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(Total) Vector Domination for Graphs
with Bounded Branchwidth

T I1,a) H O2,b) Y U3,c)

Abstract: Given a graphG = (V,E) of ordern and ann-dimensional non-negative vectord = (d(1),d(2), . . . ,d(n)),
called demand vector, the vector domination (resp., total vector domination) is the problem of finding a minimum
S ⊆ V such that every vertexv in V \ S (resp., inV) has at leastd(v) neighbors inS. The (total) vector domination is
a generalization of many dominating set type problems, e.g., the dominating set problem, thek-tuple dominating set
problem (thisk is different from the solution size), and so on, and its approximability and inapproximability have been
studied under this general framework. In this paper, we show that a (total) vector domination of graphs with bounded
branchwidth can be solved in polynomial time. This implies that the problem is polynomially solvable also for graphs
with bounded treewidth. Consequently, the (total) vector domination problem for a planar graph is subexponential
fixed-parameter tractable with respect tok, wherek is the size of solution.

1. Introduction

Given a graphG = (V,E) of ordern and ann-dimensional non-
negative vectord = (d(1),d(2), . . . ,d(n)), calleddemand vector,
thevector domination(resp.,total vector domination) is the prob-
lem of finding a minimumS ⊆ V such that every vertexv in V \S
(resp., inV) has at leastd(v) neighbors inS. These problems were
introduced by [21], and they contain many existing problems,
such as the minimum dominating set and thek-tuple dominating
set problem (thisk is different from the solution size) [22], [23],
and so on. Indeed, by settingd = (1, . . . , 1), the vector domi-
nation becomes the minimum dominating set forms, and by set-
ting d = (k, . . . , k), the total vector dominating set becomes the
k-tuple dominating set. If in the definition of total vector domina-
tion, we replace open neighborhoods with closed ones, we get the
multiple domination. In this paper, we sometimes refer to these
problems just asdomination problems. Table 1 of [9] summarizes
how related problems are represented in the scheme of domina-
tion problems. Many variants of the basic concepts of domination
and their applications have appeared in [23], [24].

Since the vector or multiple domination includes the setting
of the ordinary dominating set problem, it is obviously NP-hard,
and further it is NP-hard to approximate within (c logn)-factor,
wherec is a positive constant, e.g., 0.2267 [1], [26]. As for the
approximability, since the domination problems are special cases
of a set-cover type integer programming problem, it is known
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that the polynomial-time greedy algorithm achieves anO(logn)-
approximation factor [15]; it is already optimal in terms of order.
We can see further analyses of the approximability and inapprox-
imability in [8], [9].

In this paper, we focus on another aspect of designing al-
gorithms for domination problems, that is, the polynomial-time
solvability of the domination problems for graphs of bounded
treewidth or branchwidth. In [3], it is shown that the vector dom-
ination problem isW[1]-hard with respect to treewidth. This re-
sult and Courcelle’s meta-theorem about MSOL [11] imply that
the vector domination is unlikely expressible in MSOL; it is not
obvious to obtain a polynomial time algorithm.

In this paper, we present a polynomial-time algorithm for the
domination problems of graphs with bounded branchwidth. The
branchwidth is a measure of the “global connectivity” of a graph,
and is known to be a counterpart of treewidth. It is known that
max{bw(G), 2} ≤ tw(G) + 1 ≤ max{3bw(G)/2, 2}, wherebw(G)
andtw(G) denote the branchwidth and treewidth of graphG, re-
spectively [28]. Due to the linear relation of these two mea-
sures, polynomial-time solvability of a problem for graphs with
bounded treewidth implies polynomial-time solvability of a prob-
lem for graphs with bounded branchwidth, and vice versa. Hence,
our results imply that the domination problems (i.e., vector dom-
ination, total vector domination and multiple domination) can be
solved in polynomial time for graphs with bounded treewidth; the
polynomial-time solvability for all the problems (except the dom-
inating set problem) in Table 1 of [9] is newly shown. Also, they
answer the question by [8], [9] about the complexity status of the
domination problems of graphs with bounded treewidth.

Furthermore, by using the polynomial-time algorithms for
graphs of bounded treewidth, we can show that these problems
for a planar graph are subexponential fixed-parameter tractable
with respect to the size of the solutionk, that is, there is an algo-
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rithm whose running time is 2O(
√

k logk)nO(1). To our best knowl-
edge, these are the first fixed-parameter algorithms for the total
vector domination and multiple domination, whereas the vector
domination for planar graphs has been shown to be FPT [27]. For
the latter case, our algorithm greatly improves the running time.

Note that the polynomial-time solvability of the vector dom-
ination problem for graphs of bounded treewidth has been in-
dependently shown very recently [7]. They considered a fur-
ther generalization of the vector domination problem, and gave
a polynomial-time algorithm for graphs of bounded clique-width.
Sincecw(G) ≤ 3 · 2tw(G)−1 holds wherecw(G) denotes the clique-
width of graphG ([10]), their polynomial-time algorithm implies
the polynomial-time solvability of the vector domination problem
for graphs of bounded treewidth and bounded branchwidth.

1.1 Related Work
For graphs with bounded treewidth (or branchwidth), the ordi-

nary domination problems can be solved in polynomial time. As
for the fixed-parameter tractability, it is known that even the or-
dinary dominating set problem is W[2]-complete with respect to
solution sizek; it is unlikely to be fixed-parameter tractable [17].
In contrast, it can be solved inO(211.98

√
kk + n3) time for planar

graphs, that is, it is subexponential fixed-parameter tractable [16].
The subexponent part comes from the inequalitybw(G) ≤ 12

√
k+

9, wherek is the size of a dominating set ofG. Behind the in-
equality, there is a unified property of parameters, calledbidi-

mensionality[14]. Namely, the subexponential fixed-parameter
algorithm of the dominating set for planar graphs (more precisely,
H-minor-free graphs [13]) is based on the bidimensionality.

A maximization version of the ordinary dominating set is also
considered.Partial Dominating Setis the problem of maximizing
the number of vertices to be dominated by using a given number
k of vertices. In [2], it was shown that partial dominating set
problem is FPT with respect tok for H-minor-free graphs. Later,
[18] gives a subexponential FPT with respect tok for apex-minor-
free graphs, also a superclass of planar graphs. Although partial
dominating set is an example of problems to which the bidimen-
sionality theory cannot be applied, they develop a technique to
reduce an input graph so that its treewidth becomesO(

√
k).

For the vector domination, a polynomial-time algorithm for
graphs of bounded treewidth has been proposed very recently [7],
as mentioned before. In [27], it is shown that the vector domina-
tion for ρ-degenerated graphs can be solved inkO(ρk2)nO(1) time,
if d(v) > 0 holds for∀v ∈ V (positive constraint). Since any
planar graph is 5-degenerated, the vector domination for planar
graphs is fixed-parameter tractable with respect to solution size,
under the positive constraint. Furthermore, the case whered(v)
could be 0 for somev can be easily reduced to the positive case
by using the transformation discussed in [3], while increasing the
degeneracy by at most 1. It follows that the vector domination
for planar graphs is FPT with respect to solution sizek. However,
for the total vector domination and multiple domination, neither
polynomial time algorithm for graphs of bounded treewidth nor
fixed-parameter algorithm for planar graphs has been known.

Other than these, several generalized versions of the dominat-

ing set problem are also studied. (k, r)-center problem is the one
that asks the existence of setS of k vertices satisfying that for
every vertexv ∈ V there exists a vertexu ∈ S such that the dis-
tance betweenu andv is at mostr; (k, 1)-center corresponds to
the ordinary dominating set. The (k, r)-center for planar graphs
is shown to be fixed-parameter tractable with respect tok and
r [12]. Forσ, ρ ⊆ {0, 1, 2, . . .} and a positive integerk, ∃[σ, ρ]-
dominating set is the problem that asks the existence of setS of
k vertices satisfying that|N(v) ∩ S| ∈ σ holds for∀v ∈ S and
|N(v) ∩ S| ∈ ρ for ∀v ∈ V \ S, whereN(v) denotes the open
neighborhood ofv. If σ = {0,1, . . .} andρ = {1,2, . . .}, ∃[σ, ρ]-
dominating set is the ordinary dominating set problem, and if
σ = {0} andρ = {0, 1, 2, . . .}, it is the independent set. In [6],
the parameterized complexity of∃[σ, ρ]-dominating set with re-
spect to treewidth is also considered.

1.2 Our Results
Our results are summarized as follows:
• We present a polynomial-time algorithm for the vector dom-

ination of graphG = (V,E) with bounded branchwidth. The
running time is roughlyO(n6bw(G)+2).

• We present polynomial-time algorithms for the total vec-
tor domination and multiple domination of graphG with
bounded branchwidth. The running time is roughly
O(29bw(G)/2 n6bw(G)+2).

• Let G be a planar graph. Then, we can check inO(n3 +

min{k + 2,d∗ + 2}40
√

k+34n) time whetherG has a vector
dominating set with cardinality at mostk or not, where
d∗ = max{d(v) | v ∈ V}.

• Let G be a planar graph. Then, we can check inO(n3 +

230
√

k+51/2 min{k + 2, d∗ + 2}40
√

k+34n) time whetherG has
a total vector dominating set and a multiple dominating set
with cardinality at mostk or not.

It should be noted that it is actually possible to design directly
polynomial time algorithms for graphs with bounded treewidth,
but they are slower than the ones for graphs with bounded branch-
width; from this reason, we design branch decomposition-based
algorithms.

As far as the authors know, the second and fourth results
give the first polynomial time algorithms and the first fixed-
parameter algorithm for the total vector domination and multiple
domination of graphs with bounded branchwidth (or treewidth)
and planar graphs, respectively. As for the vector domination,
we give anO(n6bw(G)+2)-time algorithm, whose running time is
O(n6(tw(G)+1)+2) in terms of the treewidth, whereas the recent pa-
per [7] gives anO(cw(G)|σ|(n + 1)5cw(G))-time algorithm, where
|σ| is the encoding length ofk-expression used in the algorithm,
and is bounded by a polynomial in the input size for fixedk. Since
cw(G) ≤ 3·2tw(G)−1 holds, this is anO(2tw(G)|σ|(n+1)7.5·2

tw(G)
)-time

algorithm.
Also, the third result shows that the vector domination of pla-

nar graphs is subexponential FPT with respect tok, and it greatly
improves the running time of existingkO(k2)nO(1)-time algorithm
([27]). It was shown in [5] that for the ordinary dominating set
problem (equivalently, the vector domination (or multiple dom-
ination) with d = (1, 1, . . . , 1)) in planar graphs, there is no
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2o(
√

k)nO(1)-time algorithm unlessthe Exponential Time Hypoth-
esis (i.e., the assumption that there is no 2o(n)-time algorithm for
n-variable 3SAT [25]) fails. Hence, in this sense, our algorithm
in third result (or the fourth results for the multiple domination)
is optimal if d∗ is a constant.

The third and fourth results give subexponential fixed-
parameter algorithms of the domination problems for planar
graphs. It should be noted that the domination problems them-
selves do not have the bidimensionality, mentioned in the pre-
vious subsection, due to the existence of the vertices with de-
mand 0. Instead, by reducing irrelevant vertices, we obtain a sim-
ilar inequality about the branchwidth and the solution size of the
domination problems, which leads to the subexponential fixed-
parameter algorithms.

The remainder of the paper is organized as follows. In Sec-
tion 2, we introduce some basic notations and then explain the
branch decomposition. Section 3 is the main part of the paper,
and presents our dynamic programming based algorithms for the
considered problems. Section 4 explains how we extend the al-
gorithms of Section 3 to fixed-parameter algorithms for planar
graphs.

2. Preliminaries

A graphG is an ordered pair of its vertex setV(G) and edge
set E(G) and is denoted byG = (V(G),E(G)). Let n = |V(G)|
andm = |E(G)|. We assume throughout this paper that all graphs
are undirected, and simple, unless otherwise stated. Therefore,
an edgee ∈ E(G) is an unordered pair of verticesu andv, and we
often denote it bye = (u, v). Two verticesu andv areadjacentif
(u, v) ∈ E(G). For a graphG, the (open) neighborhoodof a vertex
v ∈ V(G) is the setNG(v) = {u ∈ V(G) | (u, v) ∈ E(G)}, and the
closed neighborhoodof v is the setNG[v] = NG(v) ∪ {v}.

For a graphG = (V,E), let d = (d(v) | v ∈ V) be ann-
dimensional non-negative vector. Then, we call a setS ⊆ V of
vertices ad-vector dominating set(resp.,d-total vector dominat-

ing set) if |NG(v)∩S| ≥ d(v) holds for every vertexv ∈ V\S (resp.,
v ∈ V). We call a setS ⊆ V of vertices ad-multiple dominating

set if |NG[v] ∩ S| ≥ d(v) holds for every vertexv ∈ V. We may
dropd in these notations if there are no confusions.

Branch decomposition. A branch decompositionof a graph
G = (V,E) is defined as a pair (T = (VT ,ET), τ) such that (a)
T is a tree with|E| leaves in which every non-leaf node has de-
gree 3, and (b)τ is a bijection fromE to the set of leaves ofT.
Throughout the paper, we shall use the termnodeto denote an
element inVT for distinguishing it from an element inV.

For an edgef in T, let T f andT \ T f be two trees obtained
from T by removingf , andE f andE \E f be two sets of edges in
E such thate ∈ E f if and only if τ(e) is included inT f . Theorder

functionw : E(T)→ 2V is defined as follows: for an edgef in T,
a vertexv ∈ V belongs tow( f ) if and only if there exist an edge in
E f and an edge inE \ E f which are both incident tov. Thewidth

of a branch decomposition (T, τ) is max{|w( f )| | f ∈ ET }, and the
branchwidthof G, denoted bybw(G), is the minimum width over
all branch decompositions ofG.

In general, computing the branchwidth of a given graph is NP-
hard [30]. On the other hand, Bodlaender and Thilikos [4] gave
a linear time algorithm which checks whether the branchwidth of
a given graph is at mostk or not, and if so, outputs a branch de-
composition of minimum width, for any fixedk. Also, as shown
in the following lemma, it is known that for planar graphs, it can
be done in polynomial time for any givenk, where a graph is
calledplanar if it can be drawn in the plane without generating a
crossing by two edges.

Lemma 1 Let G be a planar graph.
(i) ([30]) It can be checked inO(n2) time whetherbw(G) ≤ k or
not for a given integerk.
(ii) ([20]) A branch decomposition ofG with width bw(G) can be
constructed inO(n3) time. �

Here, we introduce the following basic properties about branch
decompositions, which will be utilized in the subsequent sections
(the proof is omitted).

Lemma 2 Let (T, τ) be a branch decomposition ofG.
(i) For treeT, let x be a non-leaf node andfi = (x, xi), i = 1, 2, 3,
be an edge incident tox (note that the degree ofx is three). Then,
w( fi) \ (w( f j) ∪ w( fk)) = ∅ for every {i, j, k} = {1,2, 3}. Hence,
w( fi) ⊆ w( f j) ∪ w( fk).
(ii) Let f be an edge ofT, V1 be the set of all end-vertices of
edges inE f , and V2 be the set of all end-vertices of edges in
E \ E f . Then, (V1 \ w( f )) ∩ (V2 \ w( f )) = ∅ holds. Also, there
is no edge inE connecting a vertex inV1 \ w( f ) and a vertex in
V2 \ w( f ).

3. Domination problems in graphs of bounded
branchwidth

In this section, we propose dynamic programming algorithms
for the vector domination problem, the total vector domination
problem, and the multiple domination problem, by utilizing a
branch decomposition of a given graph. The techniques are based
on the one developed by Fomin and Thilikos for solving the dom-
inating set problem with bounded branchwidth [19]. Throughout
this section, for a given graphG = (V,E), the demand of each
vertexv ∈ V is denoted byd(v), and letd∗ = max{d(v) | v ∈ V}.

3.1 Vector domination
In this subsection, we consider the vector domination problem,

and show the following theorem.
Theorem 3 If a branch decomposition ofG with width b is

given, a minimum vector dominating set inG can be found in
O((d∗ + 2)b{(d∗ + 1)2 + 1}b/2m) time.
Due to the assumption of the above theorem, we need to con-
sider how we obtain a branch decomposition ofG for the com-
pleteness of an algorithm of the vector domination problem. For
a branch decomposition, there exists anO(2b lg 27n2)-time algo-
rithm that given a graphG and an integerb, reportsbw(G) ≥ b,
or outputs a branch decomposition ofG with width at most 3b
[13], [29]. Thus, the time to find a branch decomposition with
width at most 3bw(G) is O(logbw(G)2bw(G) lg 27n2) (smaller than
the time complexity below), and we have the following corollary.

Corollary 4 A minimum vector dominating set inG can be
found inO((d∗ + 2)3bw(G){(d∗ +1)2 + 1}3bw(G)/2n2) time. �
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Below, for proving this theorem, we will give a dynamic pro-
gramming algorithm for finding a minimum vector dominating
set inG in O((d∗ + 2)b{(d∗ + 1)2 + 1}b/2m) time, based on a branch
decomposition ofG.

Let (T′, τ) be a branch decomposition ofG = (V,E) with
width b, and w′ : E(T′) → 2V be the corresponding order
function. LetT be the tree fromT′ by inserting two nodesr1

and r2, deleting one arbitrarily chosen edge (x1, x2) ∈ E(T′),
adding three new edges (r1, r2), (x1, r2), and (x2, r2); namely,
T = (V(T′)∪{r1, r2},E(T′)∪{(r1, r2), (x1, r2), (x2, r2)}\{(x1, x2)}).
Here, we regardT as a rooted tree with rootr1. Letw( f ) = w′( f )
for every f ∈ E(T) ∩ E(T′), w(x1, r2) = w(x2, r2) = w′(x1, x2),
andw(r1, r2) = ∅.

Let f = (y1, y2) ∈ E be an edge inT such thaty1 is the parent
of y2. Let T(y2) be the subtree ofT rooted aty2, E f = {e ∈ E |
τ(e) ∈ V(T(y2))}, andG f be the subgraph ofG induced byE f .
Note thatw( f ) ⊆ V(G f ) holds, since each vertex inw( f ) is an
end-vertex of some edge inE f by definition of the order function
w. In the following, each vertexv ∈ w( f ) will be assigned one of
the following d(v) + 2 colors{>, 0, 1, 2, . . . , d(v)}. The meaning
of the color of a vertexv is as follows: for a vertex set (possibly,
a vector dominating set)D,
• > means thatv ∈ D.
• i ∈ {0, 1, . . . , d(v)} means thatv < D and |NG f (v) ∩ D| ≥

d(v) − i.
Notice that a vertex colored byi > 0 may need to be dominated
by some vertices inV \V(G f ) for the feasibility. Given a coloring
c ∈ {>, 0, 1, 2, . . . , d∗}|w( f )|, let D f (c) ⊆ V(G f ) be a vertex set with
the minimum cardinality satisfying the following (1)–(3), where
c(v) denotes the color assigned to a vertexv ∈ V:

c(v) = > if and only if v ∈ D f (c)∩ w( f ). (1)

If c(v) = i, thenv ∈ w( f ) \ D f (c)

and|NG f (v) ∩ D f (c)| ≥ d(v) − i. (2)

|NG f (v) ∩ D f (c)| ≥ d(v) holds

for every vertexv ∈ V(G f ) \ (w( f ) ∪ D f (c)). (3)

Intuitively, D f (c) is a minimum vector dominating set inG f under
the assumption that the color for every vertex inw( f ) is restricted
to c. Note that a vertex inw( f ) is allowed not to meet its demand
in G f , because it can be dominated by some vertices inV\V(G f ).
Also note that every vertex inV(G f ) \ w( f ) is not adjacent to any
vertex inV \V(G f ) by Lemma 2(ii), and it needs to be dominated
by vertices only inV(G f ) for the feasibility. We defineAf (c) as
Af (c) = |D f (c)| if D f (c) exists andAf (c) = ∞ otherwise.

Our dynamic programming algorithm proceeds bottom-up in
T, while computingAf (c) for all c ∈ {>, 0, 1, 2, . . . , d∗}|w( f )| for
each edgef in T. We remark that sincew(r1, r2) = ∅ and
G(r1,r2) = G for the root edge (r1, r2), the only coloringc in
A(r1,r2)(c) is the empty coloring andA(r1,r2)(c) is the cardinality
of a minimum vector dominating set. The algorithm consists of
two types of procedures: one is for leaf edges and the other is for
non-leaf edges, where aleaf edgedenotes an edge incident to a
leaf ofT.

Procedure for leaf edges:In the first step of the algorithm, we
computeAf (c) for each edgef incident to a leaf ofT. Then, for

all coloringsc ∈ {>, 0, 1, 2, . . . , d∗}|w( f )|, let Af (c) be the number
of vertices colored by> if D f (c) exists andG f andc satisfy (1) –
(3), andAf (c) = ∞ otherwise.

Let f be a leaf edge incident to a leaf nodex in T and
e = (v1, v2) be the edge inG with τ(e) = x. Then, notice that
we havew( f ) = {vi} if the degree ofv j is 1 for {i, j} = {1, 2}, and
w( f ) = {v1, v2} otherwise, and thatV(G f ) = {v1, v2}. Hence, for
a fixedc, we can check inO(1) time if (1) – (3) hold. This step
takesO((d∗ + 2)2) time.

Procedure for non-leaf edges: After the above initialization
step, we visit non-leaf edges ofT from leaves to the root ofT.
Let f = (y1, y2) be a non-leaf edge ofT such thaty1 is the par-
ent of y2, y3 and y4 are the children ofy2, and f1 = (y2, y3)
and f2 = (y2, y4). Now we have already obtainedAf j (c

′) for
all c′ ∈ {>, 0, 1, 2, . . . , d∗}|w( f j )|, j = 1, 2. By Lemma 2(i),
we havew( f ) ⊆ w( f1) ∪ w( f2), w( f1) ⊆ w( f2) ∪ w( f ), and
w( f2) ⊆ w( f ) ∪ w( f1); let X1 = w( f ) \ w( f2), X2 = w( f ) \ w( f1),
X3 = w( f )∩w( f1)∩w( f2), andX4 = w( f1)\w( f ) (= w( f2)\w( f )).

We say that a coloringc ∈ {>, 0, 1, 2, . . . , d∗}|w( f )| of w( f ) is
formedfrom a coloringc1 of w( f1) and a coloringc2 of w( f2) if
the following (P1)–(P5) hold.

(P1) For everyv ∈ X1 ∪ X2 ∪ X3 with c(v) = >,
(a) For everyv ∈ X1 ∪ X3, c1(v) = > if and only if
c(v) = >.
(b) For everyv ∈ X2 ∪ X3, c2(v) = > if and only if
c(v) = >.

(P2) For everyv ∈ X4, c1(v) = > if and only if c2(v) = >.

(P3) For everyv ∈ X j \ Dc1,c2 where{ j, j′} = {1,2} and Dc1,c2

= {v ∈ X1 ∪ X2 ∪ X3 ∪ X4 | c1(v) = > or c2(v) = >},
If c(v) = i, thenc j(v) = min{d(v), i + |Dc1,c2 ∩ NG f (v) ∩
X j′ |}.
(Intuitively, if v ∈ X j \ Dc1,c2 needs to be dominated by
at leastd(v)− i vertices inG f , then at least max{0,d(v)−
i − |Dc1,c2 ∩ NG f (v) ∩ X j′ |} vertices fromV(G f j ) are nec-
essary.)

(P4) For everyv ∈ X3 \ Dc1,c2,
If c(v) = i, thenc1(v) = min{d(v), i + |Dc1,c2 ∩ NG f (v) ∩
X2|+i1} andc2(v) = min{d(v), i+|Dc1,c2∩NG f (v)∩X1|+i2}
for some non-negative integersi1, i2 with i1 + i2 =

max{0, d(v) − i − |Dc1,c2 ∩ NG f (v)|}.
(Intuitively, if v ∈ X3 \ Dc1,c2 needs to be domi-
nated by at leastd(v) − i vertices inG f , then at least
max{0, d(v)− i−|Dc1,c2∩NG f (v)|} vertices from (V(G f1)\
w( f1)) ∪ (V(G f2) \ w( f2)) are necessary for dominating
v. If i1 (resp.,i2) vertices among those vertices belong
to V(G f2) \ w( f2) (resp.,V(G f1) \ w( f1)), then at least
max{0, d(v)− i−|Dc1,c2∩NG f (v)∩X j′ |− i j} vertices from
V(G f j ) are necessary for{ j, j′} = {1, 2}.)

(P5) For everyv ∈ X4 \ Dc1,c2,
c1(v) = min{d(v), |Dc1,c2 ∩NG f (v)∩ X2|+ i1} andc2(v) =

min{d(v), |Dc1,c2 ∩ NG f (v) ∩ X1| + i2} for some non-
negative integersi1, i2 with i1 + i2 = max{0,d(v) −
|Dc1,c2 ∩ NG f (v)|}. (This case can be treated in a simi-
lar way to (P4).)
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The following two lemmas show that there exist a coloringc1

of w( f1) and a coloringc2 of w( f2) forming c such thatD f1(c1) ∪
D f2(c2) satisfies (1)–(3) and|D f1(c1) ∪ D f2(c2)| = Af (c). Namely,
we haveAf (c) = min{Af1(c1) + Af2(c2) − |Dc1,c2 ∩ (X3 ∪ X4)| |
c1, c2 formsc}.

Lemma 5 Let c ∈ {>,0, 1,2, . . . , d∗}|w( f )| be a coloring of
w( f ). If a coloringc1 of w( f1) and a coloringc2 of w( f2) formsc,
thenD f1(c1) ∪ D f2(c2) satisfies (1)–(3) forf .
Proof. We denoteD f1(c1) ∪ D f2(c2) by D′, andD′ ∩ (X1 ∪ X2 ∪
X3 ∪ X4) by D′c1,c2

. Clearly, (1) holds, sincev ∈ D′ ∩ w( f ) if and
only if c(v) = > by (P1).

We next show thatD′ satisfies (2). Letv be a vertex in
X1\D′ = X1\D′c1,c2

. From the above (P3), we have|NG f1
(v)∩D′| ≥

d(v) − i − |D′c1,c2
∩ NG f (v) ∩ X2|. It follows that |NG f (v) ∩ D′| ≥

|NG f1
(v)∩D′|+ |D′c1,c2

∩NG f (v)∩ X2| ≥ d(v)− i. Also, the case of
v ∈ X2 \ D′ can be treated similarly.

Let v be a vertex inX3 \ D′ = X3 \ D′c1,c2
. Since|NG f (v) ∩ D′|

≥ |NG f (v) ∩ D′c1,c2
| clearly holds, we have only to consider the

case of |NG f (v) ∩ D′c1,c2
| < d(v) − i. From (P4), we have

|NG f1
(v) ∩ D′| ≥ max{0, d(v) − i − |D′c1,c2

∩ NG f (v) ∩ X2| − i1}
and|NG f2

(v) ∩ D′| ≥ max{0, d(v) − i − |D′c1,c2
∩ NG f (v) ∩ X1| − i2}

wherei1 + i2 = d(v) − i − |D′c1,c2
∩ NG f (v)| (note thati1 + i2 > 0

from the assumption of this case). Notice that (V(G f1) \ w( f1)) ∩
(V(G f2)\w( f2)) = ∅ by Lemma 2(ii). It follows that|NG f (v)∩D′| ≥
|NG f1

(v) ∩ D′| + |NG f2
(v) ∩ D′| −|NG f (v) ∩ D′c1,c2

∩ (X3 ∪ X4)|
≥ 2(d(v) − i) − |NG f (v) ∩ D′c1,c2

| − i1 − i2 = d(v) − i.
We finally show thatD′ satisfies (3). Letv be a vertex inX4\D′.

Since|NG f (v)∩D′| ≥ |NG f (v)∩D′c1,c2
| clearly holds, we have only

to consider the case of|NG f (v) ∩ D′c1,c2
| < d(v). From (P5), we

have|NG f1
(v)∩D′| ≥ max{0, d(v)− |D′c1,c2

∩NG f (v)∩X2| − i1} and
|NG f2

(v) ∩ D′| ≥ max{0,d(v) − |D′c1,c2
∩ NG f (v) ∩ X1| − i2} where

i1+i2 = d(v)−|D′c1,c2
∩NG f (v)| > 0. Hence, we have|NG f (v)∩D′| ≥

|NG f1
(v) ∩ D′| + |NG f2

(v) ∩ D′| −|NG f (v) ∩ D′c1,c2
∩ (X3 ∪ X4)|

= 2d(v) − |NG f (v) ∩ D′c1,c2
| − i1 − i2 = d(v). Also, it follows from

the definition ofD f j (c j) that v ∈ V(G f j ) \ w( f j) satisfies (3) for
j = 1, 2. �

Lemma 6 Let c ∈ {>,0, 1,2, . . . , d∗}|w( f )| be a coloring of
w( f ). There exist a coloringc1 of w( f1) and a coloringc2 of w( f2)
forming c such that|D f1(c1) ∪ D f2(c2)| ≤ Af (c).
Proof. For each vertexv ∈ w( f j), j = 1, 2, let

c j(v) =



> if v ∈ D f (c),
min{d(v), c(v) + |(NG f (v) ∩ D f (c)) \ V(G f j )|}

if v ∈ X j \ D f (c),
max{0,d(v) − |NG f j

(v) ∩ D f (c)|}
if v ∈ X3 ∪ X4 \ D f (c).

For v ∈ X j \D f (c), we have|NG f (v)∩D f (c)| = |NG f j
(v)∩D f (c)|+

|(NG f (v) ∩ D f (c)) \ V(G f j )| ≥ d(v) − c(v), sinceD f (c) satisfies
(2). Hence,|NG f j

(v) ∩ D f (c)| ≥ max{0,d(v) − c(v) − |(NG f (v) ∩
D f (c))\V(G f j )|} = d(v)−c j(v) for all v ∈ w( f j) \D f (c). It follows
from that the minimality ofAf j (c j) implies that|D f (c)∩V(G f j )| ≥
Af j (c j); hence,Af (c) ≥ |D f1(c1) ∪ D f2(c2)|. On the other hand,
c1 and c2 does not necessarily formc. Below, we show that
there exist a coloringc′1 of w( f1) and a coloringc′2 of w( f2)
forming c such thatc′j(v) ≥ c j(v) for every v ∈ w( f j) \ D f (c)

for j = 1, 2. Note thatD f j (c j) satisfies (1)–(3) also forc′j ,
since |NG f j

(v) ∩ D f j (c)| ≥ d(v) − c j(v) ≥ d(v) − c′j(v) for every
v ∈ w( f j) \ D f (c). Hence, from the minimality of|D f j (c

′
j)|, we

haveAf (c) ≥ |D f1(c1) ∪ D f2(c2)| ≥ |D f1(c
′
1) ∪ D f2(c

′
2)|, which

proves this lemma.
We can construct suchc′1, c′2 as follows. First letc′j(v) = c j(v)

for all v ∈ X1 ∪ X2 ∪ D f (c); c′1 andc′2 satisfy (P1) and (P2) in the
definition of a coloringc formed byc1 andc2. By Lemma 2(ii),
everyv ∈ X j satisfies (NG f (v)∩D f (c))\V(G f j ) = NG f (v)∩D f (c)∩
X j′ for { j, j′} = {1,2}. Hence,c′j(v)(= c j(v)) for v ∈ X j \ D f (c),
j = 1, 2 satisfies (P3).

Let v ∈ X3 \ D f (c). Since D f (c) satisfies (2), we have
|NG f (v) ∩ D f (c)| ≥ d(v) − c(v). Now from construction ofc1 and
c2, the valuei′1 (resp.,i′2) corresponding toi1 (resp.,i2) in (P4) in
the definition ofc formed byc1 andc2 is max{0, d(v) − |NG f1

(v)∩
D f (c)|−c(v)−|NG f (v)∩X2∩D f (c)|} (resp., max{0, d(v)−|NG f2

(v)∩
D f (c)| − c(v) − |NG f (v) ∩ X1 ∩ D f (c)|}). It follows that i′1 + i′2 ≤
max{0, d(v)−c(v)−|NG f (v)∩D f (c)∩(X1∪X2∪X3∪X4)|} (note that
the final inequality follows from|NG f (v) ∩ D f (c)| ≥ d(v) − c(v)).

Let v ∈ X4 \ D f (c). Since D f (c) satisfies (2), we have
|NG f (v)∩D f (c)| ≥ d(v). From construction ofc1 andc2, the value
i′1 (resp.,i′2) corresponding toi1 (resp.,i2) in (P5) in the defini-
tion of c formed byc1 andc2 is max{0, d(v) − |NG f1

(v) ∩ D f (c)| −
|NG f (v)∩X2∩D f (c)|} (resp., max{d(v)−|NG f2

(v)∩D f (c)|−|NG f (v)∩
X1 ∩ D f (c)|}). It follows that i′1 + i′2 ≤ max{0,d(v) − |NG f (v) ∩
D f (c)∩ (X1 ∪ X2 ∪ X3 ∪ X4)|}.

Consequently, we can construct a coloringc′1 of w( f1) and
a coloring c′2 of w( f2) forming c such thatc′j(v) ≥ c j(v) for
every v ∈ X3 ∪ X4 \ D f (c) and c′j(v) = c j(v) for every v ∈
D f (c) ∪ X1 ∪ X2 for j = 1, 2 by increasingi′1 or i′2 for each
vertex v ∈ X3 ∪ X4 \ D f (c) so thati′1 + i′2 becomes equal to
max{0, d(v)− c(v)− |NG f (v)∩D f (c)∩ (X1∪X2∪X3∪X4)|} (resp.,
max{0, d(v) − |NG f (v) ∩ D f (c)∩ (X1 ∪ X2 ∪ X3 ∪ X4)|}) if v ∈ X3

(resp.,v ∈ X4). �

Thus, for all coloringsc ∈ {>, 0, 1, 2, . . . , d∗}|w( f )|, we can com-
puteAf (c) from the information off1 and f2. By repeating these
procedure bottom-up inT, we can find a minimum vector domi-
nating set inG.

Here, for a fixedc, we analyze the time complexity for com-
puting Af (c). Let Dc = {v ∈ w( f ) | c(v) = >}, x j = |X j | for
j = 1, 2, 3, 4, z3 = |X3 \ Dc|. Under the assumption thatX4 is
colored by a fixed coloringc4, the number of pairs of a color-
ing c1 of w( f1) and a coloringc2 of w( f2) forming c is at most
(d∗ + 1)z3(d∗ + 1)z4 wherez4 denotes the number of vertices inX4

not colored by> in c4, since the number of pairs (i1, i2) in (P4) or
(P5) is at mostd∗ + 1 for each vertex inX3 \ Dc or each vertex in
X4 not colored by>.

Hence, for an edgef , the number of pairs formingc is at most
(d∗ + 2)x1+x2

∑x3

z3=0

(
x3
z3

)
(d∗ + 1)z3

∑x4
z4=0

(
x4
z4

)
(d∗ + 1)z4(d∗ + 1)z3(d∗ +

1)z4 = (d∗ + 2)x1+x2{(d∗ + 1)2 + 1}x3+x4 in total. Now we have
x1 + x2 + x3 ≤ b, x1 + x3 + x4 ≤ b, andx2 + x3 + x4 ≤ b (re-
call thatb is the width of (T′, τ)). By considering a linear pro-
gramming problem which maximizes (x1 + x2) log(d∗ + 2)+ (x3 +

x4) log{(d∗ + 1)2 + 1} subject to these inequalities, we can ob-
serve that (d∗ + 2)x1+x2{(d∗ + 1)2 + 1}x3+x4 attains the maximum
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when x1 = x2 = x4 = b/2 and x3 = 0. Thus, it takes in to-
tal O((d∗ + 2)b{(d∗ + 1)2 + 1}b/2) time to computeAf (c) for all
coloringsc of w( f ).

Since|E(T)| = O(m) and the initialization step takesO((d∗ +

2)2m) time in total, we can obtainA(r1,r2)(c) in O(((d∗ + 2)b{(d∗ +

1)2 + 1}b/2m) time.
Summarizing the arguments given so far, we have shown The-

orem 3.

3.2 Total vector domination and multiple domination
We consider the total vector domination problem. The differ-

ence between the total vector domination and the vector domina-
tion is that each vertex selected as a member in a dominating set
needs to be dominated or not. Hence, we will modify the follow-
ing parts (I)–(III) in the algorithm for vector domination given in
the previous subsection so that each vertex selected as a member
in a dominating set also satisfies its demand.

(I) Color assignments: Letf ∈ E(T) be an edge in a branch
decompositionT of G. We will assign to each vertexv ∈ w( f ) an
ordered pair (̀, i) of colors,` ∈ {>,⊥}, i ∈ {0, 1, . . . , d(v)}, where
> means thatv belongs to the dominating set,⊥ means thatv
does not belong to the dominating set, and andi means thatv is
dominated by at leastd(v) − i vertices inG f .

(II) Conditions for D f (c): For a coloringc ∈ ({>,⊥} ×
{0, 1, 2, . . . , d∗})|w( f )|, we modify (1)–(3) as follows, where let
c(v) = (c1(v), c2(v)):

c1(v) = > if and only if v ∈ D f (c)∩ w( f ).

If c2(v) = i, then|NG f (v) ∩ D f (c)| ≥ d(v) − i.

|NG f (v) ∩ D f (c)| ≥ d(v) holds for every vertexv ∈ V(G f ) \ w( f ).

(III) Definition of a coloringc formed byc1 andc2: For a col-
oring c ∈ ({>,⊥} × {0, 1, 2, . . . , d∗})|w( f )|, we modify (P1)–(P5) as
follows:
(P1’) For everyv ∈ X1∪X2∪X3 with c1(v) = > (resp.,c1(v) = ⊥),

(a) If v ∈ X1 ∪ X3, thenc1
1(v) = > (resp.,c1

1(v) = ⊥).
(b) If v ∈ X2 ∪ X3, thenc1

2(v) = > (resp.,c1
2(v) = ⊥).

(P2’) For everyv ∈ X4, c1
1(v) = > (resp.,c1

1(v) = ⊥) if and only if
c1

2(v) = > (resp.,c1
2(v) = ⊥).

(P3’) For everyv ∈ X j where{ j, j′} = {1, 2} and Dc1,c2 = {v ∈
X1 ∪ X2 ∪ X3 ∪ X4 | c1

1(v) = > or c1
2(v) = >},

If c2(v) = i, thenc2
j (v) = min{d(v), i + |Dc1,c2 ∩ NG f (v) ∩

X j′ |}.
(P4’) For everyv ∈ X3,

If c2(v) = i, thenc2
1(v) = min{d(v), i + |Dc1,c2 ∩ NG f (v) ∩

X2|+i1} andc2
2(v) = min{d(v), i+|Dc1,c2∩NG f (v)∩X1|+i2}

for some non-negative integersi1, i2 with i1 + i2 =

max{0,d(v)− i − |Dc1,c2 ∩NG f (v)∩ (X1∪X2∪X3∪X4)|}.
(P5’) For everyv ∈ X4,

c2
1(v) = min{d(v), |Dc1,c2 ∩NG f (v)∩ X2|+ i1} andc2

2(v) =

min{d(v), |Dc1,c2 ∩ NG f (v) ∩ X1| + i2} for some non-
negative integersi1, i2 with i1 + i2 = max{0,d(v) −
|Dc1,c2 ∩ NG f (v) ∩ (X1 ∪ X2 ∪ X3 ∪ X4)|}.

We analyze the time complexity of this modified algorithm.
Similarly to the case of the vector domination, the total running
time is dominated by total complexity for computingAf (c) for

non-leaf edgesf .
Let f be a non-leaf edge ofT and xi , i = 1, 2, 3, 4 andz4

be defined as Subsection 3.1. The number of pairs of a color-
ing c1 of w( f1) and a coloringc2 of w( f2) forming c is at most
(d∗ + 1)x3

∑x4
z4=0

(
x4
z4

)
(d∗ + 1)x4(d∗ + 1)x4 since the number of pairs

(i1, i2) in (P4’) or (P5’) is at mostd∗ + 1 for each vertex in
X3∪X4. Hence, for an edgef , the number of pairs formingc is at
most{2(d∗ + 1)}x1+x2

∑x3

z3=0

(
x3
z3

)
(d∗ + 1)x3(d∗ + 1)x3

∑x4
z4=0

(
x4
z4

)
(d∗ +

1)x4(d∗ + 1)x4 = {2(d∗ + 1)}x1+x2{2(d∗ + 1)2}x3+x4 in total. Since
x1 + x2 + x3 ≤ b, x1 + x3 + x4 ≤ b, andx2 + x3 + x4 ≤ b, it follows
that (x1 + x2) log(2d∗ + 2) + (x3 + x4) log{2(d∗ + 1)2} attains the
maximum whenx1 = x2 = x4 = b/2 andx3 = 0. Thus, it takes
in O(23b/2(d∗ + 1)2b) time to computeAf (c) for all coloringsc of
w( f ). Namely, we obtain the following theorem.

Theorem 7 If a branch decomposition ofG with width b is
given, a minimum total vector dominating set inG can be found
in O(23b/2(d∗ + 1)2bm) time. �

Also, by replacingNG() with NG[] in the modification for total
vector domination, we can obtain the following theorem for the
multiple domination problems.

Theorem 8 If a branch decomposition ofG with width b is
given, a minimum multiple dominating set inG can be found in
O(23b/2(d∗ + 1)2bm) time. �

4. Subexponential fixed parameter algorithm
for planar graphs

We consider the problem of checking whether a given graphG

has ad-vector dominating set with cardinality at mostk. As men-
tioned in Subsection 1.1, ifG is ρ-degenerated, then the prob-
lem can be solved inkO(ρk2)nO(1) time. Since a planar graph is
5-degenerated, it follows that the problem with a planar graph
can be solved inkO(k2)nO(1) time. In this section, we give a subex-
ponential fixed-parameter algorithm, parameterized byk, for a
planar graph; namely, we will show the following theorem.

Theorem 9 If G is a planar graph, then we can check in
O(n3 + (min{d∗, k}+ 2)b

∗ {(min{k, d∗}+ 1)2 + 1}b∗/2n) time whether
G has ad-vector dominating set with cardinality at mostk or not,
whereb∗ = min{12

√
k + z+9, 20

√
k+17} andz = |{v ∈ V | d(v) =

0}|.
This time complexity is roughly O(n3 + 2O(

√
k logk)n), which is

subexponential with respect tok; this improves the running time
of the previous fixed-parameter algorithm.

Let V0 = {v ∈ V | d(v) = 0} andz = |V0|. In [19], Lemma 2.2,
it was shown that if a planar graphG′ has an ordinary dominat-
ing set (i.e., a (1,1,. . . ,1)-vector dominating set) with cardinality
at mostk, thenbw(G′) ≤ 12

√
k + 9. This boundis based on the

bidimensionality[14], and was used to design the subexponen-
tial fixed-parameter algorithm with respect tok for the ordinary
dominating set problem. In the case of our domination problems,
however, it is difficult to say that they have the bidimensional-
ity, due to the existence ofV0 vertices. Instead, we give a sim-
ilar bound on the branchwidth not w.r.tk but w.r.t k + z as fol-
lows: For any (total, multiple)d-vector dominating setD of G

(|D| ≤ k), D ∪ V0 is an ordinary dominating set ofG, and this
yieldsbw(G) ≤ 12

√
k + z+ 9.

Actually, it is also possible to excludez from the parameters,
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though the coefficient of the exponent becomes larger. To this
end, we use the notion of (k, 2)-center. Recall that a (k, r)-center

of G′ is a setW of vertices ofG′ with sizek such that any vertex
in G′ is within distancer from a vertex ofW. For a (k, r)-center,
a similar bound on the branchwidth is known: if a planar graph
G′ has a (k, r)-center, thenbw(G′) ≤ 4(2r + 1)

√
k + 8r + 1 ([12],

Theorem3.2). Here, we use this bound. We can assume that for
v ∈ V0, NG(v) * V0 holds, becausev ∈ V0 satisfyingNG(v) ⊆ V0

is never selected as a member of any optimal solution; it isirrel-

evant, and we can remove it. That is, every vertex inV0 has at
least one neighbor fromV \ V0. Then, for any (total, multiple)
d-vector dominating setD of G (|D| ≤ k), D is a (k, 2)-center of
G. This is because any vertex inV \ V0 is adjacent to a vertex in
D and any vertex inV0 is adjacent to a vertex inV \V0. Thus, we
havebw(G) ≤ 20

√
k + 17.

In summary, we have the following lemma.
Lemma 10 Assume thatG is a planar graph without irrele-

vant vertices, i.e.,NG(v) * V0 holds for eachv ∈ V0. Then, if
G has a (total, multiple) vector dominating set with cardinality at
mostk, then we havebw(G) ≤ min{12

√
k + z+ 9, 20

√
k + 17}.�

Combiningthis lemmawith the algorithm in Subsection 3.1, we
can check whether a given graph has a vector dominating set with
cardinality at mostk according to the following steps 1 and 2:

Step 1: Letb∗ = min{12
√

k + z+ 9, 20
√

k + 17}. Check whether
thebranchwidth ofG is at mostb∗. If so, then go to Step 2, and
otherwise halt after outputting ‘NO’.

Step 2: Construct a branch decomposition with width at mostb∗,
and apply the dynamic programming algorithm in Subsection 3.1
to find a minimum vector dominating set forG.

By Lemma 1, Theorem 3, and the fact that any planar graphG′

satisfies|E(G′)| = O(|V(G′)|), it follows that the running time of
this procedure isO(n3 + (d∗ + 2)b

∗ {(d∗ + 1)2 + 1}b∗/2n). Hence, in
the case ofd∗ ≤ k, Theorem 9 has been proved.

The case ofd∗ > k can be reduced to the case ofd∗ ≤ k by
the following standard kernelization method, which proves The-
orem 9. Assume thatd∗ > k. Let Vmax(d) be the set of vertices
v with d(v) = d∗. For the feasibility, we need to select each ver-
tex v ∈ Vmax(d) as a member in a vector dominating set. Hence,
if |Vmax(d)| > k, then it turns out thatG has no vector dominat-
ing set with cardinality at mostk. Assume that|Vmax(d)| ≤ k.
Then, it is not difficult to see that we can reduce an instance
I (G, d, k) with G, d, andk to an instanceI (G′, d′, k′) such that
G′ = G\Vmax(d) (i.e.,G′ is the graph obtained fromG by deleting
Vmax(d)), d′(v) = max{0,d(v) − |NG(v) ∩ Vmax(d)|} for all vertices
v ∈ V(G′), andk′ = max{0,k − |Vmax(d)|}. Based on this obser-
vation, we can reduceI (G, d, k) to an instanceI (G′′, d′′, k′′) with
max{d′′(v) | v ∈ V(G′′)} ≤ k′′ ≤ k or output ‘YES’ or ‘NO’ in the
following manner:

(a) After settingG′ := G, d′ := d, andk′ := k, repeat the proce-
dures (b1)–(b3) whilek′ < d′∗(= max{d′(v) | v ∈ V(G′)}).
(b1) If k′ < |Vmax(d′)|, then halt after outputting ‘NO.’
(b2) If k′ ≥ |Vmax(d′)| andV(G′) = Vmax(d′), then halt after out-
putting ‘YES.’

(b3) Otherwise after settingG′′ := G′ \ Vmax(d′), d′′(v) :=
max{0, d′(v) − |NG′ (v) ∩ Vmax(d′)|} for each v ∈ V(G′′), and
k′′ := max{0,k′ − |Vmax(d′)|}, redefineG′′, d′′, andk′′ asG′, d′,
andk′, respectively.

Next, we consider the total vector domination problem and the
multiple domination problem. For these problems, since all ver-
ticesv ∈ V need to be dominated byd(v) vertices, the condition
thatd∗ ≤ k is necessary for the feasibility. Similarly, we have the
following theorem by Theorems 7 and 8.

Theorem 11 Assume that a given graphG is planar, and let
b∗ = min{12

√
k + z+ 9, 20

√
k + 17}.

(i) Wecan check inO(n3+23b∗/2(min{d∗, k}+2)2b∗n) time whether
G has a total vector dominating set with cardinality at mostk or
not.
(ii) We can check inO(n3+23b∗/2(min{d∗, k}+2)2b∗n) time whether
G has a multiple dominating set with cardinality at mostk or not.
�

Before concluding this section, we mention that the above re-
sults can be extended toapex-minor-free graphs, a superclass of
planar graphs. Anapex graphis a graph with a vertexv such that
the removal ofv leaves a planar graph. A graphG has a graph
H as aminor if a graph isomorphic toH can be obtained fromG
by a sequence of deleting vertices, deleting edges, or contracting
edges. A graph class is apex-minor-free if it does not contain any
graph which has some fixed apex graph as a minor. For apex-
minor-free graphs, the following lemma is known.

Lemma 12 ([18], Lemma 2) LetG be an apex-minor-free
graph. IfG has a (k, r)-center, then the treewidth ofG is O(r

√
k).

Fromthis lemma,the linear relation of treewidth and branch-
width, and the 2O(bw(G))n2 -time algorithm for computing a branch
decomposition with widthO(bw(G)) (mentioned after Theo-
rem 3), we obtain the following corollary.

Corollary 13 We can check in 2O(
√

k logk)nO(1) time whether
an apex-minor-free graphG has a (total, multiple) vector domi-
nating set with cardinality at mostk or not.
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