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(Total) Vector Domination for Graphs
with Bounded Branchwidth
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Abstract:

HiroTakA ONO?"

b) Yusm Uno3©)

Given a graplG = (V, E) of ordern and ann-dimensional non-negative vector= (d(1),d(2),...,d(n)),

called demand vector, the vector domination (resp., total vector domination) is the problem of finding a minimum
S C V such that every vertexin V \ S (resp., inV) has at leasti(v) neighbors inS. The (total) vector domination is

a generalization of many dominating set type problems,

e.g., the dominating set problért,iples dominating set

problem (thisk is different from the solution size), and so on, and its approximability and inapproximability have been
studied under this general framework. In this paper, we show that a (total) vector domination of graphs with bounded
branchwidth can be solved in polynomial time. This implies that the problem is polynomially solvable also for graphs
with bounded treewidth. Consequently, the (total) vector domination problem for a planar graph is subexponential
fixed-parameter tractable with respeckiavherek is the size of solution.

1. Introduction

Given a graplt = (V, E) of ordern and am-dimensional non-
negative vectod = (d(1),d(2),...,d(n)), calleddemand vectqr
thevector dominatiorfresp. total vector dominatiojis the prob-
lem of finding a minimun® C V such that every vertexin V\ S
(resp., inV) has at leasd(v) neighbors irS. These problems were
introduced by [21], and they contain many existing problems,
such as the minimum dominating set and ki@iple dominating
set problem (thik is different from the solution size) [22], [23],
and so on. Indeed, by settimy= (1,...,1), the vector domi-

that the polynomial-time greedy algorithm achieves{fogn)-
approximation factor [15]; it is already optimal in terms of order.
We can see further analyses of the approximability and inapprox-
imability in [8], [9].

In this paper, we focus on another aspect of designing al-
gorithms for domination problems, that is, the polynomial-time
solvability of the domination problems for graphs of bounded
treewidth or branchwidth. In [3], it is shown that the vector dom-
ination problem isA[1]-hard with respect to treewidth. This re-
sult and Courcelle’s meta-theorem about MSOL [11] imply that
the vector domination is unlikely expressible in MSOL; it is not

nation becomes the minimum dominating set forms, and by set-obvious to obtain a polynomial time algorithm.

tingd = (k,...,K), the total vector dominating set becomes the
k-tuple dominating set. If in the definition of total vector domina-

In this paper, we present a polynomial-time algorithm for the
domination problems of graphs with bounded branchwidth. The

tion, we replace open neighborhoods with closed ones, we get thébranchwidth is a measure of the “global connectivity” of a graph,
multiple domination In this paper, we sometimes refer to these and is known to be a counterpart of treewidth. It is known that
problems just adomination problemsTable 1 of [9] summarizes  maxbw(G), 2} < tw(G) + 1 < max{3w(G)/2, 2}, wherebw(G)
how related problems are represented in the scheme of dominaandtw(G) denote the branchwidth and treewidth of grapfre-
tion problems. Many variants of the basic concepts of domination spectively [28]. Due to the linear relation of these two mea-
and their applications have appeared in [23], [24]. sures, polynomial-time solvability of a problem for graphs with
Since the vector or multiple domination includes the setting bounded treewidth implies polynomial-time solvability of a prob-
of the ordinary dominating set problem, it is obviously NP-hard, lem for graphs with bounded branchwidth, and vice versa. Hence,
and further it is NP-hard to approximate withial¢g n)-factor, our results imply that the domination problems (i.e., vector dom-
wherec is a positive constant, e.g., 2267 [1], [26]. As for the ination, total vector domination and multiple domination) can be
approximability, since the domination problems are special casessolved in polynomial time for graphs with bounded treewidth; the
of a set-cover type integer programming problem, it is known polynomial-time solvability for all the problems (except the dom-
GraduateSchoolof Economics and Business Administration, Hokkaido inating set problem) in Table 1 of [9] is newly shown. Also, they
University, Sapporo 0600809, Japan answer the question by [8], [9] about the complexity status of the
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with respect to the size of the soluti&nthat is, there is an algo-

1
2

3

b} hirotaka@econ.kyushu-u.ac.jp
9 uno@mi.s.osakafu-u.ac.jp

2014 Information Processing Society of Japan 1



) Vol.2014-AL-148 No.1
IPSJ SIG Technical Report 2014/6/13

rithm whose running time isCtVklogh n0() T our best knowl- ing set problem are also studied, ()-center problem is the one
edge, these are the first fixed-parameter algorithms for the totalthat asks the existence of sgtof k vertices satisfying that for
vector domination and multiple domination, whereas the vector €Very vertex € V there exists a verten € S such that the dis-
domination for planar graphs has been shown to be FPT [27]. Fortance betweewn andv is at mostr; (k, 1)-center corresponds to
the latter case, our algorithm greatly improves the running time. the ordinary dominating set. Thé, )-center for planar graphs
Note that the polynomial-time solvability of the vector dom- is shown to be fixed-parameter tractable with respedt &nd
ination problem for graphs of bounded treewidth has been in- I [12]. Foro,p € {0,1,2,...} and a positive integek, J[o, p]-
dependently shown very recently [7]. They considered a fur- dominating set is the problem that asks the existence ¢ sét
ther generalization of the vector domination problem, and gave K vertices satisfying thafN(v) N S| € o holds forvv € S and
a polynomial-time algorithm for graphs of bounded clique-width. IN() N S| € p for ¥o € V \ S, whereN(v) denotes the open
Sincecw(G) < 3- 2©)-1 holds wherew(G) denotes the clique-  Neighborhood ob. If o= = {0,1,.. .} andp = {1,2,...}, J[o, p]-
width of graphG ([10]), their polynomial-time algorithm implies dominating set is the ordinary dominating set problem, and if
the polynomial-time solvability of the vector domination problem ¢ = {0} andp = {0,1,2,...}, it is the independent set. In [6],
for graphs of bounded treewidth and bounded branchwidth. the parameterized complexity dfc-, p]-dominating set with re-
spect to treewidth is also considered.
1.1 Related Work
For graphs with bounded treewidth (or branchwidth), the ordi- 1.2 Our Results
nary domination problems can be solved in polynomial time. As ~ Our results are summarized as follows:
for the fixed-parameter tractability, it is known that even the or- ® We present a polynomial-time algorithm for the vector dom-

dinary dominating set problem is W[2]-complete with respect to ination of graphG = (V, E) with bounded branchwidth. The
solution sizek; it is unlikely to be fixed-parameter tractable [17]. running time is roughhyO(n®*(©)+2),

In contrast, it can be solved m(zn.gsxfkk + ) time for planar e \We present polynomial-time algorithms for the total vec-
graphs, that is, it is subexponential fixed-parameter tractable [16].  tor domination and multiple domination of graigh with
The subexponent part comes from the inequait{G) < 12 Vk+ bounded branchwidth. ~ The running time is roughly
9, wherek is the size of a dominating set @. Behind the in- O(2%u(G)/2 nfbu(G)+2),

equality, there is a unified property of parameters, caliiet- o Let G be a planar graph. Then, we can checkd(n® +
mensionality{14]. Namely, the subexponential fixed-parameter mink + 2,d* + 2}*0Vk3n) time whetherG hasa vector
algorithm of the dominating set for planar graphs (more precisely, dominating set with cardinality at modt or not, where
H-minor-free graphs [13]) is based on the bidimensionality. d* = max{dv) | v € V}.

A maximization version of the ordinary dominating setis also  ® Let G be a planar graph. Then, we can checkd(m® +
consideredPartial Dominating Seis the problem of maximizing 230VkSL2 min(k + 2,d* + 2}%0V<+34n) time whetherG has
the number of vertices to be dominated by using a given number @ total vector dominating set and a multiple dominating set
k of vertices. In [2], it was shown that partial dominating set with cardinality at mosk or not.
problem is FPT with respect tofor H-minor-free graphs. Later, It should be noted that it is actually possible to design directly
[18] gives a subexponential FPT with respedk for apex-minor- polynomial time algorithms for graphs with bounded treewidth,

free graphs, also a superclass of planar graphs. Although partiaPut they are slower than the ones for graphs with bounded branch-
dominating set is an example of problems to which the bidimen- Width; from this reason, we design branch decomposition-based
sionality theory cannot be applied, they develop a technique to algorithms.
reduce an input graph so that its treewidth beco®egk). As far as the authors know, the second and fourth results
For the vector domination, a polynomial-time algorithm for ~give the first polynomial time algorithms and the first fixed-
graphs of bounded treewidth has been proposed very recently [7]Parameter algorithm for the total vector domination and multiple
as mentioned before. In [27], it is shown that the vector domina- domination of graphs with bounded branchwidth (or treewidth)
tion for p-degenerated graphs can be solvet S nCW time, and planar graphs, respectively. As for the vector domination,
if d(v) > O holds forvs € V (positive constraint). Since any We give anO(r**(®+2)-time algorithm, whose running time is
planar graph is 5-degenerated, the vector domination for planarQ(P®(®*9*?) in terms of the treewidth, whereas the recent pa-
graphs is fixed-parameter tractable with respect to solution size,Per [7] gives arO(cw(G)lo|(n + 1)>*(®))-time algorithm, where
under the positive constraint. Furthermore, the case wi@je || is the encoding length dé-expression used in the algorithm,
could be 0 for some can be easily reduced to the positive case andis bounded by a polynomial in the input size for fike@ince
by using the transformation discussed in [3], while increasing the Cw(G) < 3-2(®1 holds, this is aD(2*(®)jcr|(n+1)"%"”)-time
degeneracy by at most 1. It follows that the vector domination algorithm.
for planar graphs is FPT with respect to solution $izelowever, Also, the third result shows that the vector domination of pla-
for the total vector domination and multiple domination, neither nar graphs is subexponential FPT with resped, @and it greatly
polynomial time algorithm for graphs of bounded treewidth nor improves the running time of existig®®)n°®-time algorithm
fixed-parameter algorithm for planar graphs has been known.  ([27]). It was shown in [5] that for the ordinary dominating set

Other than these, several generalized versions of the dominatiroblem (equivalently, the vector domination (or multiple dom-
ination) withd = (1,1,...,1)) in planar graphs, there is no
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220¥nOM)_time algorithm unlesshe Exponential Time Hypoth-
esis (i.e., the assumption that there is 8@ aime algorithm for
n-variable 3SAT [25]) fails. Hence, in this sense, our algorithm
in third result (or the fourth results for the multiple domination)
is optimal ifd* is a constant.

The third and fourth results give subexponential fixed-
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In general, computing the branchwidth of a given graph is NP-
hard [30]. On the other hand, Bodlaender and Thilikos [4] gave
a linear time algorithm which checks whether the branchwidth of
a given graph is at mostor not, and if so, outputs a branch de-
composition of minimum width, for any fixekl Also, as shown
in the following lemma, it is known that for planar graphs, it can

parameter algorithms of the domination problems for planar be done in polynomial time for any giveky where a graph is
graphs. It should be noted that the domination problems them-calledplanarif it can be drawn in the plane without generating a
selves do not have the bidimensionality, mentioned in the pre- crossing by two edges.

vious subsection, due to the existence of the vertices with de-

Lemmal LetG be a planar graph.

mand 0. Instead, by reducing irrelevant vertices, we obtain a sim- (i) ([30]) It can be checked i®(r¥) time whetherbu(G) < k or
ilar inequality about the branchwidth and the solution size of the Not for a given integex.
domination problems, which leads to the subexponential fixed- (i) ([20]) A branch decomposition o& with width buw(G) can be

parameter algorithms.

constructed irO(n®) time. o
Here, we introduce the following basic properties about branch

The remainder of the paper is organized as follows. In Sec- gecompositions, which will be utilized in the subsequent sections
tion 2, we introduce some basic notations and then explain thethe proof is omitted).

branch decomposition. Section 3 is the main part of the paper,

Lemma?2 Let (T, ) be a branch decomposition Gf

and presents our dynamic programming based algorithms for theyj) For treeT, let x be a non-leaf node anfi = (x, %), i = 1,2, 3,
considered problems. Section 4 explains how we extend the al-pe an edge incident to(note that the degree afis three). Then,
gorithms of Section 3 to fixed-parameter algorithms for planar ;) \ (w(f;) U w(fi)) = 0 for every(i, j,k} = {1,2,3}. Hence,

graphs.

2. Preliminaries

A graphG is an ordered pair of its vertex s€(G) and edge
setE(G) and is denoted b = (V(G), E(G)). Letn = |[V(G)|

w(f) € w(fj) Uw(f).

(i) Let f be an edge of, Vi be the set of all end-vertices of
edges inE¢, andV, be the set of all end-vertices of edges in
E\ E¢. Then, ¥1\ w(f)) n (V2 \ w(f)) = 0 holds. Also, there
is no edge irE connecting a vertex iWv; \ w(f) and a vertex in

andm = |[E(G)|. We assume throughout this paper that all graphs y/, \ w(f).

are undirected, and simple, unless otherwise stated. Therefore

an edgee € E(G) is an unordered pair of verticesandv, and we
often denote it bye = (u,v). Two verticesu andv areadjacentif
(u,v) € E(G). For a graplG, the (per) neighborhoodf a vertex
v € V(G) is the setNg(v) = {u € V(G) | (u,v) € E(G)}, and the
closed neighborhoodf v is the sefNg[v] = Ng(v) U {v}.

For a graphG = (V,E), letd = (d(v) | v € V) be ann-
dimensional non-negative vector. Then, we call a%et V of
vertices al-vector dominating setesp.,d-total vector dominat-
ing se} if INg(v)NS| > d(v) holds for every vertex € V\S (resp.,
v € V). We call a seS C V of vertices ad-multiple dominating
setif [Ng[v] N S| > d(v) holds for every vertex € V. We may
dropd in these notations if there are no confusions.

Branch decomposition. A branch decompositiof a graph
G = (V,E) is defined as a pairT( = (Vr, Et),7) such that (a)
T is a tree with|E| leaves in which every non-leaf node has de-
gree 3, and (b} is a bijection fromE to the set of leaves of.
Throughout the paper, we shall use the teradeto denote an
element inVy for distinguishing it from an element M.

For an edgef in T, let T; andT \ T; be two trees obtained
from T by removingf, andE; andE \ E; be two sets of edges in
E such thak € E; if and only if r(e) is included inT¢. Theorder
functionw : E(T) — 2V is defined as follows: for an eddein T,
avertexv € V belongs tau(f) if and only if there exist an edge in
E: and an edge it \ E; which are both incident to. Thewidth
of a branch decompositiof (7) is maX|w(f)| | f € Et}, and the
branchwidthof G, denoted byow(G), is the minimum width over
all branch decompositions &.
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3. Domination problems in graphs of bounded
branchwidth

In this section, we propose dynamic programming algorithms
for the vector domination problem, the total vector domination
problem, and the multiple domination problem, by utilizing a
branch decomposition of a given graph. The techniques are based
on the one developed by Fomin and Thilikos for solving the dom-
inating set problem with bounded branchwidth [19]. Throughout
this section, for a given grap8 = (V, E), the demand of each
vertexv € V is denoted byl(v), and letd* = maxd(v) | v € V}.

3.1 Vector domination

In this subsection, we consider the vector domination problem,
and show the following theorem.

Theorem 3 If a branch decomposition @ with width b is
given, a minimum vector dominating set @ can be found in
O((d* + 2)P{(d* + 1)? + 1}*2m) time.

Due to the assumption of the above theorem, we need to con-
sider how we obtain a branch decompositiorGofor the com-
pleteness of an algorithm of the vector domination problem. For
a branch decomposition, there exists @(2°'92n?)-time algo-
rithm that given a grapf and an integeb, reportsbw(G) > b,

or outputs a branch decomposition ®fwith width at most ®

[13], [29]. Thus, the time to find a branch decomposition with
width at most Buw(G) is O(logbw(G)20»(©)19272) (smaller than

the time complexity below), and we have the following corollary.

Corollary 4 A minimum vector dominating set i® can be
found inO((d* + 2)®©{(d* +1)? + 1)3(©)/22) time. o
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Below, for proving this theorem, we will give a dynamic pro-
gramming algorithm for finding a minimum vector dominating
setinG in O((d* + 2)°{(d* + 1)? + 1}°/?m) time, based on a branch
decomposition 06.

Let (T’,7) be a branch decomposition & = (V,E) with
width b, andw’ : E(T’) — 2V be the corresponding order
function. LetT be the tree fronil’ by inserting two nodes;
andr,, deleting one arbitrarily chosen edge,(x;) € E(T’),
adding three new edgesi(rz), (X1,r2), and o, rz); namely,
T = (V(T)Ufr, rah, E(T") UL(re, 12), (X1, 12), (%2, 12\ (X0, X2)}).
Here, we regard as a rooted tree with root. Letw(f) = w’'(f)
forevery f € E(T) N E(T’), w(X1,r2) = w(Xg,r2) = w'(Xg, X2),
andw(ry, rz) = 0.

Let f = (y1,y2) € E be an edge i such thay; is the parent
of yo. Let T(y2) be the subtree of rooted aty,, Es = {€e € E |
7(e) € V(T (y2))}, andG; be the subgraph d& induced byE;.
Note thatw(f) < V(G¢) holds, since each vertex in(f) is an
end-vertex of some edge k& by definition of the order function
w. In the following, each vertex € w(f) will be assigned one of
the following d(v) + 2 colors{T,0,1,2,...,d(v)}. The meaning
of the color of a vertex is as follows: for a vertex set (possibly,
a vector dominating sef),

e T meansthat € D.

e i € {0,1,...,d(v)} means thav ¢ D and|Ng,(v) N D| >

d(v) —i.
Notice that a vertex colored hy> 0 may need to be dominated
by some vertices i \ V(Gy) for the feasibility. Given a coloring
ce{T,0,1,2,..., d (Ml let D¢ (c) € V(G+) be a vertex set with
the minimum cardinality satisfying the following (1)—(3), where
c(v) denotes the color assigned to a vertexV:

c() = Tifand only ifv € D¢(c) N w(f). 1)
If c(v) =i, thenv € w(f) \ D¢(c)
and|Ng, (v) N Ds(c)| =d(v) —i.  (2)
INg, (v) N D¢(c)| = d(v) holds
for every vertex € V(Gy) \ (w(f) U D¢(c)). (3)

Intuitively, D¢(c) is @ minimum vector dominating set@y under
the assumption that the color for every vertexiif) is restricted

to c. Note that a vertex in(f) is allowed not to meet its demand
in G¢, because it can be dominated by some vertic&\(Gy).
Also note that every vertex M(G¢) \ w(f) is not adjacent to any
vertex inV \ V(G;) by Lemma 2(ii), and it needs to be dominated
by vertices only inV(G;) for the feasibility. We definé\;(c) as
A:(c) = |D(c)| if D¢(c) exists andA¢(C) = oo otherwise.

Our dynamic programming algorithm proceeds bottom-up in

T, while computingA;(c) for all ¢ € {T,0,1,2,...,d*}*™ for
each edgef in T. We remark that sincev(r;,r2) = 0 and
Gg.r,) = G for the root edgerg,r;), the only coloringc in
Aq.r,)(C) is the empty coloring andy;, r,)(c) is the cardinality
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all coloringsc € {T,0,1,2,...,d*}™ let A;(c) be the number
of vertices colored byr if D(c) exists and>s andc satisfy (1) —
(3), andA¢(c) = o otherwise.

Let f be a leaf edge incident to a leaf noaein T and
e = (v1,v2) be the edge irG with r(e) = x. Then, notice that
we havew(f) = {;} if the degree ob; is 1 for {i, j} = {1, 2}, and
w(f) = {v1,v2} otherwise, and tha¥(G¢) = {v1,v2}. Hence, for
a fixedc, we can check i©(1) time if (1) — (3) hold. This step
takesO((d* + 2)?) time.

Procedure for non-leaf edges: After the above initialization
step, we visit non-leaf edges @f from leaves to the root of.
Let f = (y1,y2) be a non-leaf edge df such thaty; is the par-
ent of y,, y3 andy,4 are the children ofj, and f; = (y2,y3)
and f = (y2,y4). Now we have already obtained;,(c) for
all ¢ e {1,0,1,2,...,d}»MWI j = 1,2. By Lemma 2(i),
we havew(f) € w(fi) U w(fp), w(fi)) < w(fy) U w(f), and
w(f2) € w(f) U w(fy); let Xy = w(f) \ w(fz), Xo = w(f) \ w(fy),
Xz = w(f) nw(f) nw(fz), andXs = w(fy) \w(f) (= w(f2) \w(f)).

We say that a coloring € {T,0,1,2,...,d" )" of w(f) is
formedfrom a coloringc; of w(f;) and a coloring, of w(f,) if
the following (P1)—(P5) hold.

(P1) For every € X; U X, U Xgwith c() = T,
(a) For everyv € X3 U Xg, c1(v) = T if and only if

clv)y=T.
(b) For everyv € X, U X3, Cp(v) = T if and only if
clv)y=T.

(P2) For every € X4, c1(v) = T if and only if co(v) = T.

(P3) For every € X \ D¢, ¢, Where{j, j’} = {1,2} and Dg,,

={veXgUXoUXzU X | Cr(v) = Torcy(v) =T},
If c(v) =i, thenc;(v) = min{d(v),i + |De,c, N Ng, (v) N
X;e ).
(Intuitively, if v € Xj \ D¢, ¢, needs to be dominated by
at leasd(v) —i vertices inG;, then at least mdR, d(v) —
i = |De,.c, N Ng, () N Xj |} vertices fromV(Gy,) are nec-
essary.)

(P4) For every € X3\ D¢,c,»
If c(v) =i, thency(v) = min{d(v),i + |D¢, ¢, N Ng, (v) N
Xo|+i1} andcy(v) = min{d(v), i+|DC1,CZQNG,(U)OX1I+i2}
for some non-negative integeig, i, with i; + i, =
max{0, d(v) — i — |De,.c, N N, (v)I}.
(Intuitively, if v € Xz \ D¢, needs to be domi-
nated by at leasti(v) — i vertices inGg, then at least
max{0, d(v) —i —|D¢,.c, "Ng, (v)I} vertices from ¥/ (G+,) \
w(f1)) U (V(Gy,) \ w(f2)) are necessary for dominating
v. If iy (resp.,i,) vertices among those vertices belong
to V(Gy,) \ w(fy) (resp.,V(Gy,) \ w(f1)), then at least
max{0, d(v) —i —|D¢, ¢, " Ng, (v) N Xj | —i;} vertices from
V(Gy,) are necessary fdi, j'} = {1,2}.)

of a minimum vector dominating set. The algorithm consists of (P5) For every € X4\ De,c,,

two types of procedures: one is for leaf edges and the other is for

non-leaf edges, wherelaaf edgedenotes an edge incident to a
leaf of T.

Procedure for leaf edges:In the first step of the algorithm, we
computeA;(c) for each edgé incident to a leaf ofl. Then, for
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c1(v) = min{d(v), |D¢, ¢, N N, (v) N Xz| + i1} andcy(v) =
min{d(v), D¢, c, N Ng,(v) N Xi| + iz} for some non-
negative integers,, i, with i; + i, = max0,d(v) —
ID¢,c, N Ng, (v)l}. (This case can be treated in a simi-
lar way to (P4).)
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The following two lemmas show that there exist a coloring
of w(f1) and a coloring, of w(f;) forming ¢ such thatD+, (c1) U
Dy, (c2) satisfies (1)—(3) anfDt,(c1) U Dy,(c2)| = A¢(c). Namely,
we haveAt(c) = min{A, (1) + At,(C2) — [Deye, N (X3 U X))l |
¢y, G, formsc).

Lemma5 Letc € {T,0,1,2,...,d " be a coloring of
w(f). If a coloringc; of w(f;) and a coloring:, of w(f,) formsc,
thenDy,(c1) U Dy,(cy) satisfies (1)—(3) foff.

Proof. We denoteDy,(c1) U Di,(c2) by D’, andD’ N (X3 U X U
X3 U Xg) by Dg, .. Clearly, (1) holds, since € D’ nw(f) if and
only if c(v) = T by (P1).

We next show thaD’ satisfies (2). Let be a vertex in
X1\D" = X1\Dg, ¢, From the above (P3), we hamz;f1 w)ND’| >
d(v) =i —Dg, ¢, N Ng,(v) N Xzl. It follows that|Ng, (v) N D’| >
ING,, (W) N D’ +IDg, ¢, N Ng, (v) N X2l > d(v) - i. Also, the case of
v € Xz \ D’ can be treated similarly.

Letv be a vertex inks \ D" = X3 \ D¢, ¢,. SincelNg, (v) N D’|
> |Ng,(v) N D¢, .| clearly holds, we have only to consider the
case Of|Ng,(v) N D¢ .| < d() —i. From (P4), we have
|NGf1(u) N D'l > max0,d(v) — i - |Dg ¢, N Na, (1) N Xa| — i}
and|NGf2 (v) N D’| 2 max{0,d(v) — i — IDg, ¢, N Na, (1) N Xyq| =iz}
wherei; + iz = d(v) - i - |Dg, ¢, N Ng, (v)I (note thati; +i> > 0
from the assumption of this case). Notice thé(G®:,) \ w(f1)) N
(V(G,)\w(f2)) = 0 by Lemma 2(ii). It follows thaiNg, (v)ND’| >
IN,, (@) N D[ + INg,, () N D’ =INg, (v) N Dy, N (Xa U Xa)l
> 2(d(v) = i) = INg, (v) N Dg, ¢,| = i1 =iz = d(v) — .

We finally show thaD’ satisfies (3). Let be a vertex ik, \D’'.
Since|Ng, (v) N D’[ = INg, (v) N D¢, | clearly holds, we have only
to consider the case ¢, (v) N D, | < d(v). From (P5), we
have|NGfl ()N D’ = max0, d(v) - D¢, ¢, N Ng, (v) N Xo| —i1} and
|NGf2 (v) N D’ = max0,d(v) - IDg, ¢, N Ng, (v) N Xq| — iz} where
ig+iz = d(v)-|Dg, ,,"Ng, (v)] > 0. Hence, we havig, (v)ND’| >
ING, (W) N D’| + INg,, (v) N DI =INg,(v) N Dg ¢, N (X3 U Xa)]
= 2d(v) - INg, (v) N D¢, ¢,| = i1 —i2 = d(v). Also, it follows from
the definition ofDy,(c;) thatv € V(Gy,) \ w(f;) satisfies (3) for
j=12. ]

Lemma6 Letc € {T,0,1,2,...,d}*" be a coloring of
w(f). There exist a coloring; of w(f;) and a coloring:; of w(f,)
forming ¢ such thatDy, (c1) U D+,(C2)| < A¢(C).

Proof. For each vertex € w(f;), j = 1,2, let

T if v € D¢(c),
min{d(v). ¢(v) + [(Ng, (v) N D (C)) \ V(Gr)I}

ifve Xj \ D¢(c),
max{0.d(v) - INg, (v) N D¢ (c)I}

if ve XgU Xq\ Ds(C).

ci(v) =

Forv € X;\ D¢(c), we havgNg, (v) N D¢(c)| = |NGfi )N D¢ (c)|+
I(Ng, () N D¢(c)) \ V(Gy)l = d(v) - c(v), sinceD¢(c) satisfies
). Hence NG, (v) N D¢(c)l = max{0,d(v) — c(v) — [(Ng, (v) N
D+(c))\ V(Gy)l} = d(v) - ¢j(v) for all v € w(f;) \ D¢(c). It follows
from that the minimality o, (c;) implies thaiD¢(c)NV(Gy,)| =
Ay, (cj); hence,A¢(c) = [Dy,(c1) U Dy,(c2)l. On the other hand,
c1 and c; does not necessarily form. Below, we show that
there exist a coloring; of w(f;) and a coloringc), of w(f2)
forming ¢ such thatci(v) > c;(v) for everyv € w(fj) \ D¢(c)
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for j = 1,2. Note thatDy(c;) satisfies (1)—(3) also foc;,
since|NGfj () N Dy ()l = d(v) - ¢j(v) = d(v) - c’j(v) for every
v € w(f;) \ D¢(c). Hence, from the minimality quj(q)|, we
have A¢(c) > |Dy,(c1) U Dy,(c2)l = Dy, (cy) U Dy,(c))l, which
proves this lemma.

We can construct suatf, ¢, as follows. First Iet:’j (v) = ¢j(v)
forall v € X; U Xz U D¢(c); ¢} andc;, satisfy (P1) and (P2) in the
definition of a coloringc formed byc; andc,. By Lemma 2(ii),
everyu € X; satisfies Klg, ()ND+(c))\V(Gy,) = Ng, (v)nD+(c)N
Xj for {j. '} = {1,2}. Hencec|(v)(= cj(v)) for v € Xj \ D¢(c),

j = 1,2 satisfies (P3).

Let v € X3\ D¢(c). SinceD¢(c) satisfies (2), we have
INg, (v) N D¢(c)| = d(v) — c(v). Now from construction of; and
C2, the valud (resp. i) corresponding td, (resp.,iz) in (P4) in
the definition ofc formed byc; andc;, is max0, d(v) — ING,, @) N
D+(C)l-¢(v)=INg, (v)nX2N D+ (C)l} (resp., mat0, d(v) —INg,, (v)N
D¢ (c)l - c(v) = INg, (v) N Xy N D¢(c)l}). It follows thati’ + i), <
max0, d(v) —c(v)—INg, (1) "D+ ()N (X1 UX2UX3U X4)|} (note that
the final inequality follows froniNg, (v) N D¢(c)| = d(v) — c(v)).

Let v € X4\ D¢(c). SinceD¢(c) satisfies (2), we have
ING, (v) N D¢(c)| > d(v). From construction of; andc,, the value
i1 (resp.,i}) corresponding ta; (resp.,iz) in (P5) in the defini-
tion of ¢ formed byc, andc; is max0, d(v) — INg,, (v) N D (c)l -
ING, ()N XoN D+ (c)I} (resp., mad(v)-INg,, (v)ND+(c)|~INg, (v)N
X1 N D¢(c)l}). It follows thati] + i}, < max0,d(v) — INg, (v) N
Dt(c) N (X1 U X2 U X3 U Xa)l}.

Consequently, we can construct a coloricigof w(f;) and
a coloring ¢, of w(fz) forming ¢ such thatc’j(v) > cj(v) for
everyv € Xz U X4 \ Dt(c) andci(v) = cj(v) for everyv «
Dt(c) U X1 U X for j = 1,2 by increasing or i/, for each
vertexo € X3 U X4 \ D¢(c) so thati| + i}, becomes equal to
max0, d(v) - ¢(v) — NG, () N D (C) N (X1 U X2 U X3 U Xa)I} (resp.,
max0, d(v) — [Ng, () N D¢(C) N (X1 U Xo U Xz U Xg)|}) if v € X3
(resp.p € Xy). O

Thus, for all coloringss € {T,0,1,2,...,d*}*(") we can com-
puteA¢(c) from the information off; and f,. By repeating these
procedure bottom-up iii, we can find a minimum vector domi-
nating set irG.

Here, for a fixedc, we analyze the time complexity for com-
puting A¢(c). LetD; = {v € w(f) | c(v) = T}, x; = |X| for
j = 21,234,235 = X3\ Dg|. Under the assumption th is
colored by a fixed coloring,, the number of pairs of a color-
ing c¢; of w(f;) and a coloringe, of w(f,) forming ¢ is at most
(d* + 1)=(d* + 1) wherez, denotes the number of verticesXa
not colored byT in ¢4, since the number of pairg (i») in (P4) or
(P5) is at most* + 1 for each vertex irXs \ D¢ or each vertex in
X4 not colored byr.

Hence, for an edgé, the number of pairs formingis at most
(@ +2pa0e 2 () (d+ 1) 23, (2)(d" + 1)A(d + 1y2(d" +
1% = (d* + 2)aPe{(d* + 1)* + 15" in total. Now we have
Xi+ X +X3<b X3 +Xs+ X < Db, andx, + X3 + X4 < b (re-
call thatb is the width of {’,7)). By considering a linear pro-
gramming problem which maximizeg(+ %) log(d* + 2) + (X3 +
Xa) log{(d* + 1)? + 1} subject to these inequalities, we can ob-
serve that@* + 2)a*{(d* + 1)? + 1)¢* attains the maximum
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whenx; = X = X4 = b/2 andxs = 0. Thus, it takes in to-
tal O((d* + 2)°{(d* + 1)? + 1}*/2) time to computeA;(c) for all
coloringsc of w(f).

Since|E(T)| = O(m) and the initialization step tak€X(d* +
2)?m) time in total, we can obtaify, r,(c) in O(((d" + 2)P{(d* +
1) + 1}*2m) time.
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non-leaf edges.

Let f be a non-leaf edge of andx, i = 1,2,3,4 andz
be defined as Subsection 3.1. The number of pairs of a color-
ing ¢; of w(f;) and a coloringe, of w(f,) forming c is at most
@ +1y 35, (Z‘)(d* + 1)%(d* + 1) since the number of pairs
(i1,i2) in (P4) or (P5’) is at mostd* + 1 for each vertex in

Summarizing the arguments given so far, we have shown The-X3 U X4. Hence, for an edgé, the number of pairs formingis at

orem 3.

3.2 Total vector domination and multiple domination
We consider the total vector domination problem. Thiéedi

most{2(d" + 1)Pe+e 328 (R)(d* + 1)e(d* + 1) 33 o ()(d* +
14(d* + 1) = (2(d* + 1)Pare{2(d" + 1)2P™ in total. Since
X1+ X2+ X3 < b, X+ X3+ X4 < b, andxy + X3 + X4 < b, it follows
that (x; + %2) log(2d* + 2) + (X3 + X4) log{2(d* + 1)?} attains the

ence between the total vector domination and the vector domina-maximum wherx; = X = X4 = b/2 andxs = 0. Thus, it takes
tion is that each vertex selected as a member in a dominating sein O(23%/2(d* + 1)®) time to compute (c) for all coloringsc of
needs to be dominated or not. Hence, we will modify the follow- w(f). Namely, we obtain the following theorem.

ing parts (1)—(111) in the algorithm for vector domination given in

Theorem 7 If a branch decomposition @ with width b is

the previous subsection so that each vertex selected as a membe@iven, a minimum total vector dominating set@can be found

in a dominating set also satisfies its demand.

(I) Color assignments: Let € E(T) be an edge in a branch
decompositiorm of G. We will assign to each vertexe w(f) an
ordered pair{, i) of colors,¢ € {T, L},i € {0,1,...,d(v)}, where
T means thab belongs to the dominating set, means that
does not belong to the dominating set, and antkans that is
dominated by at leasi(v) — i vertices inG;.

(II) Conditions for D¢(c): For a coloringc € ({T,L} %
{0,1,2,..., d*)M we modify (1)—(3) as follows, where let
c(v) = (c'(v), *(v)):

cl(v) = T ifand only ifv € D¢(c) N w(f).

If 2(v) =i, then|Ng, (v) N D¢(c)| = d(v) - i.

INg, (v) N D¢(c)| = d(v) holds for every vertex € V(Gr) \ w(f).

(1) Definition of a coloringc formed byc; andc,: For a col-
oringce ({T, 1} x{0,1,2,..., d*)“"l we modify (P1)—(P5) as
follows:

(P1") For every € X1 UXoU Xz with c'(v) = T (resp..c(v) = 1),
(a) If v € X U X3, thencl(v) = T (resp. ci(v) = L).
(b) If v e Xz U X3, thency(v) = T (resp..c5(v) = L).
(P2) For every € Xq, C}(v) = T (resp.ci(v) = 1) if and only if
ca(v) = T (resp.ca(v) = 1).
(P3") For everyv € X; where{j, j’} = {1,2} andDg,¢, = {v €
X1 UXoUXzU Xy | CHu) = T orci(v) = T},
If () =1, thenc]?(u) = min{d(v), i + |D¢,c, N Ng, (v) N
Xj ).
(P4’) For every € Xg,
If ¢2(v) =i, thenc3(v) = min{d(v), i + [Dc,c, N Ng, (v) N
Xo|+i1} anng(U) = min{d(v), i+|Dcl,CzﬂNGf(U)ﬁX1|+i2}
for some non-negative integerg, i, with iy + i, =
max0,d(v) —i — D¢, ¢, N Ng, (v) N (X1 U X2 U X3 U Xa)l}.
(P5’) For every € X,
¢3(v) = min{d(v), |Dc,.c, N Ng, (v) N Xo| + i1} andc3(v) =
min{d(v), [De¢,c, N Ng,(v) N X3| + iz} for some non-
negative integers,, i, with i; + i, = max{0,d(v) —
[De,.c, N N, () N (X U X U Xz U Xg)l}.
We analyze the time complexity of this modified algorithm.

in O(2%/2(d* + 1)%°m) time. O
Also, by replacingNg() with Ng[] in the modification for total
vector domination, we can obtain the following theorem for the

multiple domination problems.

Theorem 8 If a branch decomposition @ with width b is
given, a minimum multiple dominating set @& can be found in
O(202(d* + 1)%°m) time. O

4. Subexponential fixed parameter algorithm
for planar graphs

We consider the problem of checking whether a given gfaph
has ad-vector dominating set with cardinality at mdstAs men-
tioned in Subsection 1.1, & is p-degenerated, then the prob-
lem can be solved ik°©¥)n°@ time. Since a planar graph is
5-degenerated, it follows that the problem with a planar graph
can be solved ik® )n°® time. In this section, we give a subex-
ponential fixed-parameter algorithm, parameterizeckbfor a
planar graph; namely, we will show the following theorem.

Theorem 9 If G is a planar graph, then we can check in
O(re + (min{d*, k} + 2)° {(min{k, d*} + 1) + 1}*"/2n) time whether
G has ad-vector dominating set with cardinality at mdsbr not,
whereb* = min{12vk + z+9,20Vk+17}andz = |{v € V | d(v) =
0}l
This time compleity is roughly O(r? + 2°(¥klogkp) “which is
subexponential with respect tk; this improves the running time
of the previous fixed-parameter algorithm.

LetVo = {v € V | d(v) = 0} andz = |Vgl. In [19], Lemma 2.2,
it was shown that if a planar grafghl has an ordinary dominat-
ing set (i.e., a (1,1,...,1)-vector dominating set) with cardinality
at mostk, thenbw(G’) < 12vk + 9. This boundis based on the
bidimensionality[14], and was used to design the subexponen-
tial fixed-parameter algorithm with respectkdor the ordinary
dominating set problem. In the case of our domination problems,
however, it is dificult to say that they have the bidimensional-
ity, due to the existence d&f, vertices. Instead, we give a sim-
ilar bound on the branchwidth not w.ktbut w.r.tk + z as fol-
lows: For any (total, multipley-vector dominating seb of G
(ID] < k), DU Vy is an ordinary dominating set @, and this

Similarly to the case of the vector domination, the total running yieldsbw(G) < 12vk+z+ 9.

time is dominated by total complexity for computirg(c) for
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Actually, it is also possible to excludefrom the parameters,
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though the cofficient of the exponent becomes larger. To this (b3) Otherwise after settin®” := G’ \ Vqa(d), d”(v) :=

end, we use the notion ok,2)-center. Recall that &(r)-center
of G’ is a setW of vertices ofG” with sizek such that any vertex
in G’ is within distance from a vertex ofW. For a K, r)-center,

a similar bound on the branchwidth is known: if a planar graph

G’ has ak r)-center, thetbw(G’) < 4(2r + 1) Vk + 8r + 1 ([12],

Theorem3.2). Here, we use this bound. We can assume that for

v € Vo, Ng(v) € Vo holds, because € V; satisfyingNg(v) € Vo
is never selected as a member of any optimal solution;iites
evant, and we can remove it. That is, every verteX4rhas at
least one neighbor frow \ Vo. Then, for any (total, multiple)
d-vector dominating se of G (D] < k), D is a , 2)-center of
G. This is because any vertexh\ V; is adjacent to a vertex in
D and any vertex itV is adjacent to a vertex M \ Vo. Thus, we
havebw(G) < 20Vk + 17.

In summarywe have the following lemma.

Lemma 10 Assume thaG is a planar graph without irrele-
vant vertices, i.e.Ng(v) ¢ Vo holds for eachy € V. Then, if

G has a (total, multiple) vector dominating set with cardinality at

mostk, then we havéw(G) < min{12vk + z+ 9,20vk + 17}.o

Combiningthis lemmawith the algorithm in Subsection 3.1, we
can check whether a given graph has a vector dominating set with

cardinality at mosk according to the following steps 1 and 2:

Step 1: Letb* = min{12vk + z+ 9,20 vk + 17}. Check whether
the branchwidth ofG is at mostb*. If so, then go to Step 2, and
otherwise halt after outputting ‘NO’.

Step 2: Construct a branch decomposition with width at rhgst

and apply the dynamic programming algorithm in Subsection 3.1 grap

to find a minimum vector dominating set fGr.

By Lemma 1, Theorem 3, and the fact that any planar gé&ph
satisfiedE(G’)| = O(IV(G))), it follows that the running time of
this procedure i©(r® + (d* + 2)® {(d* + 1)2 + 1}*/2n). Hence, in
the case ofl* < k, Theorem 9 has been proved.

The case ofi* > k can be reduced to the casedif < k by

the following standard kernelization method, which proves The-

orem 9. Assume that" > k. Let Vna(d) be the set of vertices

v with d(v) = d*. For the feasibility, we need to select each ver- [1]
texv € Vmax(d) as a member in a vector dominating set. Hence,

if [Vmax(d)| > k, then it turns out tha@ has no vector dominat-
ing set with cardinality at most. Assume thatVqax(d)| < k.

Then, it is not dificult to see that we can reduce an instance

I(G,d, k) with G, d, andk to an instancd(G’,d’, k’) such that
G’ = G\ Vmnax(d) (i.e.,G’ is the graph obtained frof@ by deleting
Vmax(d)), d’'(v) = max{0,d(v) — INc(v) N Vmax(d)|} for all vertices
v € V(G), andk’ = max{0k — [Vmax(d)|}. Based on this obser-
vation, we can reducG, d, k) to an instancé(G”, d”, k””) with
maxd”(v) | v e V(G”)} < K” < kor output ‘'YES’ or ‘NO’ in the
following manner:

(a) After settingG’ := G, d’ := d, andk’ := k, repeat the proce-
dures (b1)—(b3) whil&’ < d’*(= max{d(v) | v € V(G')}).

(b1) If K < [Vimax(d')|, then halt after outputting ‘NO.’
(b2) If K > |Vmax(d)| andV(G’) = Vmax(d’), then halt after out-
putting ‘YES.
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max0,d’ (v) — INe'(v) N Vmax(d)|} for eachv € V(G”), and
k” := max0,k’ — |Vma(d)|}, redefineG”, d”, andk” asG’, d’,
andk’, respectively.

Next, we consider the total vector domination problem and the
multiple domination problem. For these problems, since all ver-
ticesv € V need to be dominated [y(v) vertices, the condition
thatd* < kis necessary for the feasibility. Similarly, we have the
following theorem by Theorems 7 and 8.

Theorem 11 Assume that a given graph is planar, and let
b* = min{12vk + z+ 9,20 vk + 17.

(i) We can check irO(mé + 2% /2(min{d*, k} + 2)* n) time whether
G has a total vector dominating set with cardinality at moet
not.

(i) We can check irO(m+2%0"/2(min{d*, k}+2)%"n) time whether
G has a multiple dominating set with cardinality at mksir not.

Before concluding this section, we mention that the above re-
sults can be extended &pex-minor-free graphs superclass of
planar graphs. Aapex graphs a graph with a vertexsuch that
the removal ofv leaves a planar graph. A graghhas a graph
H as aminor if a graph isomorphic téd can be obtained fror®
by a sequence of deleting vertices, deleting edges, or contracting
edges. A graph class is apex-minor-free if it does not contain any
graph which has some fixed apex graph as a minor. For apex-
minor-free graphs, the following lemma is known.

Lemma 12 ([18], Lemma 2) LetG be an apex-minor-free
h. IfG has ak, r)-center, then the treewidth & is O(r VK).

Fromthis lemmajthe linear relation of treewidth and branch-
width, and the 2®»©)n2 _time algorithm for computing a branch
decomposition with widthO(bw(G)) (mentioned after Theo-
rem 3), we obtain the following corollary.

Corollary 13 We can check in & ¥kloghno) time whether
an ap-minor-free graphG has a (total, multiple) vector domi-
nating set with cardinality at moktor not.
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