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Abstract: The importance of person identification techniques is increasing for visual surveillance applications. In
social living scenarios, people often act in groups composed of friends, family, and co-workers, and this is a useful
cue for person identification. This paper describes a method for person identification in video sequences based on this
group cue. In the proposed approach, the relationships between the people in an input sequence are modeled using
a graphical model. The identity of each person is then propagated to their neighbors in the form of message passing
in a graph via belief propagation, depending on each person’s group affiliation information and their characteristics,
such as spatial distance and velocity vector difference, so that the members of the same group with similar character-
istics enhance each other’s identities as group members. The proposed method is evaluated through gait-based person
identification experiments using both simulated and real input sequences. Experimental results show that the identi-
fication performance is considerably improved when compared with that of the straightforward method based on the
gait feature alone.
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1. Introduction

Person identification techniques are becoming increasingly im-
portant for visual surveillance and monitoring. Methods of per-
son identification based on a variety of biometric-based cues such
as the person’s face [45] and gait [17], [25] have been developed,
mostly from the viewpoints of discrimination capability and sta-
bility. In all of these techniques, however, the identification per-
formance often decreases due to changes in the condition of in-
dividuals and their surroundings, and misidentification may con-
sequently occur, particularly in real environments. Also, as the
number of individuals increases, the misidentification rate gener-
ally increases due to the growth in ambiguity.

An example of misidentification in a straightforward gait-
based identification framework is shown in Fig. 1. Because the
gait feature of probe #1 has changed slightly from that in gallery
#a (the same subject), particularly in the arm swing, the feature
similarities between probe #1 and gallery #a are smaller than
those between the probe and other galleries (e.g., #x and #y).

However, it is useful to take into account the characteristics
of human activities to provide context for person identification.
In social living situations, people often act in groups, as shown
in Fig. 2, which are composed using social relationships in most
cases, such as family, friends, and co-workers. It is assumed,
therefore, that a person is likely to be observed close to other per-
sons of the same group in a video sequence. This observation
serves as a contextual cue to improve the identification perfor-
mance for individuals, i.e., the identity of each person can be in-
ferred not only from their biometric cues alone, but also from the
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identities of other people in their neighborhood and their group
affiliations.

This kind of group context can be used in many places, such
as amusement or theme parks, airports, factories, and schools,
where many tasks based on person identification techniques are
performed. Examples of these tasks include the detection of a lost
child in an amusement park, the detection of intruders who enter
the amusement park, airport, or factory without passing regular
entrance procedures, and the safety confirmation (or attendance
checking) of children at the entrance to the school (in particular,
there is a rule for going to school in a group composed of com-
munity children for almost all Japanese elementary schools). The
group context is also useful for person re-identification across
multiple non-overlapping network cameras.

Recently, some works have integrated such kind of group con-
text with face-based person identification in photo collection to
improve the identification performance [8], [20], [24]. In these
methods, the person-to-person relations are modeled in terms of
co-occurrence among persons in photos as group prior. Differ-
ently from the photo collection, however, a group is often ob-
served with non-group members at a time in the video sequences
of surveillance camera and the spatial relations among them are
dynamically changed with time. Therefore, the identity of in-
dividual should be inferred not only from the viewpoint of co-
occurrence among persons, but also from that of behavioral dif-
ferences among persons through the sequence.

In this paper, we propose a group context-aware framework
for person identification in video sequences that unifies the group
context with the individual biometric cues. In terms of the
group (inter-person) context for person identification, the pro-
posed method take the behavioral differences such as spatial dis-
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tance and the differences of walking speed and direction among
persons through the sequence into account, and this is a primal
contribution of this work.

Our key observation is as follows. We assume the group walk-
ing situation in a video sequence which includes two different
groups and an unregistered person as shown in Fig. 2 and con-
sider the identity of the probe #1 within the group context. We
assume that the gallery subjects #a, #b, #c, #d, and #e belong to
the group A and the #v, #w, and #x belong to the other group X,
as shown in Fig. 3. Also, we assume that the identity of probe #6
is not matched with any of gallery subjects and probe #2, probe
#3, probe #4, and probe #5 are confidently inferred to be #b, #c,
#v, and #w, respectively, while the identity of probe #1 is mis-
inferred to be #x (a member of group X) as shown in Fig. 1. If

Fig. 1 Biometric cues and belief.

Fig. 2 An example of group walking in video sequence.

Fig. 3 An example of group affiliation.

only co-occurrence is used as group context, the identity of probe
#1 can be inferred from not only the identities of probes #2 and
#3 as #a, but also those of probes #4 and #5 as #x based on their
group affiliation information. Consequently, the identity of probe
#1 possibly remains to be mis-inferred as #x in this case. In ad-
dition, the identity of probe #6 (unregistered person) which ap-
pears in the scene from the middle of the sequence is possibly
mis-inferred from the identities of other subjects.

On the other hand, focusing on the behavioral relations among
probe subjects through a sequence, we see that probe #6 obvi-
ously walks at a distant from all the other subjects, and thus probe
#6 can be regarded as an independent subject from all the other
subjects. At the same time, we also see that there exists an appar-
ent difference of walking speed between the group of #1, #2 and
#3 and the group of #4 and #5. Accordingly, the weights of the
inference cues from the probes #2 and #3 come to be able to be
distinguished from those of the inference cues from the probes #4
and #5. The identity of probe #1 as #a is then definitely enhanced
and the mis-identification of #1 can be recovered as a result.

We realize this idea in the form of a message passing in a graph,
where each node corresponds to each probe subject and each edge
corresponds to the relationship between each pair of probe sub-
jects. In the iteration of the message passing process, the identity
confidence for each probe subject is propagated to the identities
of the surrounding probe subjects based on their biometric cues
and group information, so that the same group members with sim-
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ilar characteristics (spatial proximity and similar velocity vector)
enhance each other’s identities.

The remainder of this paper is organized as follows. Section 2
introduces related work. Section 3 describes our problem formu-
lation, and the detailed implementation is described in Section 4.
Section 5 presents experimental testing of the effectiveness of the
proposed method and our discussions are presented in Section 6.
Finally, conclusions are drawn and future work is proposed in
Section 7.

2. Related Work

In recent years, many researchers have paid considerable atten-
tion to the use of context in traditional computer vision problems,
such as object detection and categorization, action recognition,
and person identification, to improve performance. In this sec-
tion, we review such context-based approaches briefly.
Object detection/recognition: In the task of object detection,
context is mainly used to limit the area in which objects are likely
to appear, to reduce false positives. Torralba et al. [34] exploited
a global image feature called gist, which was a low level repre-
sentation of an image. Hoiem et al. [16] used the 3D geomet-
rical information of the scene, such as the surfaces, the camera
viewpoint, and object positions and sizes as context. While these
approaches focused on global scene information, some works in-
stead focused on local information [29], [46]. In Ref. [29], the
spatial relations between an object of interest and its surround-
ings are modeled as a visual context feature composed of geo-
metrical and textural features, and are used to extract prior in-
stances of the object’s presence from a scene. In this method,
object co-occurrence and bottom-up saliency were also used for
context. Heitz and Koller [15] modeled the spatial relationships
between an object (“thing”) and the surrounding regions (“stuff”),
which were the results of unsupervised image clustering, as the
TAS model (“thing” and “stuff” model). The effect of the use of
context in object detection is empirically evaluated in Ref. [7].

In recent works in object recognition [10], [27], [30], inter-
object relationships, such as co-occurrence, relative location, and
scale, are used as context to resolve object appearance ambi-
guities. Besides those given above, a number of context-based
techniques have been discussed and summarized in Refs. [1], [9],
[22].
Action/Interaction recognition: Many of these works have in-
dicated that modeling of human-object relationships is useful for
the understanding of human actions/interactions [12], [13], [37],
[40], [41]. Wu et al. [37] proposed an object-use based action
recognition framework, in which the relationships between an ac-
tion and the object-use events data during that action were used
as context, and the relationships were learned automatically using
RFID sensors and a common-sense knowledge database. Yao and
Fei-Fei [40], [41] proposed two types of approach; one is based
on a model of the spatial relationships between human poses (po-
sitions of body parts) and objects [40], while the other is based
on a structured appearance feature called “Grouplet” [41], for
recognition of human-object interactions. Marszalek et al. [23]
used action-scene relationships as context, which were derived
automatically from training videos using video scripts, and in

Ref. [18], both scene and object features are integrated with the
action features. In Ref. [19], human-human interactions are the
focus, and it was shown that spatio-temporal observations of the
surrounding people which represent the actions of the surround-
ings helped with action recognition. In a similar manner, Choi
et al. [35] used the spatio-temporal distribution of multiple peo-
ple, which included their relative motion and locations, to classify
collective activities, such as “queueing” and “talking.”
Person identification: The automatic annotation, organization,
and retrieval of still images, in particular in personal digital photo
collections, have been active research topics in recent years. In
these tasks, face-based person identification is crucially important
and many context-aware methods have been developed. As men-
tioned in Ref. [32], there are three types of context information:
appearance-based, metadata-based, and logic-based context in-
formation. In Refs. [32], [43], appearance-based context, such as
body parts and clothes, are combined with facial features. Stone
et al. [33] used metadata-based context derived from the social
network Facebook. Gallagher and Chen [8] used co-occurrence
between each person as a logic-based context, which indicated
how often a pair of faces appeared together in images. In some
works [20], [24], such co-occurrence of persons is also integrated
together with other types of contexts such as events (time stamp)
and locations which are rather peculiar to the field of photo col-
lection.

In a scenario of person re-identification across multiple non-
overlapping cameras, Zheng et al. [36] and Cai et al. [4] proposed
a solution to the problem of associating groups of people between
the different camera views and demonstrated that group informa-
tion helped to resolve the ambiguities in individual appearances.
For person identification, they simply combined group cues with
individual cues in the form of a weighted sum of each score. They
considered a group as a small number of people walking in close
proximity in spatial domain, and quantified the group cue by mea-
surement of the spatial appearance features. In these methods,
although their group representations are designed to be invariant
to positional changes of the group members between the different
camera views, the fluctuations in the numbers of observed mem-
bers, which are caused by absentees, isolation of group mem-
bers, or the proximities of non-group members, lead to signifi-
cant changes in the spatial appearance of the group. Accordingly,
the effectiveness of the group cue is degraded. For instance, if a
certain group is composed of 5 members in the gallery image and
only 3 members of the group are observed in a probe image, the
observed group tends to be matched with other groups composed
of 3 members by mistake. Furthermore, these methods do not
consider the behavioral relations among persons such as velocity
vector difference through the walking.

Our work is inspired by the related work described above
and we propose a unified framework for the person identifica-
tion problem in video sequences, in which group context is in-
tegrated with individual biometric observations by using CRF
model. Though, the CRF-based framework is similar to the exist-
ing context-assisted person identification schemes formulated by
MRF/CRF model such as Ref. [8], the major difference of this
work is that we use the behavioral relations as group context
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including spatial distance and velocity vector difference among
persons through the video sequences, while existing frameworks
used co-occurrences among persons as group context. This also
differentiate the proposed method from other group context-based
person re-identification methods such as Refs. [4], [36]. Though,
similar kinds of behavioral relations are utilized for the problem
of trajectory prediction of pedestrians in some works [28], [39]
and these are also related to our work, we apply such kind of
context to person identification problem, and this is a primal con-
tribution of this paper.

3. Group Context-aware Person Identification
in Video Sequences

We regard the person identification problem as a many-to-
many matching problem for a given image sequence. The task
we consider is assignment of a registered person’s label to each
person that is observed in an input sequence. In this work, group

is not only explicitly-defined as a unit of people that is composed
on the basis of social relations, such as family, friends, and co-
workers, but is also implicitly-defined as the result of manual or
automatic clustering. Then, the following prerequisites are as-
sumed.
• Each registered person belongs to one of the predefined

groups.
• Group affiliation and biometric cues of each registered per-

son are given as gallery data in advance.
• Segmentation and tracking of each subject in an input se-

quence are obtained in advance.
• Each registered person appears at most once and is likely to

appear with group members, in detail, in close vicinity and
with similar velocity in an input sequence.

Also, the following conditions are considered:
• Unregistered persons also appear in an input sequence ran-

domly.
• Absence and isolation of a registered person in an input se-

quence are allowed.
Note that for a registered person who does not belong to any
group, an expedient group whose only member is that person is
defined, while the “unregistered ” label is only assigned to actual
unregistered persons.

3.1 Problem Formulation
In the labeling task, we must take account of the relationship

between the observed characteristics of each probe, such as spa-
tial position and velocity, and the group affiliation of each label in

Fig. 4 Our graphical representation: An example of the input sequence (left) and the corresponding graph (right).

addition to the biometric cue for each probe. The preferred label
assignment, therefore, is one where the same group members are
likely to appear in a group, and the biometric cues of each probe
are given substantial consideration.

We use a pair-wise CRF (conditional random field) model in
a manner similar to Refs. [5], [6] for our labeling problem. Let
each node in a graph represent a person who appears in an input
sequence, and the label for the i-th node xi represents the index
of the registered person or “unregistered ” label. The label set is
defined as L= {l1, l2, · · · , ln, lun}, where lk (k = 1, 2, · · · , n) is the
label of the k-th registered person and lun is the label for an un-
registered person. A mapping from an individual label to a group
is then defined as g(lk) ∈G, where G = {G1,G2, · · · ,GnG ,Gun} is
a group identifier set, Gk (k = 1, 2, · · · , nG) is a group identifier
for each registered person, and Gun is a identifier for an expedient
group for any unregistered person.

The graphical representation is shown in Fig. 4. In this exam-
ple, there are seven probe subjects in an input sequence, and each
node is connected to neighbor nodes which correspond to the per-
sons within a set spatial distance dmax, which is set to 3 [m] in this
work, in the input sequence. Also, as described later in detail, all
of the nodes are connected by a factor node, which controls the
exclusion of each label.

We then let x be the label assignment for all the nodes and y
be the set of biometric cues for all the nodes, and then the condi-
tional probability of an assignment x is formulated as,

P(x|y) ∝
{∏

i

φi(xi)
∏
j∈N(i)

ψi, j(xi, x j)

}
E(x), (1)

where φi(xi) is the local evidence term for node i, ψi, j(xi, x j) is the
compatibility term between node i and node j, and N(i) represents
a neighbor node set around the node i. E(x) is a label exclusion
term, which becomes zero if any registered person label is used
more than once and is otherwise one (the label for unregistered
persons lun can be used more than once).

The local evidence φi is defined based on the observed biomet-
ric cues for each person. The compatibility ψi, j corresponds to the
group context. The magnitude of the compatibility, therefore, de-
pends on a pair of group identifiers for the label that is assigned
to the i-th person and the j-th person and their spatial distance
and velocity vector difference, which are defined in Section 4.2
in detail.

3.2 Approximate Solution via Loopy Belief Propagation
LBP (Loopy belief propagation) [42] is used as an approximate
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solver to find the assignment x that maximizes the probability
P(x|y). Ignoring the exclusion term E(x) at this stage, the mes-
sage mi j(x j) from node i to node j for each label is defined as,

mi j(x j) ∝
∑

xi

ψi, j(xi, x j)φi(xi)
∏

k∈N(i)\ j

mki(xi). (2)

The belief bi(xi) at the node i for each label is found as a marginal
probability by gathering messages from its neighbor nodes and
from the local evidence,

bi(xi) = kφi(xi)
∏
j∈N(i)

mji(xi), (3)

where k is a normalization constant (summation of belief is nor-
malized to 1). The label assignment of the node i is,

x∗i = arg max
l

bi(xi = l). (4)

Note that each message is initialized to 1, normalized local evi-
dence is given as the initial belief value, and that the upper limit
of iteration of LBP was set to 10 in this work.

3.3 Handling the Exclusion Term
The label exclusion term E(x) is defined such that it forbids

the use of a registered person’s label more than once, i.e., to sup-
press the use of the label lk if another node already has high belief
about lk. Since the label exclusion term is a global function, we
can represent it using a factor node that is connected to all of the
nodes. In terms of the message passing scheme, the message from
a factor node f to a node i is,

mf i(xi = l) ≈
∏
t∈S \i

(
1 − mt f (xt = l)

)
, (5)

where S is the set of all nodes and mt f is defined as,

mt f (xt = l) =
(
bt(xt = l)

)α
, (6)

where α is the message attenuation parameter, and is set to 2 in
this work.

Actually, label exclusion via the above message does not com-
pletely control the one-time use of the label of a registered per-
son, because the belief of each node for a certain label does not
always become 1.0 after message passing. To complete the exclu-
sion control, we therefore execute the Greedy Algorithm in terms
of the belief score for finalization of the label assignment after
the convergence of LBP.

4. Implementation

4.1 Local Evidence
4.1.1 Label of Registered Person

An observed biometric feature of each person, such as their
face or gait, is a crucial clue in itself for person identification, as
numerous previous works have demonstrated. We therefore use
such a feature as the local evidence for the label of a registered
person and it define as,

φi(xi= lk) ∝ p(xi= lk |yi), (7)

where yi is the observed feature vector of the i-th person and lk

is the label of the k-th registered person. Actually, we regard the
prior p(xi= lk) as constant for all k, then Eq. (7) can be described
as,

φi(xi= lk) ∝ p(yi|xi= lk). (8)

The probabilistic observation models of the feature vector for
each label of each registered person are constructed from gallery
feature vectors such as the Gaussian distribution model in ad-
vance.

However, since the gallery feature vector of each registered
person cannot be captured a number of times, but at most once
or twice in most cases, such as real surveillance scenarios, it is
difficult to construct the probabilistic model properly in practice.
For instance, in the case where only one gallery feature vector is
given, it makes no sense to construct a Gaussian distribution as
it is. In such a case, therefore, we regard the variation of each
feature vector element to be common for all elements and for all
persons, and we set the probability model to be,

p (yi|xi= lk) ∝ exp
(
−Di,k

2

2

)
(9)

Di,k =
|yi − ȳk |
σ

, (10)

where ȳk is the average vector of the gallery of the k-th registered
person and σ is standard deviation of the feature vector element,
which is given as a hyper-parameter.
4.1.2 Label of Unregistered Person

For the label of an unregistered person, the model cannot be
constructed, because the feature vector which represents the “un-

registered person” can be never captured as gallery data. We thus
give a constant value Cun as the local evidence for the label lun

instead,

φi(xi= lun) = Cun. (11)

4.2 Compatibility
The compatibility score for a pair of labels is required to be

high only if the group affiliations of the two labels are the same
and the corresponding persons appear in close proximity and with
similar velocities in an input sequence.

We quantify this using two terms: the distance term Ed and the
velocity term Ev. One is based on the spatial distance between the
two persons and the other is based on the velocity vector differ-
ence between them in the world coordinates. Compatibility for a
pair of labels, ls and lt, is then defined as,

ψi, j(xi= ls, x j= lt)

∝
⎧⎪⎪⎪⎨⎪⎪⎪⎩

C
(
ls= lun or lt= lun

)
(
1−δls ,lt

) (
Ed

(
di, j

)
Ev

(
vi, j

)
δg(ls),g(lt)+C

) (
otherwise

) ,

(12)

where δ is the Kronecker delta, di, j and vi, j are the spatial dis-
tance and the velocity vector difference between the i-th person
and the j-th person in the world coordinates, and C is a constant
value. The distance term Ed(di, j) and the velocity term Ev(vi, j) are
designed as,
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Fig. 5 Spatial distance and velocity vector difference between a pair of probe subjects (#i and #j) at the
k-th frame.

Ed

(
di, j

)
= −
(
di, j−dmax

)
dmax−dmin

(13)

Ev

(
vi, j

)
= −
(
vi, j−vmax

)
vmax−vmin

, (14)

where dmax and dmin are the upper and lower limits of the spatial
distance (dmax is equal to the one described in Section 3.1), and
vmax and vmin are these limits for the velocity difference. In all of
our experiments, the parameters are set as C = 0.1, dmax = 3 [m],
dmin=0.5 [m], vmax=1 [km/h], and vmin=0 [km/h].

To use the spatial distance and the velocity information in the
world coordinates, we need to estimate them from an input video
sequence. One of the most reasonable ways to do this is a method
based on ground constraints. If the homography correspondences
between the ground plane in the world coordinates and the image
plane are calibrated in advance, the foot’s position trajectory on
the ground plane can be estimated from the bottom coordinate of
the corresponding person in the images. Subsequently, we can
derive the spatial distance di, j and the velocity vector difference
vi, j between the i-th and the j-th person as follows,

di, j = max
ts≤k≤te

∣∣∣pi,k − p j,k

∣∣∣ (15)

vi, j = max
ts≤k≤te

∣∣∣vi,k − v j,k

∣∣∣ , (16)

where pi,k is the smoothed 2D position in world coordinates of
the i-th person at the k-th frame, vi,k is the smoothed 2D velocity
vector of the i-th person at the k-th frame (both are illustrated in
Fig. 5), and ts and te are the first and last frame identifiers for the
frames where the i-th person and the j-th person appear together
in an input video. Note that, in this case, if a pair of persons does
not appear together in any frame, they are not considered to be in
the same neighborhood as each other.

4.3 Seed Node Selection
While the ambiguity of a biometric-based identity is solved by

messages, it is desirable that a node with confident local evidence
for a certain label is then unchanged by messages, to avoid unrea-
sonable belief variation.

For this purpose, we fix the labels of the nodes to such persons
with confident local evidence at the first stage. We denote this
label-fixed node and the fixed label as the seed node and seed la-

bel, respectively. The seed node is decided using the thresholding
mahalanobis distance (Eq. (10)) with threshold Ts. More specifi-
cally, when only the k-th node has a lower mahalanobis distance
than Ts about a certain label l, the k-th node and the label l are re-
garded as the seed node and the seed label. We then set the belief
of the other nodes about the label l to 0 and set the messages to

the k-th node from the other nodes and the belief of the k-th node
as

mik(xk = l j) = bk(xk = l j) = δl j ,l, (17)

where δ is the Kronecker delta. Also, we set the message from
the seed node (the k-th node) to the other node as,

mki(xi = l j) ∝ ψk,i(xk = l, xi = l j). (18)

Note that the local evidence for the seed label l is regarded as
1
(
φk(xk = lk) = δl,lk

)
in this equation. In addition, in the mes-

sage passing process, if the belief of a node about a certain label
reaches a predefined criterion, which is set to 0.9 in this work, we
set the node to be the seed node at that stage.

4.4 Relaxation of a Biased Message Caused by an Imbalance
in the Number of Group Members

In the presence of an imbalance in the number of group mem-
bers, the message magnitude is biased by this imbalance. We
illustrate this with examples of the gallery set and the situation in
an input video as shown in Fig. 6.

Consider the messages from probe #2 (the true label is l2) to
probe #1 (the true label is l1) at the first iteration. As long as the
local evidence of probe #2 about the label l2 is higher than the
local evidence about the other labels, the message to enhance the
belief for the label l1 at probe #1 is preferred, because probe #1
and probe #2 belong to the same group G1 in this situation. For
simplicity, suppose that the compatibility between probes #1 and
#2 is approximated to ψ2,1(x2 = ls, x1 = lt) =

(
1 − δls ,lt

)
δg(ls),g(lt),

where δ is the Kronecker delta. The message about the label lk is
then described as,

m21(x1= lk) =
∑

l∈Lg(lk )\lk
φ2 (x2= l), (19)

where LG is a label set of group G members, defined as LG =

{l|g(l)=G}. Consequently, the magnitude of the message depends
not only on the local evidence φ2 (x2= l), but also on the number
of group members |Lg(lk)|. This may cause an undesired reversal
of the message magnitude when the local evidence of probe #2 is
given as shown in Fig. 7 (a). In this case, because the number of
group G2 members is higher than that of the group G1 members,
the summation of the local evidence for the labels of group G2

becomes higher than that for the labels of group G1, despite the
fact that the local evidence for the label l2 is the highest, and that
the evidence about each label of group G2 is low. As a result,
the message about the label l3 becomes higher than that about the
label l1, as illustrated in Fig. 7 (a).
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(a) Reversal effect in the standard form (b) Exclusion of within-group labels via the max
selection

Fig. 7 An example of the reversal effect of the message magnitude caused by the bias for the number of
group members in the standard message form, and the concept of exclusion of within-group labels
via the max selection as a solution to the problem.

(a) Gallery set (b) Input situation

Fig. 6 An example of the gallery and the input situation.

To avoid such undesirable message effects, we propose an al-
ternative message form based on the exclusion of within-group
labels via a max selection scheme in message formula (Eq. (2))
as,

mmax
i j

(
x j= lk

)
∝
∑
g∈G

max
l∈Lg

ψi, j

(
xi= l, x j= lk

)
φi (xi= l)

∏
k∈N(i)\ j

mki (xi= l) (20)

In this form, the number of group members no longer influences
the message magnitude, because we exclude all of the labels of
the group Gk other than the within-group maximum in marginal-
ization of the message, as illustrated in Fig. 7 (b). The intuitive
interpretation of this form is that we model a person-to-group re-
lationship in this message form, rather than a person-to-person
relationship, i.e., from the standpoint of probe #1, the magnitude
of the message from probe #2 is based not on “who is the probe
#2,” but “to what group does the probe #2 belong.”

5. Experiment

In this experiment, the effectiveness of the proposed method
was examined first using real video sequences, and the perfor-
mance for a massive data set was then explored using simulation
data sets. We chose gait as the biometric cue and used GEI [14]
(22 pixels × 32 pixels) as the gait feature, because it achieved
the best performance in Ref. [26]. The group affiliation of each
gallery is manually assigned in these experiments. The perfor-
mance of the proposed method was compared with straightfor-
ward local evidence-based labeling via the Greedy Algorithm. We
evaluated the labeling accuracy Rl as Rl =

Nt

Np
, where Np and Nt

were the probe number and the correctly labeled probe number,
respectively.

5.1 Experiment with Real Image Data
We conducted the experiments for two types of real image se-

quences, one is captured at our campus for preliminary perfor-
mance evaluation, and the other is obtained from the surveillance
cameras installed in a Japanese elementary school.
5.1.1 Preprocessing

We obtained the blob information of each subject in image se-

quences as follows. First, the foreground regions are extracted
via graph-cut-based segmentation [2] in conjunction with back-
ground subtraction. Second, each blob is extracted from the fore-
ground regions based on connectivity and the blob statistics, such
as area, gravity position, and bounding box are then obtained for
each blob. In this process, blobs of different persons may be
merged in case where a person is closely-attached to the other
person. To avoid such merge, we set the upper limits for the
height and width of bounding box respectively, and we split the
blob based on the limits if necessary. For example, if the blob has
larger height than its upper limit, we count the number of fore-
ground pixels for each height and split the blob at the height with
the minimum pixel count within a certain height range.

As for tracking, each bounding box in the current frame is cor-
responded to the nearest bounding box in the next frame, and the
foot’s position trajectory of each individual is obtained as a re-
sult *1. Finally, the gait feature of each individual is extracted
from the corresponding blob sequence. The bounding box and
trajectory contain errors in some degree, and these also decrease
the quality of gait feature.

Note that we omitted the occlusion situation among persons in
this experiment, because we focus on the evaluation of the effec-
tiveness of the proposed inference algorithm.
5.1.2 Preliminary Evaluation
Gallery and probe data set: We used an input sequence
(640 pixels × 480 pixels/15 fps/bmp format) which includes 18
probe subjects, as shown in Fig. 8. In this sequence, the walk-
ing directions of all subjects are almost the same. Then, we ar-
ranged the gallery set, which includes 20 subjects, as shown in
Fig. 9. In this setting, the clothes of gallery members #c, #h, and
#k are changed at the time of the input sequence to make the per-
son identification problem setting more difficult, which is inten-
tional so that biometric cues alone cannot perfectly identify the
subjects. Three absentees (#x, #y, and #z) and one unregistered
person (probe #18) are arranged to demonstrate that the proposed
method can handle such situations.

In this experiment, the label for each gallery is denoted by a
corresponding gallery ID for convenience as L= {#a, #b, · · ·, #un},
where #un is the label for an unregistered person.
Parameters: The standard deviation of the feature vector ele-
ment was set at σ = 394.5, which is determined from the other

*1 We calculated the foot’s position on the ground plane from the bottom
center coordinate of the bounding box.
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Fig. 8 Snapshots of the input sequence for preliminary experiment.

Fig. 9 Gallery set for the input shown in Fig. 8.

Table 1 Initial label correspondence for an input shown in Fig. 8. The numerical value in the table repre-
sents the belief.

(a) Received messages (b) Local evidence and belief

Fig. 11 Received messages and belief of probe #3 at the first message passing.

Fig. 10 Node connection between the probe subjects in Fig. 8.

preliminary experiment. Local evidence for the label of the un-
registered person was set at Cun =

1
Nl

, where Nl is the number of
gallery labels.
Results: Table 1 shows the initial label correspondence via
straightforward labeling. In this table, seven probe subjects (#3,
#6, #7, #12, #13, #15, and #18) are initially mislabeled because of
the within-class variation of the gait features caused by walking
manner variations, clothes changes, and silhouette noise.

We illustrate the message effect on improving the belief from
the initial state by taking probe #3 as an example. As shown in
Fig. 10, probe #3 is connected to probes #1 and #2, which truly
belong to group A (the same group as probe #3), and probe #4,
which truly belongs to group E. Initially, probe #3 is mislabeled

Table 2 Compatibility for a pair of labels in the same group between probe
subjects in Fig. 8.

Probe pair ψi j(xi= lk , x j= ll)
(#i, #j) lk� ll and g(lk)=g(ll)
(#1, #3) 0.42
(#2, #3) 0.73
(#4, #3) 0.16

as #z and probes #1, #2, and #4 are correctly labeled, as shown
in Table 1. The received message and the belief of probe #3 after
the first message passing is then shown in Fig. 11. In this figure,
we see that the messages from probe #1 and probe #2 contribute
much to boost the belief for the label #c. This is because probes
#1 and #2 have high initial beliefs (local evidence) for their true
labels, and high compatibilities for a pair of labels which belong
to the same group as probe #3, as shown in Table 2.

On another note, in the message shown in Fig. 11, the message
about the label #x (absentee) is relatively high because #x is also
a member of group A. The belief of probe #3 for the label #x,
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however, does not exceed that for the true label #c because local
evidence for the true label #c is essentially higher than that for
the label #x, even though the message magnitude for label #x is
nearly equal to that for the label #c.

In this way, the initial mislabel assignments gradually improve
with iteration of the message passing. Note that probe #18, which
is an unregistered person and is initially mislabeled as #k, is not
connected to any probe subject, as shown in Fig. 10, but is only
connected to the factor node in this case. The assigned label to
probe #18 is therefore changed only by exclusive force with an
increase in the beliefs of the other labels.

The labeling accuracy of the proposed method under no seed
node and of the straightforward method are shown in Table 3 (in
this experiment, the result of proposed method is unchanged with
or without seed nodes). In this table, we can see that the proposed
method significantly improves the labeling accuracy.
5.1.3 Evaluation for the Dataset from the Real Surveillance

Camera
Gallery and probe data set: We arranged the real image se-
quences (320 pixels × 240 pixels/9 fps/jpeg format) which are ob-
tained from the surveillance cameras installed in a Japanese el-
ementary school. In this experiment, a scenario of person re-
identification across two non-overlapping cameras is assumed
and we collected gallery and probe subsequences from the two
different cameras. The numbers of gallery and probe subjects are
shown in Table 4, and the examples are shown in Fig. 12.

In this dataset, the observation angle of each subject is different
to some extent between gallery and probe sequences and the tra-
jectory and walking manner of each subject are more fluctuated
than those in the dataset used in previous section.
Parameters: The standard deviation of the feature vector ele-
ment was set at σ = 1071.1 and the seed decision threshold was

Table 3 Labeling accuracy for the input shown in Fig. 8.

Method Labeling accuracy
Straightforward 0.61
Proposed 1.0

Table 4 Gallery and probe settings in the dataset from the real surveillance camera.

(a) Examples of gallery subjects and the groups

(b) Examples of probe subjects

Fig. 12 Examples of gallery and probe subjects in the dataset from the real surveillance camera.

set at Ts = 0.7. Both of these values were determined based on
the training dataset composed of 40 subjects which are also ex-
tracted from the same cameras. Local evidence for the label of
the unregistered person was set in the same way as the prelimi-
nary experiment.
Result: Table 5 shows the labeling accuracy. In this table, we
can see that the proposed method improves the labeling accuracy
even for the real situation.

5.2 Experiment with Simulation Data
5.2.1 Settings
Observed space and trajectory: We assumed an input video
sequence in which each walking person is captured by a surveil-
lance camera in a virtually constructed space. We set the whole
space to be 10 [m] × 2,000 [m] and the observed space to be
10 [m] × 20 [m] as shown in Fig. 13. In such a space, we ar-
ranged the initial position for each person, gave them velocities,
and then moved them. For simplicity, we assumed that each per-
son walked with constant velocity and that the walking direction
was only the Y-direction, as shown in Fig. 13.
Gallery and probe data set: In all the simulation experiments,
the number of gallery subjects (registered persons) is set to 1,000,
and gait features for all of the gallery and probe subjects are ran-
domly chosen from the gait database proposed in Ref. [26]. Note
that the gait database [26] has expanded and includes 1,580 sub-
jects at time of writing. We used two side-view sequences as the
probe and gallery sequences.

We then considered the following three scenarios, and we de-
fined the gallery and probe settings for each scenario as shown in
Table 6.
Set A: Person identification when going to elementary school in

a group: All of the gallery subjects are grouped. The registered

Table 5 Labeling accuracy for the dataset from the real surveillance camera.

Method Labeling accuracy
Straightforward 0.70
Proposed 0.87
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Table 6 Gallery and probe settings in simulation experiments.

Fig. 13 Assumed environment in simulation experiments.

person and the unregistered person correspond to a school
student and an intruder, respectively. Absentees and isolated
persons correspond to absent students and early or late arrival
students. There can be a small number of unregistered persons,
absentees, and isolated persons.
Set B: Person identification in amusement theme parks: Substan-
tial numbers of the gallery subjects are assumed to be standalone
(persons who belong to groups of only one member). The reg-
istered person and the unregistered person correspond to a fee-
paying fair visitor and an unfair visitor who enters the park with-
out the due entrance procedure. The absentee corresponds to a
registered person who is in the park but is not captured by surveil-
lance camera. The isolated person corresponds to a registered
person who is lost or separated from their group with another ob-
jective. There can be a small number of unregistered persons and
isolated persons in addition to some absentees.
Set C: Person re-identification in network cameras: We assume
that there are two cameras which have different fields of view,
and regard one side camera as the gallery-side camera and the
other as the probe-side camera. Some of the gallery subjects are
assumed to be standalone. A registered person corresponds to a
person who is captured by the gallery-side camera, and an unreg-
istered person corresponds to a person who is captured only by
the probe-side camera. An absentee corresponds to a registered
person who is not captured by the probe-side camera. An iso-
lated person corresponds to a registered person who is separated
from their group with another objective. There can be some un-
registered persons and absentees, and a small number of isolated
persons.

We also arranged the ideal scenario, where all gallery subjects
are grouped and there are no absentees, isolated persons, or un-
registered persons (denoted as set I in Table 6). We arranged 10
different sets randomly for each scenario. The performance for
each data set is evaluated by averaging their results.
Parameters: The standard deviation of the feature vector element
was set at σ = 366.2 and the seed decision threshold was set at
Ts = 0.8. Both of these values were determined based on the
gait database used. The local evidence for the label of an unreg-
istered person Cun significantly influences the performance of the

Fig. 14 Results for simulation data set.

many-to-many labeling scheme in the presence of an unregistered
person, particularly in the presence of a relatively large number
of unregistered persons in an input sequence such as set C. Thus,
we set the parameter at Cun = 0 for set I, Cun = 0.002 for sets A

and B, and Cun = 0.005 for set C, so that the performance of the
straightforward method for each data set becomes the best. Note
that we also conducted the same experiments under no seed node
(Ts = 0.0) to verify the effectiveness of seed node.
5.2.2 Results

Figure 14 shows the labeling accuracy. In this figure, we see
that the proposed method discernibly improves the labeling ac-
curacy for each data set and the introduction of seed node con-
tributes the performance improvement. In particular, when the
ratio of the number of persons in a group is high, the effective-
ness of the proposed method is greatest, as shown in the results
for sets I and A, while the performance improvements for sets B

and C are relatively low.
Basically, the belief values for isolated persons, standalone per-

sons, and unregistered persons for their own true labels are not
expected to be directly boosted by the messages. Thus, in the
case where such a person has the highest belief for a wrong la-
bel about another person at the first stage, it is difficult to recover
the true label, except in the case where the wrong label is a label
about a person in a group in an input sequence; that is, the ex-
clusive force for the wrong label is expected (as the label change
of probe #18 shows in the experiment in Section 5.1.2). This is
one of the major reasons why the performances of the proposed
method for sets B and C are lower than those of sets I and A.

6. Discussion

6.1 Limitation
While the proposed method significantly improves the labeling

performance, there are still some subjects who are mislabeled,
and subjects whose labels are negatively changed via message
passing, even for the ideal set I in the simulation experiments.
We list the typical cases of failure for the proposed method as
follows.
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Fig. 15 Example situation of negative label change.

6.1.1 Mislabel within the Same Group Members
When a person in a group is mislabeled as another person in the

same group at first, it is difficult to recover the true label because
the belief for the true label and the wrongly assigned label are
boosted to the same degree. Mislabeling within the same group
members is, however, relatively rare compared with mislabeling
between different groups. The rate of this kind of mislabel is rel-
atively low.
6.1.2 Negative Label Change in the Presence of an Absentee

or an Isolated Person in a Group
As shown in Fig. 15, when the following three incidents occur

simultaneously, where i) an absentee or an isolated person exists
in a group (the gallery subject with the label l4 in group G1), ii)
another person *2 (probe #4) comes close to the group members
(probe #1, #2, and #3) with similar velocity vector in an input se-
quence, and iii) another person is not set as a seed. Then, another

person may possibly be mislabeled as an absentee or an isolated
person by messages from the group members. At the same time,
if another person is mislabeled as an isolated person in such a
case, the initial correct label assignment for the identical isolated
person is excluded by another person and changed to the other
incorrect label. Note that this often occurs in the presence of a
number of standalone persons, unregistered persons, and isolated
persons, such as our simulation sets B and C, because the event
probability of the above incident increases.

Though the initial mislabel assignment and negative label
changes as listed above possibly cause other negative label
changes through the propagation of an undesirable message us-
ing the proposed method, the impact of such a negative effect is
basically smaller than that of the positive effects in total, as shown
in the results of the proposed method (Fig. 14).

6.2 Effect of the Seed Node on Performance
The contribution of seed node to the performance improvement

of the proposed method is demonstrated in the simulation results
(Fig. 14). The advantages of introducing seed node in graph are
considered as followings.
• The avoidance of negative label change: As discussed in

Section 6.1.2, the negative label change is not occurred if
another person (which is described in Section 6.1.2) is set as
a seed.

• The enhancement of message effect: According to the
Eq. (18), a seed node can send more discriminative messages
for the labels which belong to the same group of the assigned
seed label as following example. We consider again the sit-
uation shown in Section 4.4 (Fig. 6 and Fig. 7 (b)), and let

*2 Not only a standalone person or an unregistered person, but also a person
from another group.

Fig. 16 Messages from a seed node (probe #2) to the other node (probe #1)
under the setting shown in Fig. 6 (Section 4.4).

assume that the probe #2 is set as a seed with seed label l2,
that is, the local evidence for the label l2 is set to 1 and that
for each of all the other label is set to 0 in Fig. 7 (b). In this
case, the messages from probe #2 to probe #1 for the labels l1
and l3 become as, m21(x1 = l1) = 1.0 and m21(x1 = l3) = 0.0,
respectively *3 as shown in Fig. 16. Therefore, the messages
from a seed node promote the belief updates of its neigh-
bor nodes, and positive label changes of them are also ex-
pected to be promoted as a result. Though, the negative label
changes are possibly promoted, in particular, in the case that
a seed node is assigned false label as seed label, such nega-
tive case is assumed to be occurred less often than positive
case.

6.3 Effect of the Absence of Homography Calibration on
Performance

We assume the homography calibration for the calculation of
the position of each subject as described in Section 4.2. The cost
of calibration is, however, expensive in some practical systems.
One of the alternative ways is a direct use of the image pixel coor-
dinate system instead of the world coordinate system to represent
the trajectory of each individual. In many of practical surveil-
lance systems, the camera captures the scene from near the top
view or oblique view just like the scene used in our experiments.
In such views, it is assumed that the direct use of image pixel co-
ordinate does not have a serious impact on the performance of the
proposed method.

To examine this, we conducted an additional experiment for the
dataset used in Section 5.1.2 and we used the image pixel coor-
dinate directly for the calculation of the positions of individuals.
The parameters are set in pixel units, and we decided the param-
eters dmax = 160 [pixel] and dmin = 30 [pixel] based on the road
width (approx. 320 pixels) and human width (approx. 30 pixels),
and the vmax =15 [pixel/sec] and vmin =0 [pixel/sec] based on the
average velocity 60 [pixel/sec] which roughly estimated from the
dataset. As a result, we get the same result with that shown in
Table 3, though the neighbor relationships among probe subjects
are slightly changed.

6.4 Issues Toward the Practical System
The proposed method is based on some assumptions as de-

scribed in Section 3. In terms of the total system (practical
surveillance system), however, the following challenging issues

*3 This is an extreme case and the degree of magnitude relation between
these messages are biased by constant value C in actual.
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are required to be addressed in future work.
6.4.1 Obtaining the Group Affiliation

In practice, we need some kinds of registration procedures to
associate the group affiliations with the individuals in advance.
This is not such a serious problem in surveillance systems at fac-
tories and schools, where the potential observed persons are well-
known in advance, i.e., the school children and the factory work-
ers. Also, the registration can be achieved relatively easily with
a system constructed at a place where the entrance and exit are
controlled, i.e., where the group affiliation of each person can be
easily checked and registered at the entrance gate, as in amuse-
ment or theme parks, stadiums, theaters, and airports. Alterna-
tively, group affiliations can be derived by manual annotation (by
user interaction) of the video sequence, and also inferred auto-
matically by means of grouping techniques, such as data mining
and clustering. In particular, social behavior-based group find-
ing techniques have been developed in recent years [11], [31]. In
these methods, the group is estimated based on trajectory, dis-
tance, and velocity of pedestrians. Thus, these methods bear affin-
ity with the proposed method in terms of focusing such kinds of
social behaviors, and the integration with these techniques is fu-
ture work for the practical use of the proposed method.
6.4.2 Obtaining the Trajectory and Biometric Cue

Segmentation and tracking of each person are essential for the
acquisitions of the trajectory and biometric cue, and these are not
easy tasks when the scene is crowed, in particular, in the presence
of occlusion among persons. To evaluate the proposed method
for more practical scenes including such occlusion relationships,
state-of-the-art techniques of segmentation and tracking, such as
Refs. [3], [38], [44] are required to be applied for this problem.
Moreover, cross-view matching of biometric cue is also essential
and in the case of gait-based identification, the view transforma-
tion model [21] can be applied for this issue. The integration of
these techniques with the proposed method also remains in future
work.

7. Conclusions

In this paper, we proposed the behavior-based group context
for person identification in video sequences and integrated it in
the framework of CRF. In the proposed method, by means of
message passing, the belief of individual identity is propagated
to neighborhoods based on their group affiliation information and
their behavioral differences, such as the spatial distance and the
velocity vector difference in an input sequence, so that the same
group members enhance one member’s belief as those group
members enhance each others’ beliefs. In our experiments, we
showed that the proposed method significantly improves the per-
formance compared with the straightforward method based on
biometric cues alone.

Our future work includes construction of the model for optimal
selection of local evidence for the label of an unregistered person
Cun. This is a rather general issue for many-to-many matching
problems when considering an unregistered person.
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