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Abstract: Nearest neighbor search (NNS) among large-scale and high-dimensional vectors has played an important
role in recent large-scale multimedia search applications. This paper proposes an optimized codebook construction al-
gorithm for approximate NNS based on product quantization. The proposed algorithm iteratively optimizes both code-
books for product quantization and an assignment table that indicates the optimal codebook in product quantization.
In experiments, the proposed method is shown to achieve better accuracy in approximate NNS than the conventional
method with the same memory requirement and the same computational cost. Furthermore, use of a larger number of
codebooks increases the accuracy of approximate NNS at the expense of a slight increase in the memory requirement.
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1. Introduction

Nearest neighbor search (NNS) in a high-dimensional space
plays an important role in many computer vision algorithms
and applications, where high-dimensional feature vectors such as
SIFT[1] or GIST [2] are frequently used. Given a set of data
points in a metric space and a query point in the same metric
space, NNS is defined as the problem of identifying the data
point(s) nearest to the query point. In this paper, we focus on
Euclidean space NNS, which is relevant to many applications.

The kd-tree [3] is one of the best solutions for NNS in a low-
dimensional space, while its effectiveness declines as dimension-
ality increases due to the so-called “curse of dimensionality.” In
order to deal with this problem, approximate approaches such as
ANN [4] or LSH [5] have attracted much attention. In an approx-
imate NNS, a search result will fail to be the exact nearest neigh-
bor point with a probability that is characterized by the parame-
ters of the approximate NNS algorithms. It is reported that a ran-
domized kd-tree algorithm [6], 7] and a hierarchical k-means tree
algorithm [8] perform better than ANN and LSH [8]. The ran-
domized kd-tree algorithm constructs multiple randomized kd-
trees, and these trees are explored simultaneously according to
a single priority queue, which is referred to as a best-bin-first
search [9]. The priority is determined by the distance between a
query point and each bin boundary in the kd-trees. In Ref. [10], an
improved algorithm for kd-tree construction is proposed, where a
partition axis is formed by combining two or more coordinate
axes instead of selecting a single coordinate axis. The hierarchi-
cal k-means tree algorithm also explores the hierarchical k-means
tree [11] in a best-bin-first manner based on the distance between
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a query point and each branch node in the tree. The algorithm
referred to as FLANN [8] optimally selects randomized kd-trees
or a hierarchical k-means tree for indexing according to the given
data distribution and the user’s requirements, and it provides fully
automated parameter selection.

For the sake of efficiency, all of the above-mentioned meth-
ods require the indexed vectors themselves to be stored in the
main memory. However, this requirement is not feasible when
handling large-scale datasets, e.g., when indexing millions of im-
ages[12], [13]. In order to address this issue, short code-based
NNS methods are proposed: feature vectors are compressed into
short codes and NNS is performed in the compressed domain. In
short code-based NNS, the tradeoff between search accuracy and
the size of short codes is an important performance measure in
addition to the tradeoff between search accuracy and computa-
tional cost in standard approximate NNS. Because short code-
based NNS methods usually perform a linear search, computa-
tional costs are almost the same among different methods depend-
ing on the size of short codes. One of the most common ways to
realize a short code-based method is to utilize random projec-
tions like LSH[5]. Although the LSH algorithm has been thor-
oughly studied at a theoretical level, it requires short codes with
a relatively large size to maintain approximate NNS accuracy. In
Ref. [12], an algorithm referred to as spectral hashing (SH) has
been proposed. The algorithm achieves better search accuracy
with smaller codes than LSH. It formulates a binary hashing as a
graph partitioning problem and solves it by assuming a uniform
distribution over the data. In Ref.[14], an objective function is
defined so that hash functions preserve the input distances when
mapping to the Hamming space. An efficient algorithm to opti-
mize the objective function is also proposed. In Ref. [15], a trans-
form coding-based method is proposed. This method realizes
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data-driven allocation of bits to components. It has been shown to
outperform LSH and SH in approximate NNS and scene classifi-
cation problems. Recently, a product quantization-based method
has been proposed [13], where the distances between a query vec-
tor and quantized reference vectors can be calculated efficiently.
It has been shown to outperform the methods mentioned above
in terms of approximate NNS accuracy with the same short code
size [13], [15]. The tradeoft between search time and accuracy is
further improved by a non-exhaustive search framework.

In a non-exhaustive framework [13], a coarse quantization is
first performed and the resulting residual (error) vectors are fur-
ther quantized by the product quantizer. Although the residual
vectors follow different distributions depending on the assigned
Voronoi cells, which are defined by the coarse quantizer, the
conventional method quantizes them irrespective of the assigned
cells, resulting in the degradation of quantization performance.
Because quantized reference vectors are used for distance cal-
culations in the product quantization-based method, ineffective
quantization leads to low search accuracy.

In this paper, in order to solve the problem of product quanti-
zation in Ref. [13], we propose a modified product quantization-
based approximate NNS method, which utilizes an arbitrary num-
ber of codebooks in product quantization. Our main contribu-
tion is the development of an iterative codebook construction al-
gorithm for product quantization. This algorithm optimizes the
codebooks by iteratively executing an update step and assignment
step similar to the k-means algorithm. In the update step, the
codebooks are updated so that total quantization error is reduced
for a fixed assignment table, which defines the assignments from
residual vectors to the codebooks. In the assignment step, the as-
signment table is optimized for the fixed codebooks to minimize
the error. The resulting optimized codebooks can reduce quanti-
zation error considerably, improving the accuracy of approximate
NNS search. In experiments, the proposed method is shown to
achieve better accuracy in approximate NNS compared with the
conventional method with the same memory requirement and the
same computational cost. Furthermore, use of a larger number
of codebooks increases the accuracy of approximate NNS at the

expense of a slight increase in the memory requirement.

2. Product Quantization for Nearest Neighbor
Search

In this section, we briefly review the product quantization-
based approximate NNS system[13]. It consists of an offline
indexing step and an online search step. In the indexing step,
reference vectors Y with a dimension of d are encoded into short
codes via product quantization, and these short codes are stored
in a database. In the search step, for each query vector x with the
same dimension d, the system returns the k-nearest neighbor vec-
tors from a k-NN search or the vectors with a distance less than
a given threshold € from a range search. This is accomplished by
calculating the approximate distance d(x,y) between the query
vector x and reference vector y in the database. The approximate
distances are efficiently calculated from the query vector x and
the short codes in the database. The notation used in this paper is
summarized in Table 1.

2.1 Indexing with Product Quantization
In the indexing step, a reference vector y is first decomposed

into m d*-dimensional subvectors uy, - - -, W,,:
_ T 1
Y=t Yars s Yd-dr+1s 5 Yd) s (D
— —
T T

u u,

where d* = d/m. Subsequently, these subvectors are quantized
separately using m codebooks Py, - - -, P, which is referred to as
product quantization. In this paper, a codebook used in product
quantization is referred to as a PQ codebook. We assume that
each PQ codebook P; has k* centroids p;;,- -+, pix € RY. The
[-th subvector u; is quantized into g;(u;) = p;, using /-th PQ
codebook P;, where

a; = arg min [ju; — pyal*. 2
1<a<k*
As aresult, y is quantized into g(y):

CI(Y) = (CII(UI)T, ) CIm(um)T)T = (p{al DR p}-n,a,,,)T- (3)

Table 1 Notations.

Symbol Notation Section
d Dimensionality of feature vectors. §2
m The number of vector decomposition in product quantization. §2.1
d* Dimensionality of subvectors, where d* = d/m. §2.1
a A set of training vectors with a dimension of d. §2.1
Py,---,P, Codebooks used in the conventional product quantization (PQ codebooks), where §2.1
P; = (pi1.-+ Pix) and piq € RY.
k* The size of PQ codebooks (the number of centroids). §2.1
C A codebook used in coarse quantization (CQ codebook), where C = (¢, -+, ¢p) §2.3.1
and ¢; € R?.
kK The size of CQ codebook (the number of centroids). §2.3.1
r The number of PQ codebooks used in the proposed method. §3
Py,---,P, Codebooks used in the proposed product quantization (PQ codebooks), where §3
P; = (Pi1,- -+ Pix) and piq € RY.
Rit,--,Rem  Sets of residual subvectors with a dimension of d* used in the construction of PQ §3.1

codebooks. R, represents the set of /-th subvectors of the training vectors that are
assigned to the j-th centroid in coarse quantization.

T Assignment table 7 € N> T, indicates the identifier of the PQ codebook with §3.1
which /-th residual subvectors assigned to the j-th centroid in coarse quantization

should be quantized.

w The number of inverted lists to be searched in the multiple assignment strategy. §4.5
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Fig. 1 Relationship among the true distance d(x,y), the approximate dis-
tance d(x, g(y)), and the quantization error d(y, g(y)).

A tuple (ay, - - -, a,), the short code representation of y, is stored
for search purposes. As a; ranges from 1 to k*, the length of the
short code becomes m[log, k1. The PQ codebooks should be
created prior to indexing using a large number of training vectors
¥ : the /-th PQ codebook is created by clustering a set of the /-th
subvectors of the training vectors # using the k-means algorithm.

2.2 Distance Calculation between Query Vector and Short
Code
In the search step, a query vector X is also decomposed into
m d*-dimensional subvectors uy, - - -, u,,. The distance d(x,y) be-
tween the query vector x and a reference vector y is approximated
by the distance d(x, g(y)) between the query vector x and quan-
tized reference vector ¢(y) with the short code (ay, - - -, a,):

dx,y) ~ d(x,y) = dx,qy) = | D I =pralP. @
=1

For efficiency, lookup table F' is prepared when a query vector x
is given:

Fra=lw-plf A<i<m 1<a<k). )

Using this lookup table, the approximate distance d(x,y) is cal-
culated:

dx,y)= | D" Fia. (©6)
=1

Figure 1 illustrates the relationship among the true distance
d(x,y), the approximate distance d(x, ¢(y)), and the quantization
error d(y, q(y)). The triangular inequality gives

d(x,y) < d(x,q(y)) +d(y, q(y)),
d(x,q(y)) < d(x,y) + d(y, q(y)). @)

The equation can be modified as

d(x,y) — d(x,q(y)) < d(y, q(y)),
=d(y, q(y)) < d(x,y) — d(x, q(y)). (8

Finally, we obtain:
ld(x,y) — d(x, q(y)| < d(y, q(¥)). )

Here, |d(x,y) — d(x, q(y))| corresponds to the error in distance ap-
proximation, and is bounded by the quantization error d(y, g(y)).

2.3 Integration with Inverted Index
Although approximate nearest neighbor search with product
quantizers is fast, the search is exhaustive and there is room for

© 2012 Information Processing Society of Japan

improvement. The product quantization-based scheme can be in-
tegrated with an inverted index to avoid exhaustive searches and
thus further increase efficiency. The non-exhaustive framework is
referred to as an inverted file with asymmetric distance computa-
tion IVFADC) in Ref. [13].
2.3.1 Indexing in IVFADC

In the indexing step in the IVFADC framework, a reference
vector y is first quantized with a coarse quantizer. We refer to
the codebook used in coarse quantization as the CQ codebook.
The reference vector y is quantized into g°(y) = ¢; using the CQ
codebook C with k¥’ centroids ¢, - - -, ¢ € RY, where

j = arg min |ly - ¢;|I". (10)
1<j<k/

Subsequently, the residual vector r; from the corresponding cen-
troid ¢; is calculated as

r;=y-c;. (11)

Then, in order to reduce quantization error in the coarse quantizer,
the residual vector r; is quantized via product quantization in the
same manner as described in Section 2.1. The residual vector r;

is divided into m subvectors r- The residual subvector

b s r
ry is quantized into ql(rj’l) = Ppi, using the PQ codebook P,

jm:

where
— ; R 2
a = arg min s, — prall”. (12)
Finally, the short code (ay, - - -, a,,) is stored in the j-th list of the

inverted index with the vector identifier.
2.3.2 Distance Calculation in IVFADC

In the search step in the IVFADC framework, a query vector x
is first quantized using the CQ codebook, and the residual vector
r; from the corresponding centroid is calculated. Subsequently,
the approximate distances between the residual vector r; and the
short codes in the index are calculated. These distances corre-
spond to the approximate distances between the query vector and
the reference vectors. In contrast to the exhaustive search de-
scribed in Section 2.2, only the short codes in the j-th list of the
inverted index are concerned, where

j:arg min ||X—Cj||2. (13)
1<j<k’

Compared with the exhaustive search, IVFADC is shown to
achieve a better tradeoff between approximate NNS accuracy and
search speed [13].
2.3.3 Codebook Construction for IVFADC

In the case of IVFADC, the CQ codebook and PQ codebooks
should be created prior to indexing. The CQ codebook is con-
structed by clustering a large set of the training vectors ¥ using
the k-means algorithm to obtain &’ centroids ¢, --,¢p € RA.
Then, by subtracting corresponding centroid vectors from train-
ing vectors, a set of residual vectors is created. Subsequently, the
residual vectors are divided into m residual subvectors. Finally,
for each /, the /-th PQ codebook is constructed by clustering a
set of /-th residual subvectors of the residual vectors using the
k-means algorithm.
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Fig. 2 The number of feature vectors assigned to a centroid and the mean
square distance between the feature vectors and the centroid are plot-
ted. The CQ codebook with a size of 1,024 is created from 4M SIFT
feature vectors with the k-means algorithm.

2.4 Ineffectiveness in Product Quantization

In Ref. [13], residual subvectors from the same position in vec-
tor decomposition are quantized with the same PQ codebook irre-
spective of the cells into which corresponding residual vectors are
quantized in coarse quantization. Because these cells have differ-
ent residual vector distributions, the quantization of residual sub-
vectors from different distributions with the same PQ codebook
is ineffective in terms of reducing quantization error, which re-
sults in the degradation of approximate NNS accuracy. Figure 2
shows the relationship between the number of feature vectors as-
signed to a centroid and the mean square distance between the
feature vectors and the centroid. Since the mean square distance
reflects the size of a cell, Fig.2 indicates that there are marked
differences in the size of the Voronoi cells, and it implies that
the distributions of residual vectors are also quite different de-
pending on the cells. To handle this diversity, an identical PQ
codebook for each cell and for each position of residual subvec-
tors may be used for product quantization. However, the memory
requirements for the PQ codebooks become very large relative to
the number of centroids k" in the coarse quantization. This re-
quirement would be intractable in some situations where large k’
(e.g., from 10K to 1M in Ref. [6]) is often used. For example,
assuming that the number of centroids &’ of the CQ codebook is
100K, the number of centroids k* of each PQ codebook is 256,
and 128-dimensional SIFT features are indexed; this means that
approximately 100K x 256 x 128 ~ 3 Gbytes of memory is re-
quired to store only the PQ codebooks. Furthermore, to general-
ize the PQ codebooks to non-training vectors, £’ times as many
training vectors as in the case of creating a single PQ codebook
for each residual subvector position are required.

3. Proposed Approach

As explained in Section 2, residual subvectors have different
distributions depending on the assigned centroids in coarse quan-
tization. In this paper, we propose the use of an arbitrary number
r (1 < r <k’ xm)of PQ codebooks Py, - - -, P, in product quanti-
zation, where residual subvectors from similar distributions share
the same PQ codebook. In the conventional method, a residual
subvector is quantized by a PQ codebook that is specified only
by the position / of the residual subvector in vector decompo-
sition, while the proposed method specifies a PQ codebook not
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only by the position / of the residual subvector but also by the
identifier j of the centroid into which the corresponding refer-
ence vector is quantized in coarse quantization. Figure 3 shows
an intuitive illustration of the proposed approach. The proposed
algorithm creates semi-optimal PQ codebooks to minimize the
expected mean square error (MSE) in product quantization for a
given r. Because the error in product quantization corresponds to
the upper bound of error in distance approximation as shown in
Section 2.2, it is very important to reduce the error to improve the
accuracy of product quantization-based approximate NNS. In this
section, an algorithm to create an arbitrary number r of optimized
PQ codebooks to minimize RMSE is proposed. In the algorithm,
an assignment table 7 is also created. The table specifies the PQ
codebook to be used in the quantization of a residual subvector
depending on the position of the residual subvector and the cen-
troid into which the corresponding residual vector is quantized in
coarse quantization. Indexing and search algorithms using opti-
mized PQ codebooks are also described.

3.1 Multiple Codebook Construction

In this section, the codebook construction algorithm is de-
scribed. It includes the construction of CQ codebook C for coarse
quantization, PQ codebooks Py, - - -, P, for product quantization,
and an assignment table 7. We first construct a CQ codebook C
by clustering the set of training vectors ¥ with the k-means al-
gorithm. The residual vectors of the training vectors from their
corresponding centroids in C are calculated. Subsequently, all the
residual vectors are divided into m residual subvectors with a di-
mension of d*. Let R;; denote the set of /-th residual subvectors
that are assigned to the j-th centroid in coarse quantization. Our
objective is to create optimized PQ codebooks Py, - -, P, and an
assignment table 7' that minimize the expected MSE in product
quantization. Here, T'j; indicates the identifier of a PQ codebook
with which /-th residual subvectors assigned to the j-th centroid
in coarse quantization should be quantized. The objective is for-
mulated as

K m
minimize: Z e(Rjs, Pr,), (14)
j=1 =1
where e(R;;, P;) represents the sum of the squares of errors in
quantizing a set of residual subvectors R;; with PQ codebook P;:
e(Rj;, Pi) = Z 1Igrzlzl<1}< lIejip = Piall®. (15)
1<b<|R]
In the above equation, rj;, represents the b-th training subvector
in R;;. This optimization problem requires that the assignment
table 7' and the PQ codebooks Py, - - -, P, should be optimized si-
multaneously. Because it is an NP-hard problem, we propose an
approximate algorithm which iteratively optimizes (1) the assign-
ment table 7 for the fixed PQ codebooks Py,---, P, and (2) the
PQ codebooks for the fixed assignment table 7.

The proposed codebook construction procedure is summarized
in Algorithm 1. The algorithm consists of an initialization step
(Line 1), an update step (Lines 3-5), and an assignment step
(Lines 6-22). In the initialization step, the assignment table 7
and initial labels s;; = (s;1.1,° ", $j»,)) are initialized. The ini-
tialization of T is described in Section 3.2 in detail. The label s;;
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(a) Product quantization in the conventional method. (b) Product quantization in the proposed method.

Fig. 3 Intuitive illustration of the proposed approach for k" = 3,m = 4, r = 2. Each ellipse illustrates the
probability density function p(r;;) defined in the feature space R?", where r; is the I-th residual
subvector of a reference vector that is assigned to the j-th centroid in coarse quantization. Darker
area corresponds to higher density. Probability distribution p(r ;) is different depending on both
jand [. PQ codebooks are represented by Voronoi diagrams. Each blue arrow points to the PQ
codebook that is used to quantize the residual subvector r;;. (a) In the conventional scheme, each
residual subvector r;; is assigned to the PQ codebook according to only /; residual subvectors
that follow quite different distrubutions may be quantized with the same PQ codebook, resulting
in large quantization error. (b) In the proposed scheme, each residual subvector r;; is optimally
assigned to the PQ codebook according to not only / but j; residual subvectors that follow similar
distributions tend to be quantized with the same PQ codebook adapted to the distributions, which
reduces quantization error.

Algorithm 1 PQ codebook construction by a random value ranging from 1 to k* in the initialization step,
Require: R;; (1 <j<k,1<I<m),r and is updated with the identifier of the centroid in P; closest to
Ensure: Py,---,P,, T rj;; in the assignment step. The update step and assignment step
1: initialize 7', sj, (1 < j< K, 1 <1< m) are iterated for a fixed number of times.
2: repeat Update step. In the update step, Eq. (14) is minimized by up-
3 fori = 1tordo

dating the PQ codebooks Py, - - -, P, for the fixed assignment ta-

4 update P; by clusterin _; R, using initial labels s ;; for R; . . . .

s en dI:br Y & Ur, =i Rjq using e " ble T. For each i, the i-th PQ codebook P; is updated using the
6 forj=1tok do residual subvectors assigned to P;. As the assignment is defined
7 f;)r I=1tomdo by the assignment table 7', the update step is simply achieved by

8 e — oo clustering the residual subvectors |z, -; R, to obtain k£ centroids
9 fori=1tordo Pii,- -, Pik . Inthe clustering, the initial label s5;;, is used for the
10: <0 b-th training subvector rj;;, in R, to accelerate and stabilize the
11: for b =1to|R;/ do clustering instead of starting with random labels. As the labels
12: & — &+ miny<u<pe I — Piall? _ : : :

i Sii = (81,7, Sjr,) for R;; are obtained in the assignment

13: Sitp < argming << v — Pidl? y i

14 end for step, random labels are used only in the first update step.

15: if e > 2 then Assignment step. In the assignment step, Eq.(14) is mini-
16: PP mized by updating the assignment table T for the fixed PQ code-
17: T i books Py, -, P,. For each R;, the quantization error & in quan-
18: Sjs <8 tizing R;; with the PQ codebook P; is calculated for all i (lines 9—
19: end if 20). The identifier of the PQ codebook that minimizes the quanti-
20: end for zation error is stored in T'j; (line 17). The identifier of the centroid
21 end for in P; closest to 1y, is also stored in s5;;;, (line 13 and 18) for the
22:  end for

23: until a fixed number of iterations are performed update step.

The difference between the proposed method and the conven-
tional method for the construction of PQ codebooks is summa-
is used as the initial label of the b-th training subvector r;;, in the rized in Fig.4. The proposed method becomes identical to the
k-means clustering in the update step. The label s;; is initialized conventional method when we set » = m and T;; = [. CQ code-
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(a) PQ codebook construction procedure in the conventional method.
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(b) PQ codebook construction procedure in the proposed method.

Fig. 4 The difference between the conventional method and the proposed method for the construction
of PQ codebooks. (a) In the conventional method, the [-th PQ codebook is constructed by clus-
tering a collection of residual subvectors R;, - -+, Ry irrespective of the centroids to which the
corresponding training vectors are assigned in coarse quantization. (b) In the proposed method,
the i-th PQ codebook is constructed by clustering a collection of residual subvectors R; such that

Tj,

; = i. The assignment table 7 and the PQ codebooks Py, - - -, P, are iteratively optimized in the

assignment step and the update step, respectively.

book C, PQ codebooks Py, - - -, P, and the table T created in this
procedure are used in both the indexing and search procedures.
Computational cost. The computational cost required by the
proposed algorithm is examined. The update step involves per-
forming k-means clustering. It costs O(ngye - niy - k* - d*) time
to update each PQ codebook, where n,,. denotes the average
number of residual subvectors assigned to each PQ codebook,
and ny, denotes the number of iterations in k-means clustering.
Let n,; denote the number of all training subvectors; it costs
O(r - Naye * Nigr - kK* - d*) = O(nyy - ni - k* - d*) time to update
all PQ codebooks to be computed. The assignment step requires
the distances between all training subvectors | ;; R;; and all cen-
troids of the PQ codebooks Py ---, P,. It costs O(nyy - r - k* - d*)
time. While ny, is fixed at a relatively small value in this paper
(ny = 5), r ranges from 1 to k&’ X m. Therefore, the computational
cost of our PQ codebook construction algorithm is O(ryy - 7-k*-d*)

in many cases.

3.2 Initialization in PQ Codebook Construction

In this section, we introduce two algorithms to initialize the as-
signment table 7 for the construction of the PQ codebooks. The
first is a very simple approach: assign random labels to table T
in the same manner as that used in the k-means algorithm. The
other is a k-means++-like initialization algorithm inspired by the
k-means++ algorithm [16], where initial centroids are chosen it-
eratively until the predefined number of centroids is selected; the
next centroid is chosen from all samples according to a probabil-
ity proportional to the squared distances to the nearest centroids
that have been already chosen. The k-means++ algorithm im-
proves both the speed and the accuracy of k-means by carefully
choosing initial seeds. In our case, samples and centroids corre-
spond to sets of residual subvectors and PQ codebooks, respec-
tively. The squared distance between a sample and a centroid
corresponds to the sum of squares of errors in the quantization of
a set of residual subvectors using a PQ codebook.
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Algorithm 2 Initialization in the PQ codebook construction
Require: R;; (1 <j<k,1<l<m),r
Ensure: T

1: randomly select 7?_,-7/ and create PQ codebook P; by clustering it
2: for j=1to k' do
3:  forl/=1tomdo

: fori=2tordo

select 7A2‘,-J with the probability e,/ Z’;;l Y.L, e and create PQ code-
book P; by clustering it

10:  for j=1tok’ do

4: ej; «— e(R;;, Py)
5: Tj <1

6: end for

7: end for

8

9:

11: for /= 1tomdo

12: if ej; > e(R;;, P;) then
13: ej; — e(R;, P)

14: Tjj i

15: end if

16: end for

17: end for

18: end for

The k-means++-like initialization algorithm is summarized in
Algorithm 2. In the algorithm, the PQ codebooks Py, - -
created in order, and the assignment table 7 is updated accord-

-, P, are

ingly. First, P; is created by clustering randomly selected ‘7?_,-,,
(line 1). All residual subvectors are assigned to P and the quanti-
zation error e;; in quantizing R ;; with the PQ codebook P is cal-
culated (line 4-5). Then, P,,---, P, are created recursively. For
each i, P; is created by clustering R 1> Where R 1 1s selected with
a probability proportional to the quantization error e ;. The quan-
tization error e; corresponds to the minimum quantization error
in quantizing R ;; achieved using one of the previously created PQ
codebooks Py, - - -
ble and the quantization error is updated if the new PQ codebook

, Pi_1 (line 9). For each R}, the assignment ta-

P; produces a lower quantization error than the current best PQ
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codebook (line 12-15). After the PQ codebooks Py, ---, P, are
created, the initial assignment table 7" is obtained.

3.3 Indexing Using Optimized PQ Codebooks

The indexing step is almost the same as in the conventional
method described in Section 2.3.1 except that, in our scheme, the
PQ codebook used in residual subvector quantization is identified
by the assignment table 7. The reference vector y is quantized
into ¢°(y) = c; using CQ codebook C:

A _ . _ . 2

J = arg min, lly — ¢jll”. (16)
The residual vector r; from the corresponding centroid is calcu-
lated thus:

l'j =y- C}. (17)

Residual vector r; is then divided into m subvectors LS TPREENS
The PQ codebook P; used for the [-th residual subvector is identi-
fied by the assignment table 7" as 1 = T;,. Then residual subvector

r;, is quantized into g;(r;,) = p;,,, Where

_ : e 112
a = arg min lIr;, = psll° (18)
Finally, the short code (ay, - - -, a,,) is stored in the }—th list of the

inverted index with the vector identifier.

3.4 Distance Calculation Using Optimized PQ Codebooks
In the search step, query vector X is first quantized using the
CQ codebook C:

A . LR
= arg min fIx— ¢, (19)

The residual vector r; of x is calculated and divided into m sub-

vectors Iy, -+, T

Then, the distance table F is created for subsequent distance cal-

5 10 the same manner as in the indexing step.

culations. Note that short codes in the j-th list in the inverted

index are created using the PQ codebooks PT;‘ R PT;,m’ instead
of P,--, Pp.
Fia =1t = pral (1<I<m1<a<k). (20)

There is no additional computational cost caused by the use of
a larger-than-m number r of PQ codebooks because the size of
table F is still the same as in the conventional method (m X k*).
Finally, the approximate distances between the query vector and
the reference vectors in the j-th list of the inverted index are cal-
culated. The approximate distance between the query vector x
and the reference vector y with code (ay, - --, a,,) is efficiently
calculated using the lookup table F:

dx.y) = | > Fia @
=1

This step also requires the same computational cost as that in the
conventional method.

4. Experimental Results

In this section, the datasets used for the evaluation are briefly
presented. Then, we evaluate the proposed method and the con-
ventional method in terms of quantization error and accuracy in
NNS in detail.

© 2012 Information Processing Society of Japan

Table 2 Summary of the SIFT and GIST data sets.

(HesAff-)SIFT  Grid-SIFT GIST
dimensionality 128 128 384

# of training vectors 4,000,000 4,000,000 4,000,000
# of reference vectors 1,000,000 - 1,000,000
# of query vectors 100,000 - 100,000

4.1 Datasets

In our experiments, datasets with local SIFT descriptors [1] and
global GIST descriptors [2], which are frequently used in the area
of image retrieval and recognition, are used to evaluate the accu-
racy of approximate NNS. For each of the two descriptors, three
types of vectors are required to evaluate the accuracy of approx-
imate NNS [13]: training vectors, reference vectors, and query
vectors. Training vectors are used to construct all of the CQ and
PQ codebooks.

In the case of the SIFT descriptor, ANN_SIFT1M descriptors *!
are used as reference vectors. Although the dataset also includes
100K training vectors and 10K query vectors, the number of
training vectors is insufficient for the proposed method, as shown
in Section 4.4. To deal with this problem, 4M training vectors
and 100K query vectors are extracted from Flickr60K descriptors,
which form a part of the INRIA Holidays dataset *>. We refer the
above-mentioned SIFT descriptor as HesAff-SIFT because it is
extracted Hessian-Affine region [17], while another type of SIFT
descriptor called Grid-SIFT is also introduced in Section 4.3. As
the Grid-SIFT descriptor is used only in Section 4.3, we simply
refer to the HesAft-SIFT descriptor as SIFT in the other sections.

For the GIST descriptor, 4M training vectors, 1M reference
vectors, and 100K query vectors are extracted from the 80 Mil-
lion Tiny Images dataset *3, as provided in Ref.[18]. Since this
includes not only 32X 32 color images but also precomputed 384-
dimensional GIST feature vectors, these precomputed vectors are
used in this paper. The SIFT and GIST data sets used in the ex-
periments are summarized in Table 2.

The following experiments were performed on a machine with
a Core i7 970 CPU and 24 GB of main memory. Parameters used
in the experiments follow the parameters shown to be appropriate
in Ref. [13]: k¥’ = 1,024, m = 8, k* = 256 for the SIFT vectors,
and k' = 1,024, m = 8,24, k* = 256 for the GIST vectors. Coarse
and product quantization were performed by exhaustive search
with SIMD instructions. Processing times were measured using
a program with a single thread.

4.2 The Impact of Initialization Methods

In this section, we evaluate the two initialization methods de-
scribed in Section 3.2 using the root mean square error (RMSE)
measure, the random assignment method (base) and the k-
means++-like initialization method (k-means++). A CQ code-
book with a size of 1,024 created from the 4M training SIFT vec-
tors is used for coarse quantization. This CQ codebook is also
used in the following experiments. The number » of PQ code-
books is fixed at 64, and 4M training vectors are used to create
PQ codebooks. Figure 5 shows RMSE and elapsed time at the

#1
2
#3

http://corpus-texmex.irisa.fr/
http://lear.inrialpes.fr/ jegou/data.php
http://horatio.cs.nyu.edu/mit/tiny/data/index.html

*
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Fig. 5 Comparison of initialization methods. RMSE at the end of each iter-
ation and elapsed time at that point are shown for up to 20 iterations.
The average and minimum RMSEs over 10 runs are plotted.

end of each iteration in the construction of PQ codebooks. We
can see that although the k-means++-like initialization method
requires additional processing time at the first iteration, it pro-
vides a better tradeoff between computational cost and RMSE.
PQ codebooks with smaller RMSE provide more accurate dis-
tance approximation, resulting in better accuracy of approximate
NNS. In the following experiments, all PQ codebooks are cre-
ated with the k-means++-like initialization, and the number of
iterations is set to 10.

4.3 Adjusting PQ Codebooks and Assignment Table

The proposed codebook construction algorithm adjusts both
PQ codebooks and an assignment table to incoming vectors by it-
erative optimization. In this section, we explore the optimization
capacity using two types of SIFT vectors with different character-
istics. One is a SIFT vector describing local invariant regions de-
tected by the Hessian-Affine detector (HesAft-SIFT). The other
one is a SIFT vector describing a regular grid [19] in an image
(Grid-SIFT). HesAft-SIFT represents feature vectors whose sub-
vectors follow different distributions depending on the positions
of subvectors, while Grid-SIFT represents feature vectors whose
subvectors follow the same distribution independent of the po-
sitions of subvectors. In typical SIFT implementations, a tar-
get patch to be described is divided into 4 X 4 blocks and an
8-dimensional subvector is extracted from each of the blocks, re-
sulting in a 128-dimensional SIFT vector. In the case of HesAff-
SIFT, subvectors of different blocks follow different distributions
due mainly to two reasons; (1) a patch to be described includes
a blob-like area: some blocks corresponds to the blob-like area
and the others correspond to non blob-like area, (2) the contri-
bution of each pixel in a patch to feature vectors is weighted by
a Gaussian function of the distance from the center of the patch
(pixels far from the center have less impact on feature vectors).
Although many implementations have also adopted a Gaussian
weighting function in describing Grid-SIFT feature vectors, in
order to compare two different types of feature vectors, we do
not use Gaussian weighting for Grid-SIFT: the Grid-SIFT vectors
used in the experiment are extracted from randomly downloaded
Flickr images using a modified version of the VLFeat library **.

Table 3 shows RMSE measures for the proposed method

“ http://www.vlfeat.org
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Table 3 RMSE for two types of SIFT vectors.

Prop r=1 Conv Prop r=8
HesAff-SIFT 0.2774 0.2715 0.2594
Grid-SIFT 0.2870 0.2852 0.2740

Subvector index
®» N o o s W o

2 12

)
o
5 © ) S =) =
o = > ®
Subvector index
R - SR N S R VU

7 8

3 4 3 4 5 6 7 8
Codebook index Codebook index

(a) HesAff-SIFT (b) Grid-SIFT

Fig. 6 Assignment matrix obtained by the proposed method where r = 8
for HesAff-SIFT and Grid-SIFT features. The (, i)-th entry of the
matrix represents the ratio of R, that satisfies 7;; = i for 1 < j <k’

where r = 1,8 and the conventional method. In the case of
HesAft-SIFT, using different PQ codebooks according to the po-
sitions of subvectors (Conv) reduces quantization error compared
with the case where all subvectors share a single PQ codebook
(Prop r = 1). However, the proposed method where r = 8
achieves further improvement over the conventional method by
allowing subvectors from different positions to share the same PQ
codebooks. In the case of Grid-SIFT, Conv achieves almost the
same quantization error as Prop r = 1, while Prop r = 8 reduces
quantization error. This is because the position of the subvec-
tors does not affect the distribution of the subvectors, while the
assigned centroid identifiers in coarse quantization do affect the
distribution of the subvectors. Note that Conv and Prop r = 8
require the same amount of memory for PQ codebooks. Figure 6
shows the ratio of residual vector sets at each position that are
assigned to each PQ codebook: the (/,7)-th entry of the matrix
represents the ratio of Rj; (1 < j < k) that satisfies T;; = i to
k’. In the case of the conventional method, the matrix is identical
to the identity matrix. It can be said that the proposed codebook
construction algorithm automatically adjusts PQ codebooks and
the assignment table to incoming vectors with different statistical
properties.

4.4 The Number of PQ Codebooks and Quantization Error

In this section, we evaluate the proposed method in terms of
the tradeoff between the number r of PQ codebooks and RMSE.
Figure 7 (a) shows RMSE in the construction of PQ codebooks
after convergence. Figure 7 (b) shows RMSE calculated using
the reference vectors, which are extracted from a different dataset
from the training dataset. This shows that quantization error is
reduced in proportion to the logarithm of r. It is also shown that
if a sufficient number of training vectors is available, the resulting
PQ codebooks are well generalized against non-training vectors.
When the number of training vectors is insufficient, increasing
the number of PQ codebooks does not contribute to a reduction
in the quantization error for non-training vectors.

We also evaluate the relative root mean squared error
(RRMSE) for each r to investigate the impact of the reduction
of RMSE. We use a random 100K pairs (x,y) of the reference
vectors such that both vectors are assigned to the same centroid
in coarse quantization. RRMSE is calculated as
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Fig.7 RMSE for the training and reference vectors with a different number
of training vectors.

0.16
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RRMSE in distance approximation

0.23 0.25 0f27 0.29
RMSE in product quantization
Fig. 8 Relationship between RMSE in product quantization and RRMSE
in distance approximation. PQ codebooks created with 4M training
vectors are used. RRMSE is calculated for 100K pairs of the refer-
ence vectors, which are chosen so that the two reference vectors are
assigned to the same centroid in coarse quantization.

RRMSE = +|E (22)

(d(x, y) - d(x.y) )2
d(x,y) '

Note that d(x, y) is defined by the distance between x and g(y),
which is the quantized version of y. Figure 8 shows the relation-
ship between the RMSE in product quantization and the RRMSE
in distance approximation. Because RRMSE is linearly reduced
as RMSE is reduced, it can be said that the reduction of RMSE
in product quantization directly contributes to the reduction of
actual error in distance appoximation.

4.5 Accuracy of Nearest Neighbor Search

In this section, the approximate NNS accuracy of the proposed
method and the conventional method is evaluated using the SIFT
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Fig. 9 Recall@R for SIFT features as a function of the number r of PQ
codebooks obtained by the proposed method and the conventional
method.
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and GIST features in order to show the effectiveness of the pro-
posed method against different types of vectors. The search qual-
ity is measured with Recall @R in the same way as Ref. [13]. That
indicates the proportion of query vectors for which the correct
nearest neighbor is found in the top-R search results. For each
query vector, its nearest neighbor vector among the reference vec-
tors obtained with exact distance calculations is used as a ground
truth.

Multiple assignment [13], [20] is also adopted here. Denoting
the number of assignments by w, w lists corresponding to the w
nearest neighbor centroids in the coarse quantization are searched
in an inverted index, instead of searching a single list correspond-
ing to the nearest neighbor centroid. In this case, computational
cost in the search procedure becomes w times larger, providing
more accurate search results.

Figure 9 shows Recall@R for 1M SIFT vectors obtained by
using a different number of PQ codebooks. It shows that the pro-
posed method improves Recall @R as the logarithm of the num-
ber r of PQ codebooks irrespective of R. Comparing the pro-
posed method where r = 64 and the conventional method, in the
case where w = 16, Recall@10 is improved from 0.684 to 0.768,
which corresponds to a 12% improvement over the conventional
method.

The memory requirement is increased from 33 KB to 262 KB,
which corresponds to 2% of the size of the database in this case *.
Because the memory requirement for PQ codebooks is indepen-

*5 For each reference feature vector, it requires 4 byte and 8 byte to store an

identifier and short code respectively. Therefore, the size of the database
(inverted index) is roughly (4 + 8) x 1,000,000 byte (= 12 MB).
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Table 4 Processing times [sec] for coarse quantization (CQ), lookup table
construction (LUT), and distance calculation (Dist).

CQ LUT Dist Total
w=1 3887  0.773 0.757 5417

w=16 | 3.887 11436 12.160 27.483
0.29
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Fig. 10 Recall@R for GIST features as a function of the number r of PQ
codebooks obtained by the proposed method and the conventional
method. The number of subvectors m is set to 8.

dent of the size of the database, the increase in the amount of
memory required becomes negligible as the size of a dataset in-
creases.

Table 4 shows processing times [sec] for coarse quantization
(CQ), lookup table construction (LUT), and distance calculation
(Dist). They are measured using 100K queries against 1M SIFT
vectors withw = 1 and w = 16. The most time consuming process
is coarse quantization in the case where w = 1, while it is lookup
table construction and distance calculation where w = 16 because
a computational cost proportional to w is required in lookup table
construction and distance calculation.

Figure 10 shows Recall@R for 1M GIST vectors obtained us-
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Fig. 11 Recall@R for GIST features as a function of the number r of PQ
codebooks obtained by the proposed method and the conventional
method. The number of subvectors m is set to 24.

ing a different number of PQ codebooks, where the number of
subvectors is set to 8. We can see a similar tendency to the case
where SIFT vectors are used. Comparing the proposed method
where r = 64 and the conventional method, in the case where
w = 64, Recall@10 is improved from 0.399 to 0.454, which cor-
responds to a 13% improvement over the conventional method.
Compared with the results for the SIFT dataset, the accuracy is
relatively low. This is due to the high-dimensionality of the GIST
descriptor; while the dimension of the GIST subvector is three
times larger than the SIFT subvector, they are coded with the
same length (bits) in the experiments.

Figure 11 shows Recall@R for 1M GIST vectors obtained us-
ing a different number of PQ codebooks, where the number of
subvectors is increased from 8 to 24. Accordingly, the size of
short codes for the GIST vectors is increased from 8bytes to
24 bytes. This is the same condition as the 8-byte short codes
for the SIFT vectors in terms of bits per dimension. From the
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Table S The average number of searched candidates and Recall @co for the
SIFT and GIST vectors with different w.

SIFT GIST
w=1 w=16 w=1 w=3_ w =64
# of candidates 1,041 17,245 1,291 10,486 78,724
Recall@co 0.4585 0.9602 | 0.2968 0.7218  0.9596

figure, it is found that the proposed method also improves the
accuracy compared with the conventional method. Comparing
the proposed method with m = 8, r = 8 (Fig.10(c)) and the
proposed method with m = 24, r = 24 (Fig. 11 (c)), in the case
where w = 64, Recall@10 is significantly improved from 0.438
to 0.648. Therefore, it can be said that the proposed method,
as well as the PQ-based approximate NNS, works well for high-
dimensional vectors. An important point to be noted is that the
accuracy is bounded by Recall @co irrespective of the number of
subvectors. Table 5 summarizes the average number of searched
candidates and Recall@co for the SIFT and GIST vectors with
different w. For the GIST vectors, w should be larger than that of
the SIFT vectors to obtain the same accuracy, due to the curse of
dimensionality.

5. Conclusion

We have proposed an optimized multiple codebook construc-
tion algorithm for approximate nearest neighbor search based on
product quantization. The algorithm iteratively optimizes both
codebooks for product quantization and an assignment table that
indicates the optimal codebook in product quantization. Exper-
imental results showed that the proposed method considerably
improves the accuracy of approximate nearest neighbor search
at the cost of a small increase of the memory required to store the
codebooks.
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