
IPSJ SIG Technical Report

FPT algorithms for Token Jumping on Graphs

Takehiro Ito1,a) Marcin Kamiński2,b) Hirotaka Ono3,c) Akira Suzuki1,d) Ryuhei Uehara4,e)

Katsuhisa Yamanaka5,f)

Abstract: Suppose that we are given two independent sets I0 and Ir of a graph such that |I0| = |Ir |, and imagine that a
token is placed on each vertex in I0. Then, the token jumping problem is to determine whether there exists a sequence
of independent sets which transforms I0 into Ir so that each independent set in the sequence results from the previous
one by moving exactly one token to another vertex. Therefore, all independent sets in the sequence must be of the
same cardinality. This problem is W[1]-hard when parameterized only by the number of tokens. In this paper, we give
FPT algorithms for general graphs when parameterized by both the number of tokens and the maximum degree.

1. Introduction
The token jumping problem was introduced by Kamiński et

al. [12], which can be seen as a “dynamic” version of indepen-
dent sets in a graph. Recall that an independent set of a graph G is
a vertex-subset of G in which no two vertices are adjacent. (See
Fig. 1 which depicts six different independent sets of the same
graph.) Suppose that we are given two independent sets I0 and
Ir of a graph G = (V, E) such that |I0| = |Ir |, and imagine that
a token (coin) is placed on each vertex in I0. Then, the token
jumping problem is to determine whether there exists a sequence
⟨I0, I1, . . . , Iℓ⟩ of independent sets of G such that

(a) Iℓ = Ir, and |Ii| = |I0| = |Ir | for all i, 1 ≤ i ≤ ℓ; and
(b) for each index i, 1 ≤ i ≤ ℓ, Ii can be obtained from Ii−1 by

moving exactly one token on a vertex u ∈ Ii−1 to another
vertex v ∈ V \Ii−1, and hence Ii−1\Ii = {u} and Ii\Ii−1 = {v}.

Figure 1 illustrates a sequence ⟨I0, I1, . . . , I5⟩ of independent sets
which transforms I0 into Ir = I5.

Recently, this type of problems have been studied extensively
in the framework of reconfiguration problems [7], which arise
when we wish to find a step-by-step transformation between two
feasible solutions of a problem such that all intermediate solu-
tions are also feasible and each step abides by a prescribed re-

1 Graduate School of Information Sciences, Tohoku University, Aoba-
yama 6-6-05, Sendai, 980-8579, Japan.

2 Dept. of Mathematics, Computer Science and Mechanics, University of
Warsaw, Banacha 2, 02-097, Warsaw, Poland.

3 Faculty of Economics, Kyushu University, Hakozaki 6-19-1, Higashi-ku,
Fukuoka, 812-8581, Japan.

4 School of Information Science, JAIST, Asahidai 1-1, Nomi, Ishikawa,
923-1292, Japan.

5 Dept. of Electrical Engineering and Computer Science, Iwate University,
Ueda 4-3-5, Morioka, Iwate 020-8551, Japan.

a) takehiro@ecei.tohoku.ac.jp
b) mjk@mimuw.edu.pl
c) hirotaka@en.kyushu-u.ac.jp
d) a.suzuki@ecei.tohoku.ac.jp
e) uehara@jaist.ac.jp
f) yamanaka@cis.iwate-u.ac.jp

(a) I0 (b) I1 (c) I2

(d) I3

u

(e) I4 (f) I5 = Ir

Fig. 1 A sequence ⟨I0, I1, . . . , I5⟩ of independent sets of the same graph,
where the vertices in independent sets are depicted by large black
circles (tokens).

configuration rule (i.e., an adjacency relation defined on feasi-
ble solutions of the original problem). For example, the to-
ken jumping problem can be seen as a reconfiguration problem
for the (ordinary) independent set problem: feasible solutions
are defined to be all independent sets of the same cardinality
in a graph; and the reconfiguration rule is defined to be the
condition (b) above. This reconfiguration framework has been
applied to several well-known problems, including independent
set [5], [6], [7], [12], [14], satisfiability [4], [13], set cover,
clique, matching [7], vertex-coloring [1], [2], [3], list edge-
coloring [8], [10], list L(2, 1)-labeling [9], shortest path [11],
etc.

1.1 Reconfiguration rules and related results
The original reconfiguration problem for independent set was

introduced by Hearn and Demaine [5], which employs another
reconfiguration rule. Indeed, there are three reconfiguration prob-
lems for independent set (ISReconf, for short) under different re-
configuration rules, as follows.

• Token Sliding (TS) [2], [5], [6], [12]: We can slide a sin-
gle token only along an edge of a graph. In other words,
each token can be moved only to its adjacent vertex. This

1ⓒ 2014 Information Processing Society of Japan

Vol.2014-AL-148 No.2
2014/6/13

IPSJ SIG Technical Report

rule corresponds to the original one introduced by Hearn
and Demaine [5].

• Token Jumping (TJ) [12]: This rule corresponds to token
jumping, that is, we can move a single token to any vertex.

• Token Addition and Removal (TAR) [7], [12], [14]: We
can either add or remove a single token at a time if it re-
sults in an independent set of cardinality at least a given
threshold. Therefore, independent sets in the sequence do
not have the same cardinality.

We remark that the existence of a desired sequence depends
deeply on the reconfiguration rules. For example, Fig. 1 is an
yes-instance for token jumping, but it is a no-instance for ISRe-
conf under the TS rule.

We here explain only the results which are strongly related to
token jumping; see the references above for the other results.

Hearn and Demaine [5], [6] proved that ISReconf under the TS
rule is PSPACE-complete for planar graphs of maximum degree
three. Then, Bonsma and Cereceda [2] showed that this problem
remains PSPACE-complete even for very restricted instances. In-
deed, their result implies that token jumping is PSPACE-complete
for planar graphs with maximum degree three.

Kamiński et al. [12] proved that ISReconf is PSPACE-
complete for perfect graphs under any of the three reconfigura-
tion rules. As the positive results for token jumping, they gave
a linear-time algorithm for even-hole-free graphs. Furthermore,
their algorithm can find an actual sequence of independent sets
with the minimum number of token movements.

1.2 Our contributions
In this paper, we investigate the parameterized complexity of

the token jumping problem. The problem is W[1]-hard when pa-
rameterized only by the number t of tokens. (Details are omitted
from this extended abstract.) Therefore, the problem admits no
FPT algorithm when parameterized only by t unless FPT =W[1].

We thus consider the problem with two parameters, and give
an FPT algorithm for general graphs when parameterized by both
the number of tokens and the maximum degree. Recall that the
problem remains PSPACE-complete even if the maximum degree
is three. Therefore, it is very unlikely that the problem can be
solved in polynomial time even for graphs with bounded maxi-
mum degree.

In addition, we show that our FPT algorithm for general graphs
can be modified so that it finds an actual sequence of independent
sets between I0 and Ir with the minimum number of token move-
ments. We remark that the sequence of independent sets in Fig. 1
has the minimum length. It is interesting that the token on the
vertex u in Fig. 1(a) must be moved twice even though u ∈ I0∩ Ir.

2. Preliminaries
In this section, we first introduce some basic terms and nota-

tions which will be used throughout the paper.
In token jumping, we may assume without loss of generality

that graphs are simple. For a graph G, we sometimes denote by
V(G) and E(G) the vertex set and the edge set of G, respectively.
Let n(G) = |V(G)| and m(G) = |E(G)|. We denote by ∆(G) the

maximum degree of G.
For a vertex v of a graph G, we denote by N(G; v) the set of

all neighbors of v in G (which does not include v itself), that is,
N(G; v) = {w ∈ V(G) | (v, w) ∈ E(G)}. Let N[G; v] = N(G; v)∪{v},
and let N[G; V ′] =

∪
v∈V ′ N[G; v] for a vertex-subset V ′ ⊆ V(G).

Let Ii and I j be two independent sets of the same cardinality
in a graph G = (V, E). We say that Ii and I j are adjacent if there
exists exactly one pair of vertices u and v such that Ii\ I j = {u} and
I j \ Ii = {v}, that is I j can be obtained from Ii by moving the token
on a vertex u ∈ Ii to another vertex v ∈ V \ Ii. We remark that the
tokens are unlabeled, while the vertices in a graph are labeled.

A reconfiguration sequence between two independent sets I
and I′ of G is a sequence ⟨I1, I2, . . . , Iℓ⟩ of independent sets of
G such that I1 = I, Iℓ = I′, and Ii−1 and Ii are adjacent for
i = 2, 3, . . . , ℓ. We say that two independent sets I and I′ are re-
configurable each other if there exists a reconfiguration sequence
between I and I′. Clearly, any two adjacent independent sets are
reconfigurable each other. The length of a reconfiguration se-
quence S is defined as the number of independent sets contained
in S. For example, the length of the reconfiguration sequence in
Fig. 1 is 6.

The token jumping problem is to determine whether two given
independent sets I0 and Ir of a graph G are reconfigurable each
other. We may assume without loss of generality that |I0| = |Ir |;
otherwise the answer is clearly “no.” Note that token jumping is
a decision problem asking the existence of a reconfiguration se-
quence between I0 and Ir, and hence it does not ask an actual
reconfiguration sequence. We always denote by I0 and Ir the ini-
tial and target independent sets of G, respectively, as an instance
of token jumping.

3. FPT algorithms
In this section, we give an FPT algorithm for general graphs

when parameterized by both the number of tokens and the max-
imum degree. Recall that token jumping remains PSPACE-
complete even for planar graphs with bounded maximum degree.

In Section 3.1, we first give an FPT algorithm which simply
solves token jumping for general graphs. We then show in Sec-
tion 3.2 that our FPT algorithm can be modified so that it finds an
actual reconfiguration sequence with the minimum length.

3.1 Token jumping
The main result of this subsection is the following theorem.

Theorem 3.1 Let G be a graph whose maximum degree is
bounded by a fixed constant d. Let I0 and Ir be two indepen-
dent sets of G such that |I0| = |Ir | ≤ t for a fixed constant t. Then,
one can determine whether I0 and Ir are reconfigurable each other
in time O

(
(3td)2t

)
.

In this subsection, we give such an algorithm as a proof of The-
orem 3.1. We first show in Lemma 3.2 that, if a graph G has at
least 3t(d + 1) vertices, then I0 and Ir are always reconfigurable
each other. Therefore, one can know that the answer is always
“yes” if n(G) ≥ 3t(d + 1), and hence it suffices to deal with a
graph having less than 3t(d + 1) vertices. For such a graph, we
then show in Lemma 3.3 that there is an O

(
(3td)2t

)
-time algo-

2ⓒ 2014 Information Processing Society of Japan

Vol.2014-AL-148 No.2
2014/6/13

IPSJ SIG Technical Report

rithm that determines whether I0 and Ir are reconfigurable each
other.

We first show that any two independent sets are reconfigurable
each other if the graph has a sufficiently large number of vertices,
as in the following lemma.

Lemma 3.2 Let G be a graph with ∆(G) ≤ d, and let Ii and I j be
an arbitrary pair of independent sets of G such that |Ii| = |I j| ≤ t.
Then, Ii and I j are reconfigurable each other if n(G) ≥ 3t(d + 1).

Proof. Suppose that n(G) ≥ 3t(d + 1). To prove the lemma, we
show that there exists a reconfiguration sequence between Ii and
I j.

Let G− be the graph obtained from G by deleting all vertices in
N[G; Ii] ∪ N[G; I j]. Since all neighbors of the vertices in Ii ∪ I j

have been deleted from G, no vertex in G− is adjacent with any
vertex in Ii ∪ I j. Therefore, if G− has an independent set Ik with
|Ik | ≥ t, then there is a reconfiguration sequence between Ii and
I j, as follows: move all tokens on the vertices in Ii to the vertices
in Ik one by one; and move all tokens on the vertices in Ik to the
vertices in I j one by one.

To complete the proof, we thus show that G− has an indepen-
dent set Ik with |Ik | ≥ t if n(G) ≥ 3t(d + 1). Since ∆(G) ≤ d,
we clearly have

∣∣∣N[G; v]
∣∣∣ ≤ d + 1 for every vertex v in G. Since

|Ii| ≤ t, we thus have∣∣∣N[G; Ii]
∣∣∣ ≤∑

v∈Ii

∣∣∣N[G; v]
∣∣∣ ≤ t(d + 1).

Similarly, we have
∣∣∣N[G; I j]

∣∣∣ ≤ t(d + 1). Therefore,

n(G−) ≥ n(G) −
∣∣∣N[G; Ii]

∣∣∣ − ∣∣∣N[G; I j]
∣∣∣ ≥ t(d + 1). (1)

We now suppose for a contradiction that |Imax| < t holds for a
maximum independent set Imax of G−. Then, we have∣∣∣N[G−; Imax]

∣∣∣ ≤ ∑
v∈Imax

∣∣∣N[G; v]
∣∣∣ < t(d + 1),

and hence by Eq. (1)

n(G−) −
∣∣∣N[G−; Imax]

∣∣∣ ≥ 1.

Therefore, the graph obtained from G− by deleting all vertices
in N[G−; Imax] is non-empty, and hence we can add at least one
vertex to Imax. This contradicts the assumption that Imax is a max-
imum independent set of G−. Therefore, |Imax| ≥ t, and hence G−

has an independent set Ik with |Ik | ≥ t. □

We then give an FPT algorithm for the case where a given
graph G has only a constant number of vertices, as in the fol-
lowing lemma.

Lemma 3.3 Suppose that n(G) < 3t(d + 1). Then, there is an
O
(
(3td)2t

)
-time algorithm which determines whether I0 and Ir are

reconfigurable each other.

Proof. We give such an algorithm. For a graph G and a con-
stant t′ = |I0| = |Ir | (≤ t), we construct a configuration graph
C = (V,E), as follows:

(i) each node in C corresponds to an independent set of G with
cardinality exactly t′; and

(ii) two nodes in C are joined by an edge if and only if the
corresponding two independent sets are adjacent.

For an independent set I of G with |I| = t′, we always denote by
wI the node of C corresponding to I. Clearly, two independent
sets I0 and Ir are reconfigurable each other if and only if there is
a path in C between wI0 and wIr .

Notice that G has at most the number
(

n(G)
t′

)
of distinct indepen-

dent sets with cardinality exactly t′. Since t′ ≤ t, we thus have

|V| ≤
(
n(G)

t′

)
<

(
3t(d + 1)

t′

)
= O

(
(3td)t

)
.

The configuration graph C above can be constructed in time
O(|V|2). Furthermore, by the breadth-first search on C starting
from the node wI0 , one can determine whether C has a path from
wI0 to wIr in time O(|V| + |E|) = O(|V|2). In this way, our algo-
rithm runs in time O(|V|2) = O

(
(3td)2t

)
in total. □

Lemmas 3.2 and 3.3 complete the proof of Theorem 3.1. □

3.2 Shortest reconfiguration sequence
We now give an FPT algorithm which finds an actual reconfig-

uration sequence with the minimum length.

Theorem 3.4 Let G be a graph whose maximum degree is
bounded by a fixed constant d. Let I0 and Ir be two indepen-
dent sets of G such that |I0| = |Ir | ≤ t for a fixed constant t. Then,
one can find a shortest reconfiguration sequence between I0 and
Ir in time O

(
(4td)2t + n(G) + m(G)

)
if there exists.

We give such an algorithm as a proof of Theorem 3.4. Let
t′ = |I0| = |Ir | ≤ t. Although our algorithm is based on the proofs
in Section 3.1, the number of vertices for the graph classification
is slightly changed from 3t(d + 1) to 4t(d + 1); this yields that the
base of the running time becomes 4 in Theorem 3.4.

We first consider the case where n(G) < 4t(d + 1).

Lemma 3.5 Suppose that n(G) < 4t(d + 1). Then, one can
find a shortest reconfiguration sequence between I0 and Ir in time
O
(
(4td)2t

)
if there exists.

Proof. As in the proof of Lemma 3.3, we construct the configu-
ration graph C = (V,E) for G and t′ in time

O(|V|2) = O

(4t(d + 1)
t′

)2 = O
(
(4td)2t

)
.

Recall that the node set of C corresponds to all independent sets
in G of cardinality exactly t′. Therefore, a shortest reconfigura-
tion sequence between two independent sets I0 and Ir corresponds
to a shortest path in C between the two nodes wI0 and wIr . By the
breadth-first search on C starting from wI0 , one can find a shortest
path in C in time O(|V| + |E|) = O(|V|2) if there exists. There-
fore, if n(G) < 4t(d + 1), one can find a shortest reconfiguration
sequence in time O(|V|2) = O

(
(4td)2t

)
. □

We then consider the case where n(G) ≥ 4t(d + 1). Notice that,
since n(G) is not bounded by a fixed constant, we cannot directly
construct the configuration graph C for G and t′ in this case. How-
ever, we will prove that only a subgraph of C having a constant
number of nodes is sufficient to find a shortest reconfiguration

3ⓒ 2014 Information Processing Society of Japan

Vol.2014-AL-148 No.2
2014/6/13

IPSJ SIG Technical Report

sequence.
Lemma 3.2 ensures that there always exists a reconfiguration

sequence between I0 and Ir in this case. Furthermore, in the proof
of Lemma 3.2, we proposed a reconfiguration sequence S′ be-
tween I0 and Ir such that every token is moved exactly twice. Al-
though this is not always a shortest reconfiguration sequence, the
minimum length of a reconfiguration sequence between I0 and Ir

can be bounded by the length of S′, that is, 2t′.
Let G− be the graph obtained from G by deleting all vertices in

N[G; I0] ∪ N[G; Ir]. Then, by the counterpart of Eq. (1) we have
n(G−) ≥ 2t(d + 1), and hence G− has an independent set I′k such
that |I′k | = 2t′ (≤ 2t). We now give the following lemma.

Lemma 3.6 There exists a shortest reconfiguration sequence S
between I0 and Ir such that I ⊆ I0∪ I′k∪ Ir for all independent sets
I in S.

Proof. Let S∗ = ⟨I∗0 , I∗1 , . . . , I∗ℓ ⟩ be an arbitrary shortest recon-
figuration sequence between I0 = I∗0 and Ir = I∗ℓ . Then, the proof
of Lemma 3.2 implies that ℓ ≤ 2t′, as we have mentioned above.
Note that some independent sets in S∗ may contain vertices in
V(G) \

(
I0 ∪ I′k ∪ Ir

)
. Let

V(I0, Ir;S∗) =
∪

1≤i≤ℓ−1

(
I∗i \

(
I0 ∪ Ir

))
,

that is, V(I0, Ir;S∗) is the set of all vertices that are not in I0 ∪ Ir

but appear in the reconfiguration sequence S∗. Since ℓ ≤ 2t′ and
|I∗i+1 \ I∗i | = 1 for all i, 0 ≤ i ≤ ℓ − 1, we have |V(I0, Ir;S∗)| < ℓ ≤
2t′.

Therefore, since |I′k | = 2t′, one can replace all vertices in
V(I0, Ir;S∗) with distinct vertices in I′k; let S be the resulting se-
quence. Recall that I′k is an independent set of G−, and hence no
vertex in I′k is adjacent with any vertex in I0 ∪ Ir. Therefore, S
is a reconfiguration sequence between I0 and Ir. Note that any
independent set I in S satisfies I ⊆ I0 ∪ I′k ∪ Ir. Furthermore,
the length of S is equal to that of S∗, and hence S is a shortest
reconfiguration sequence. □

We now give the following lemma, which completes the proof
of Theorem 3.4.

Lemma 3.7 Suppose that n(G) ≥ 4t(d + 1). Then, one can
find a shortest reconfiguration sequence between I0 and Ir in time
O
(
(4t)2t + n(G) + m(G)

)
.

Proof. We first remark that an independent set I′k of G− with
|I′k | = 2t′ (≤ 2t) can be found in time O

(
n(G) + m(G)

)
by the

following simple greedy algorithm: initially, let I′k = ∅; choose
an arbitrary vertex v in G−, and add v to I′k; delete all vertices in
N[G−; v] from G−, and repeat. Recall that n(G−) ≥ 2t(d + 1) and∣∣∣N[G−; v]

∣∣∣ ≤ d+1 for every vertex v in G−. Therefore, this greedy
algorithm always finds an independent set I′k with |I′k | = 2t′.

Let G0kr be the subgraph of G induced by the vertex-subset
I0 ∪ I′k ∪ Ir. Notice that n(G0kr) = |I0 ∪ I′k ∪ Ir | ≤ 4t′. Let C0kr be
the configuration graph for G0kr and the constant t′. Since G0kr

is an induced subgraph of G, any independent set I of G0kr is an
independent set of G. Then, Lemma 3.6 ensures that there ex-
ists a shortest reconfiguration sequence S between I0 and Ir such
that every independent set I in S is an independent set of G0kr.

Therefore, such a shortest reconfiguration sequence S between I0

and Ir can be found as a shortest path in C0kr between the two
nodes wI0 and wIr . This can be done in time O

(
(4t)2t

)
, because the

number of nodes in C0kr can be bounded by
(

n(G0kr)
t′

)
= O

(
(4t)t

)
.

In this way, if n(G) ≥ 4t(d+1), one can find a shortest reconfig-
uration sequence between I0 and Ir in time O

(
(4t)2t+n(G)+m(G)

)
in total. □

4. Concluding Remark
We remark that the running time of each of our FPT algorithms

is just a single exponential with respect to the number of tokens;
furthermore, the parameter d of maximum degree does not appear
in the exponent.

Acknowledgments This work is partially supported by
JSPS KAKENHI Grant Numbers 25106504 and 25330003
(Ito), 25104521 (Ono), 24106004 (Ono and Uehara), 26730001
(Suzuki) and 25106502 (Yamanaka).

References
[1] Bonamy, M., Johnson, M., Lignos, I., Patel, V., Paulusma, D.: On the

diameter of reconfiguration graphs for vertex colourings. Electronic
Notes in Discrete Mathematics 38, pp. 161–166 (2011)

[2] Bonsma, P., Cereceda, L.: Finding paths between graph colourings:
PSPACE-completeness and superpolynomial distances. Theoretical
Computer Science 410, pp. 5215–5226 (2009)

[3] Cereceda, L., van den Heuvel, J., Johnson, M.: Finding paths between
3-colourings. J. Graph Theory 67, pp. 69–82 (2011)

[4] Gopalan, P., Kolaitis, P.G., Maneva, E.N., Papadimitriou, C.H.: The
connectivity of Boolean satisfiability: computational and structural di-
chotomies. SIAM J. Computing 38, pp. 2330–2355 (2009)

[5] Hearn, R.A., Demaine, E.D.: PSPACE-completeness of sliding-block
puzzles and other problems through the nondeterministic constraint
logic model of computation. Theoretical Computer Science 343,
pp. 72–96 (2005)

[6] Hearn, R.A., Demaine, E.D.: Games, Puzzles, and Computation. A K
Peters (2009)

[7] Ito, T., Demaine, E.D., Harvey, N.J.A., Papadimitriou, C.H., Sideri,
M., Uehara, R., Uno, Y.: On the complexity of reconfiguration prob-
lems. Theoretical Computer Science 412, pp. 1054–1065 (2011)

[8] Ito, T., Kamiński, M., Demaine, E.D.: Reconfiguration of list edge-
colorings in a graph. Discrete Applied Mathematics 160, pp. 2199–
2207 (2012)

[9] Ito, T., Kawamura, K., Ono, H., Zhou, X.: Reconfiguration of list
L(2, 1)-labelings in a graph. In: Proc. of ISAAC 2012, Lecture Notes
in Computer Science vol. 7676, pp. 34–43 (2012)

[10] Ito, T., Kawamura, K., Zhou, X.: An improved sufficient condition
for reconfiguration of list edge-colorings in a tree. IEICE Trans. on
Information and Systems E95-D, pp. 737–745 (2012)

[11] Kamiński, M., Medvedev, P., Milanič, M.: Shortest paths between
shortest paths. Theoretical Computer Science 412, pp. 5205–5210
(2011)

[12] Kamiński, M., Medvedev, P., Milanič, M.: Complexity of independent
set reconfigurability problems. Theoretical Computer Science 439,
pp. 9–15 (2012)

[13] Makino, K., Tamaki, S., Yamamoto, M.: An exact algorithm for the
Boolean connectivity problem for k-CNF. Theoretical Computer Sci-
ence 412, pp. 4613–4618 (2011)

[14] Mouawad, A.E., Nishimura, N., Raman, V., Simjour, N., Suzuki,
A.: On the parameterized complexity of reconfiguration problems. In
Proc. of IPEC 2013, Lecture Notes in Computer Science vol. 8246,
pp. 281–294 (2013)

4ⓒ 2014 Information Processing Society of Japan

Vol.2014-AL-148 No.2
2014/6/13

