3d (< N) subproblems of the vector equality problem, but the to-
tal number of elements is at most 2N. Therefore, we can solve the
weighted median in linear time O(|U |+ |V |) = O(N) as a whole at
each depth of the recursion.

As a consequence, we conclude that the total time complexity
of Algorithm 1 is O(mN log N). □

Instead of the algorithm for the weighted median, we can use
a sorting algorithm running in O(N log N)-time. More precisely,
we can find the weighted median by looking at the middle ele-
ment which divide the total weights to less than or equal to its half
after sorting the weighted elements. In this case, the time com-
plexity of the algorithm becomes worse as O(mN log2 N), but the
time bound will be steady for our main algorithms for 0-1 integer
programs with linear equality constraints to be shown in the next
section.

4. Exact Algorithms for 0-1 Integer Programs
In this section, we give exact algorithm for solving the feasibil-

ity and optimization problem of 0-1 integer programs with linear
equality constraints. Each algorithm is given by reducing it to the
vector equality problem described in the previous section.

4.1 The Feasibility Problem
First, we give the algorithm for 0-1 integer programs with lin-

ear equality constraints by showing the following theorem.
Theorem 4.1. The feasibility problem of 0-1 integer programs
with linear equalities (Problem 1.1) can be computed in O(m ·
2n/2poly(n))-time.

Proof. Unlike the inequality problem, the equality problem has
at most n independent equations. Otherwise, a set of solutions
x ∈ {0, 1}n must be empty. We assume the number of variables n
is even without loss of generality.

We solve the feasibility problem of Ax = b by reducing it to
the vector equality problem. First, we partition the set of variables
X = {x1, · · · , xn} into two disjoint subsets X1 and X2. Let α(x j)
and β(x j) be assignments of x j ∈ X1 and x j ∈ X2, respectively.
Then, we define vectors u and v by

ui =
∑
x j∈X1

Ai j · α(x j),

vi = bi −
∑
x j∈X2

Ai j · β(x j).

for each assignment of X1 and X2. Let U and V be two sets of
2n/2 such vectors u and v, respectively.

From the construction of U and V , there is a 0,1-vector x ∈
{0, 1}n satisfying Ax = b if and only if there is a pair of two vec-
tors u ∈ U and v ∈ V satisfying ui = vi for all i (1 ≤ i ≤ m).
Therefore, we can solve the vector equality problem for U and

V in O(mN log N)-time by using Algorithm 1. Consequently, we
have an algorithm for the feasibility problem of Ax = b running
in O(m · 2n/2poly(n))-time. □

Since the polynomial function is bounded as poly(n) ∈ O(ϵn)
for any constant ϵ > 1 and m ∈ O(poly(n)) is assumed, the fol-
lowing upper bound is obtained.
Corollary 4.2. The feasibility problem of 0-1 integer pro-
grams with linear equalities (Problem 1.1) can be computed in
O(1.415n)-time.

Our algorithm can enumerate all the possible solutions. If the
number of solutions is bounded by O(n1.415), then the time com-
plexity is also O(n1.415). If the number of solutions is ω(n1.415),
then the time complexity depends on the number of possible so-
lutions.

It may sound strange that we can store the data of all possible
solutions within O(n1.415)-space, even if the number of all possi-
ble solutions is ω(n1.415). This is just because we store the data as
a collection of partitioned matrices as in Figure 3.

4.2 The Optimization Problem
Taking into account the linearity of the objective function cT x

of Problem 1.2, we can extend the algorithm for the feasibility
problem to one for the optimization problem.
Theorem 4.3. The optimization problem of 0-1 integer pro-
grams with linear equalities (Problem 1.2) can be computed in
O(m · 2n/2poly(n))-time.

Proof. We essentially follow the algorithm for the feasibility
problem and solve the optimization problem by reducing it to the
vector equality problem.

We partition the set of variables X = {x1, · · · , xn} into two dis-
joint subsets X1 and X2. Let α(x j) and β(x j) be assignments of
x j ∈ X1 and x j ∈ X2, respectively. Then, we define vectors u and
v by

ui =
∑
x j∈X1

Ai j · α(x j),

vi = bi −
∑
x j∈X2

Ai j · β(x j).

for each assignment of X1 and X2. Let U and V be two sets of
2n/2 such vectors u and v, respectively.

The point which is different from Theorem 4.1 is that we addi-
tionally calculate weight

w(u) =
∑
x j∈X1

c j · α(x j),

w(v) =
∑
x j∈X2

c j · β(x j)

for each of u ∈ U and v ∈ V , respectively.
Then, we solve the vector equality problem for U and V by

Algorithm 1. After Algorithm 1 terminates, we can get a list of
submatrices which contains information of all the possible solu-
tions.

(U1,V1), (U2,V2), · · · , (U l,V l), · · · , (U l′ ,V l′)

There are at most N = 2n/2 submatrices. From the construction

c⃝ 2014 Information Processing Society of Japan 5

Vol.2014-AL-148 No.10
2014/6/13

IPSJ SIG Technical Report

U1

U l

U l′

V1 V l V l′

Fig. 3 A List of Submatrices from Algorithm 1 for the Vector Equality Problem

of Algorithm 1, each row and column of submatrices has no in-
tersection.

Let U l × V l (U l ⊆ U and V l ⊆ V) be one of such submatrices.
Then we would like to solve the following optimization problem
for each l.

min w(u) + w(v)
s.t. u ∈ U l and v ∈ V l.

From the linearity of cT , w(u) and w(v) are independent. There-
fore , the above minimization problem is solvable separately for
u and v. Hence, O(|U l| + |V l|)-time is sufficient to optimize.

We solve the same problem for each submatrices and take
the minimum of all the problems. The total time complexity is
O(m · 2n/2poly(n)). □

Corollary 4.4. The optimization problem of 0-1 integer pro-
grams with linear equalities (Problem 1.2) can be computed in
O(1.415n)-time.

5. Conclusions and Open Problems
In this paper, we have studied O(1.415n)-time exact algorithms

for 0-1 integer programs with linear equality constraints. We can
apply our algorithms to not only the feasibility problem but also
the optimization problem.

We can also extend our algorithms to integer programs where
the variables are constrained by any finite set of values, although
we don’t treat them in this paper. There are some open problems

remained as follows.
• Shroeppel and Shamir [17] studied the k-table method,

which is a generalization of the 2-table method, and showed
an O(2n/4)-space exact algorithm for the subset sum problem
by using the 4-table method. However, we don’t know how
we utilize the potential of the k-table method for 0-1 integer
programs at the moment. Such extensions may lead further
improvement of our algorithms and will be interesting re-
search directions.

• The algorithm for the inequality version of the feasibility
problem of 0-1 integer programs by Impagliazzo, Paturi and
Schneider [12] is motivate from the attempts to prove lower
bounds for restricted circuit models [18]. We don’t know
where there is any restricted circuit models corresponding to
the equality version of the feasibility problem. This may be
an interesting open question to investigate.

• Since our algorithms are very simple, we expect that they
will be also useful from the practical point of view. One of
important tasks as future works is to give a computational ex-
periment and performance analysis in practice. We hope that
our techniques will be useful in both theoretical and practical
aspects of algorithms.

Acknowledgment
This work is supported by Grant-in-Aid for Young Scientists (B)
(JSPS KAKENHI Grant Number 24700010), and Grant-in-Aid

c⃝ 2014 Information Processing Society of Japan 6

Vol.2014-AL-148 No.10
2014/6/13

IPSJ SIG Technical Report

for Scientific Research on Innovative Areas (MEXT KAKENHI
Grant Number 24106006).

References
[1] Bleich, C. and Overton, M.: A linear-time algorithm for the weighted

median problem, Technical Report 75, Computer Science Department,
Courant Institute of Mathematical Sciences, New York University
(1983).

[2] Blum, M., Floyd, R. W., Pratt, V., Rivest, R. L. and Tarjan, R. E.:
Linear time bounds for median computations, Proceedings of the 40th
annual ACM symposium on Theory of computing (STOC 1972), ACM,
pp. 119–124 (1972).

[3] Byskov, J. M., Madsen, B. A. and Skjernaa, B.: New algorithms for
exact satisfiability, Theoretical Computer Science, Vol. 332, No. 1, pp.
515–541 (2005).

[4] Drori, L. and Peleg, D.: Faster exact solutions for some NP-hard prob-
lems, Theoretical Computer Science, Vol. 287, No. 2, pp. 473–499
(2002).

[5] Fliege, J.: A randomized parallel algorithm with run time O(n2)
for solving an n × n system of linear equations, arXiv preprin
arXiv:1209.3995 (2012).

[6] Fomin, F. V. and Kratsch, D.: Exact exponential algorithms, Springer
(2010).

[7] Garey, M. R. and Johnson, D. S.: Computers and intractability; a
guide to the theory of NP-completeness, W.H. Freeman (1979).

[8] Genova, K. and Guliashki, V.: Linear integer programming methods
and approaches – a survey, Journal of Cybernetics and Information
Technologies, Vol. 11, No. 1 (2011).

[9] Grover, L. K.: A fast quantum mechanical algorithm for database
search, Proceedings of the 28th Annual ACM Symposium on Theory
of Computing (STOC 1996), ACM, pp. 212–219 (1996).

[10] Impagliazzo, R., Lovett, S., Paturi, R. and Schneider, S.: 0-1 Inte-
ger Linear Programming with a Linear Number of Constraints, arXiv
preprint arXiv:1401.5512 (2014).

[11] Impagliazzo, R. and Paturi, R.: On the Complexity of k-SAT, Journal
of Computer and System Sciences, Vol. 62, No. 2, pp. 367–375 (2001).

[12] Impagliazzo, R., Paturi, R. and Schneider, S.: A satisfiability algo-
rithm for sparse depth two threshold circuits, Proceedings of the 54th
Annual Symposium on the Foundations of Computer Science (FOCS
2013), IEEE, pp. 479–488 (2013).

[13] Impagliazzo, R., Paturi, R. and Zane, F.: Which Problems Have
Strongly Exponential Complexity?, Journal of Computer and System
Sciences, Vol. 63, No. 4, pp. 512–530 (2001).

[14] Matiyasevich, Y.: Hilbert’s 10th Problem, The MIT Press (1993).
[15] Nemhauser, G. L. and Wolsey, L. A.: Integer and Combinatorial Op-

timization, John Wiley and Sons (1988).
[16] Raghavendra, P.: A Randomized Algorithm for Linear Equations over

Prime Fields, Manuscript (2012).
[17] Schroeppel, R. and Shamir, A.: A T = O(2n/2), S = O(2n/4) Algo-

rithm for Certain NP-Complete Problems, SIAM journal on Comput-
ing, Vol. 10, No. 3, pp. 456–464 (1981).

[18] Williams, R.: Improving exhaustive search implies superpolynomial
lower bounds, SIAM Journal on Computing, Vol. 42, No. 3, pp. 1218–
1244 (2013).

[19] Woeginger, G. J.: Exact algorithms for NP-hard problems: A survey,
Combinatorial Optimization – Eureka, You Shrink!, Springer, pp. 185–
207 (2003).

c⃝ 2014 Information Processing Society of Japan 7

Vol.2014-AL-148 No.10
2014/6/13

