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This paper describes a method for periodic temporal super resolution, namely,
reconstructing a one period image sequence with high frame-rate from a single
quasi-periodic image sequence with low frame-rate. First, the periodic im-
age sequence to be reconstructed is expressed as a manifold in the parametric
eigenspace of the phase, namely, period-normalized time. Given an input image
sequence, phase registration data in sub-frame order among multiple periods
of the image sequence is estimated. The phase registration and manifold re-
construction are alternately executed iteratively within an energy minimization
framework that considers data fitness and the smoothness of both the manifold
and the phase evolution. The energy minimization problem is solved through
three-step coarse-to-fine procedures to avoid local minima. The proposed peri-
odic temporal super resolution is evaluated through the experiments using both
simulated and real data in terms of phase noise, the number of input frames,
frame-rate, spatial registration noise, and image noise, respectively.

1. Introduction

Image super resolution 28) is one of the fundamental low level vision techniques
for creating an image with high spatial resolution from images with low spatial
resolution. Methods for image super resolution fall mainly into two categories:
(1) reconstruction-based methods (RBM) using multiple images registered at
sub-pixel order 5),10),20),26), and (2) example-based methods using correspondence
between low and high resolution image patches from training sets 2),8),12). Fur-
thermore, Glasner et al. 9) proposed a sophisticated framework, combining the
two approaches by using the patch recurrence within and across scales of a single
image. Most of the existing methods, however, are applicable to static scenes
only.
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Several methods deal with dynamic scenes in the context of near-real-time
super resolution 16), taking advantage of hot-air optical turbulence 15) and image
super resolution in the presence of motion debluring 4),22). Nevertheless, these
methods still focus on spatial super resolution, and fail to address temporal super
resolution.

Contrary to the above methods, Shechtman et al. 23) proposed a space-time
super resolution by combining information from multiple low-resolution video
sequences of the same dynamic scene. Moreover, Agrawal et al. 1) proposed an
optimal multiplexing coded sampling for temporal super-resolution. These meth-
ods fall into the so-called RBMs and hence, require multiple video cameras to
obtain multiple image sequences.

Inspired by the effective use of patch recurrence 9), it is noticeable that temporal
recurrence in a single sequence can be used for temporal super resolution. In
particular, given a periodic image sequence, multiple periods of subsequences with
sub-frame order phase displacement can be used for the temporal super resolution.
If a sequence can be segmented into period-based subsequences composed of
more than a few frames, a spatio-temporal sequence registration 7) method is
applicable. On the contrary, in cases where each subsequence contains only a few
frames or a single frame, period segmentation and the spatio-temporal sequence
registration may be error prone, since the method discards useful cues of inter-
period phase continuity. Moreover, if the period fluctuates due to a non-uniform
sampling rate or to target motion fluctuation appearing in human periodic actions
(e.g., gait), phase registration becomes much more difficult.

Therefore, we propose a method to reconstruct a one period image sequence
at a high frame-rate from a single low frame-rate quasi-periodic image sequence.
Instead of segmenting the whole sequence into multiple subsequences, we solve the
phase registration problem for the whole sequence of frames to take advantage of
the inter-period phase continuity. Then, a one period image sequence is expressed
as a manifold in phase-parametric eigenspace and the manifold is reconstructed
based on the registered phase information. These two processes are repeated in an
energy minimization framework by taking into consideration the following three
aspects: (1) data fitness, (2) smoothness of the manifold, and (3) smoothness of
the phase evolution.
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135 Periodic Temporal Super Resolution Based on Phase Registration and Manifold Reconstruction

The remainder of this paper is organized as follows. Section 2 summarizes
related works, and Section 3 describes a problem setting for this work. Sec-
tion 4 addresses an energy minimization framework to solve phase registration
and manifold reconstruction iteratively. Section 5 presents the experiments of
periodic temporal super resolution, and shows the performance against phase
noise, the number of input images, frame-rate, spatial registration noise, and
image noise, respectively. Section 6 presents discussions on limitation of the
proposed method, and finally, Section 7 concludes the paper.

2. Related Work

Temporal interpolation: In addition to spatial interpolation, temporal in-
terpolation has been developed for video editing (e.g., retiming 21)) and video
compression based on motion compensation methods 29). In particular, morph-
ing approaches 3),18),25) based on optical flow 13) are regarded as some of the most
promising methods for temporal interpolation, with these ideas having been ex-
tended to view and time interpolation 24) and spatio-temporal interpolation from
two sequences, one with high resolution and low frame rate and the other with
low resolution and high frame rate 30). Temporal interpolation does not, how-
ever, work well in cases where motion between two frames is relatively large, in
other words, where the sampling interval is relatively long in fairly low frame-rate
video.
Geometric fitting: Our manifold reconstruction step is similar to the fitting of
geometric primitives, such as lines, ellipses, or conics 11),27), in terms of parameter
estimation from a series of sampling points. In geometric fitting, global param-
eters are used for the primitive representation (e.g., 5 parameters for an ellipse)
and sampling points are treated independently. On the other hand, piecewise
local parameters are used for manifold representation and sampling points are
dependent on each other due to the phase evolution smoothness as described in
the following sections.

3. Problem Setting

3.1 Assumptions
Several assumptions are used in this paper to allow us to focus only on temporal

super resolution based on a phase registration framework. The first assumption
is that an image sequence is spatially registered in advance. This assumption is
basically true in several scenes, such as those with periodic sign language such
as a waving hand, periodic actions at the same position such as jumping jacks or
walking on a treadmill, or a rotating object such as a fan. Even in other scenes
with periodic actions such as walking, skipping, and running on the ground,
spatial registration is possible once the target object has been accurately tracked
to some extent.

A further assumption is that motion blurs are negligible. Although this as-
sumption may not be true in scenes with fast moving objects, there are still
several possible situations in which low frame-rate image sequences with less mo-
tion blur are stored. For example, consider the situation where a CCTV camera
captures a person walking on the street. In this case, the image sequence is often
stored at a low frame-rate due to limited communication band width or storage
size, and besides motion blur is not significant since walking motion is relatively
slow compared with normal shutter speeds. Therefore, gait recognition in low
frame-rate video is one of the typical applications of the proposed method.

3.2 Quasi-periodic Image Sequence
Next, we define a quasi-periodic image sequence in conjunction with Fig. 1.

An image drawn from the periodic image sequence at time t is denoted by the
vector-form x (t), which satisfies

x (t + P ) = x (t) ∀t, (1)
where P is a period. Then, two non-dimensional time parameters, phase s and
relative phase s̃, are introduced as

s = sP (t) =
t

P
(2)

s̃ = s − �s�, (3)

where sP (·) is a phase evolution function and �·� is a floor function. Now, the
periodic image sequence is represented in the phase domain as

x s(s) = x (s−1
P (s)). (4)

Note that the periodic image sequence constructs a manifold with respect to the
relative phase s̃ ∈ [0, 1] and which satisfies x s(1) = x s(0).

On the other hand, an input image sequence is composed of N in discretely
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Fig. 1 Process of quasi-periodic image sequence.

observed images X in = {x in
i }(i = 0, . . . , N in − 1). In cases where the scene is

completely periodic and where the frame-rate f is completely constant during the
input image sequence, the input image sequence X in, time sequence t = {ti},
and phase sequence sP = {sP,i} are denoted as

x in
i = x (tP,i) = x s(sP,i) (5)

tP,i = t0 +
i

f
(6)

sP,i = sP (tP,i) = s0 +
i

fP
. (7)

This assumption is, however, often violated due to fluctuations in the frame-
rate or in the timing of the periodic motion. Hence, the input image sequence is
degraded to a quasi-periodic image sequence X in

Q = {x in
Q,i} defined as

x in
Q,i = x s(sQ,i) (8)

sQ,i = sP,i + Δsi, (9)
where sQ = {sQ,i} is a quasi-periodic phase sequence.

In summary, the problem setting can be stated as a simultaneous estimation

Fig. 2 Manifold representation of periodic image sequence.

problem of a periodic manifold x s and a phase sequence sQ from an input quasi-
periodic image sequence X in

Q . Analogous to the spatial super resolution case,
note that the phase sequence estimation process and periodic manifold estima-
tion correspond to an image registration process and super-resolution process, re-
spectively. In addition, the problem setting falls into the so-called reconstruction-
based methods using multiple observations, although a single sequence is used
in this problem setting. This is because multiple periods in the single sequence
serve as multiple observations.

3.3 Manifold Representation
The periodic manifold x s is represented by a parametric eigenspace method 17).

This is motivated by the property of the parametric eigenspace method that a
phase for an input image can be estimated by projection to the manifold, which
plays quite a significant role in the phase registration stage. More specifically, we
use a cubic N-spline function parameterized by the phase in the eigenspace. Let us
consider N cp control points {ycp

j } in the M dimensional eigenspace accompanied
by corresponding phases {scp

j (= j/N cp)}, (j = 0, . . . , N cp−1) as shown in Fig. 2.
Next, a spline parameter vector for a k power-term coefficient at the jth interval
[scp

j , scp
j+1] is denoted as asp

j,k ∈ RM , (k = 0, 1, 2, 3 for a cubic N-spline) and
subsequently, a submatrix Asp

j at the jth interval and a total spline matrix Asp are
defined as Asp

j = [asp
j,0, . . . ,a

sp
j,3]

T ∈ R4×M and Asp = [Asp
0

T
, . . . , Asp

Ncp−1
T ]T ∈

R4Ncp×M , respectively. Then, an interpolated point ŷ(s̃) in the eigenspace for a
relative phase s̃ at the jth interval is expressed as
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ŷ(s̃) = AspTw(s̃) (10)
w(s̃) = [0, . . . , 0, 1, w, w2, w3, 0, . . . , 0]T (11)

w =
s̃ − scp

j

scp
j+1 − scp

j

, (scp
j ≤ s̃ ≤ scp

j+1), (12)

where w(s̃) is an interpolation coefficient vector whose components from 4j to
(4j + 3) are [1, w, w2, w3], and w is the interpolation ratio between the control
points.

On the other hand, the relation between a control points matrix Y cp =
[ycp

0 , . . . ,ycp
Ncp−1]

T and a spline parameter matrix Asp is derived from the C2-
continuous boundary conditions as

CAsp = DY cp (13)

C =

⎡
⎢⎣

C1 C2 O · · ·
. . . . . . . . . . . .
C2 O · · · C1

⎤
⎥⎦ , C1 =

⎡
⎢⎢⎢⎣

1 0 0 0
1 1 1 1
0 1 2 3
0 0 2 6

⎤
⎥⎥⎥⎦ ,

C2 =

⎡
⎢⎢⎢⎣

0 0 0 0
0 0 0 0
0 −1 0 0
0 0 −2 0

⎤
⎥⎥⎥⎦ (14)

D =

⎡
⎢⎣

D1 D2 O · · ·
. . . . . . . . . . . .
D2 O · · · D1

⎤
⎥⎦ ,D1 =

⎡
⎢⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎥⎦ , D2 =

⎡
⎢⎢⎢⎣

0
1
0
0

⎤
⎥⎥⎥⎦ (15)

Hence, the spline parameter matrix Asp is linearly solved as Asp = C−1DY cp

given the control points Y cp. This also indicates that interpolation ŷ(s̃) for a
relative phase s̃ is obtained by Eqs. (10) and (13) once the control points Y cp have
been given. Then, the reconstruction problem of the periodic manifold x s(s;Y cp)
can be replaced by an estimation problem of the control points Y cp as discussed
in the following sections.

Moreover, once a manifold is reconstructed, high frame-rate periodic image se-
quence is generated by back projection of the manifold in the eigenspace. Because

we typically project back the manifold control points in the eigenspace, we can
regard the number of the control points N cp as one of the parameters to adjust
the reconstructed frame rate.

4. Energy Minimization Framework

4.1 Energy Function
Similar to the spatial super resolution case, we adopt an energy minimization

approach. First, suppose that an input quasi-periodic image sequence in the
eigenspace is expressed as Y in

Q = {y in
Q,i} and recall that the accompanying phase

sequence sQ = {sQ,i} is unknown. Subsequently the interpolation coefficient
vector for the ith phase sQ,i is defined as w(sQ,i), in the same way as Eq. (11),
and then projection onto the periodic manifold by the ith phase sQ,i is

Ŷ (Y cp, sQ,i) = AspTw(sQ,i) = Y cpT (C−1D)Tw(sQ,i). (16)

The energy function is constructed by considering the following three aspects:
(1) data fitness between the interpolation ŷ(Y cp, sQ,i) and the input y in

Q,i, (2)
smoothness of the periodic manifold ys(s;Y cp) in the eigenspace, and (3) smooth-
ness of the phase evolution sQ.

The manifold smoothness term is defined as an integral of squared manifold
curvatures and it suppresses abrupt changes on the manifold. Note that the cu-
bic N-spline itself only guarantees piece-wise C2-continuity within each interval
and hence it cannot guarantee global smoothness of the manifold. For example,
let’s assume that a control point (ycp

0 , scp
0 ) is swapped for another control point

(ycp
4 , scp

4 ) in Fig. 2. The cubic N-spline just reconstruct a piece-wise smooth man-
ifold for the swapped control points and does not give any penalties for large
curvatures around the swapped control points. On the other hand, the manifold
smoothness term gives penalties for such large curvatures around the swapped
control points, and hence it enforces global smoothness of the reconstructed man-
ifold.

The phase evolution smoothness term is regarded as a kind of soft constraint
on the phase relationship that the phase difference between two adjacent frames
is equal to an inverse of a global period P ′ in the frame domain, which is defined
as the product of the frame-rate f and period P in the time domain, that is,
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P ′ = fP . Note that the order of an input image sequence has meaning in the
phase evolution smoothness term due to the above phase relationship. On the
other hand, without the phase evolution smoothness term, phases for each frame
sQ = {sQ,i} appear only in the data term and hence they are estimated inde-
pendently of each other. In such a case, because order information of the input
image sequence is not exploited, phase estimation from the image sequence with
order information is equivalent to phase estimation from a set of images without
order information, and it may result in unstable phase estimation. Although
some researchers tackle such problems, namely, reconstruction of a periodic im-
age sequence from a set of images without the order information, it was reported
that the reconstructed periodic image sequences sometimes contain errors such as
shortcuts 31). Therefore, the phase evolution smoothness term plays an important
role to suppress such phase estimation errors.

Consequently, the actual form of the energy function is

E(Y cp, sQ) =
1

N in

Nin−1∑
i=0

||Y cpT (C−1D)Tw(sQ,i) − y in
Q,i||2

+ λm
1

N cp

∫ 1

0

∣∣∣∣
∣∣∣∣d

2ys(s;Y cp)
ds2

∣∣∣∣
∣∣∣∣
2

ds

+ λs
1

N in

Nin−1∑
i=1

(
sQ,i+1 − sQ,i − 1

P ′

)2

, (17)

where the first, second, and third terms are the data term, and the smoothness
terms for the periodic manifold and the phase evolution, respectively. Since the
integration in the second term is calculated in advance with respect to the domain
of the interpolation ratio w for each interval, it is rearranged as a quadratic form
of Y cp as

∫ 1

0

∣∣∣∣
∣∣∣∣d

2ys(s;Y cp)
ds2

∣∣∣∣
∣∣∣∣
2

ds = Y cpT (C−1D)T B(C−1D)Y cp (18)

B =

⎡
⎢⎣

Bsub · · · O
...

. . .
...

O · · · Bsub

⎤
⎥⎦ , Bsub =

⎡
⎢⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 4 6
0 0 6 12

⎤
⎥⎥⎥⎦ (19)

We can see that the objective function E(Y cp, sQ) is a quadratic form with
respect to the manifold control points Y cp and therefore, that a linear solution
of the manifold control points Y cp is provided under the fixed phase sQ. On the
other hand, the phase sQ is a complex form, since the spline curves are switched
piecewise based on phase sQ and the interpolation ratio w appears as a sixth-
order polynomial in the data term. To solve this highly nonlinear optimization
problem, three-step coarse-to-fine solutions are provided in the following sections.

4.2 Solution by Linear Approximation
In the first step, the phase sequence sQ is limited to a completely periodic

domain, that is, linear phase evolution sP . Because the initial phase s0 is not
significant in this problem setting, it is set to zero without loss of generality.
Hence, the objective function in the first step is rewritten as

Einit(P ) = E(Y cp
P , sP ) (20)

Y cp
P = arg min

Y cp
E(Y cp, sP ) (21)

sP,i =
i

fP
. (22)

Note that manifold control points Y cp
P for each hypothesis of period P are linearly

solved as described in Section 4.1. On the other hand, the objective function
Einit(P ) has many local minima, so a gradient descent method from multiple
initial solutions is applied. Optimal solutions of the period, phase and man-
ifold control points in the periodic-domain are denoted as P ∗, sP∗ , and Y cp

P∗ ,
respectively.

4.3 Dynamic Programming Solution
In the second step, in order to extend from a periodic domain to a quasi-

periodic domain, continuous Dynamic Programming (DP) 19) is applied within a
so-called corridor, that is, the neighboring search area from the periodic-domain
phase solution sP∗ as Rcdr

i = {s|sP∗,i − scdr ≤ s ≤ sP∗,i + scdr} under fixed
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manifold control points Y cp
P∗ . First, the phase space is quantized by the same

interval as that of the manifold control points (1/N cp). This means that the
jth-phase interpolation coincides with the jth control point ycp

P∗,j and that the
phase difference between the jth and kth phases is equal to (j − k)/N cp. Next,
a cumulative cost and the optimal transition from a previous step at the ith
input frame and jth phase are denoted as c(i, j) and p(i, j), respectively, and the
optimal phase is provided by the following DP steps.
( 1 ) Initialize cost matrix

c(0, j) = ||ycp
P∗,j − y in

0 ||2, ∀j ∈ Rcdr
0 (23)

( 2 ) Update cumulative cost and transition path
p(i, j) = arg min

k∈Rcdr
i−1

{c(i−1, k)+λsgP∗(j, k)} (24)

c(i, j) = c(i−1, p(i, j)) +λsgP∗(j, p(i, j)) + ||ycp
P∗,j−y in

i ||2,∀j∈Rcdr
i

(25)

gP∗(j, k) =
(

min{|j−k|, |j−k+N cp|}
N cp

− 1
fP ∗

)2

(26)

( 3 ) Optimize the terminal phase

p∗(N in − 1) = arg min
j

c(N in − 1, j), j ∈ Rcdr
Nin−1 (27)

( 4 ) Back track
p∗(i − 1) = p(i, p∗(i)), ∀ 1 ≤ i ≤ N cp − 1 (28)

Finally, the optimal phase s∗
DP is set based on the optimal path {p∗(i)} and the

manifold control points are updated as

Y cp
DP = arg min

Y cp
E(Y cp, s∗

DP ) (29)

Strictly speaking, one can bypass the DP procedure and proceed to the following
step where there is a sufficiently small fluctuation in phase from the periodic
solution. On the other hand, in cases with a substantial fluctuation in phase, the
following step may result in local optima only and therefore, the DP procedure
is still essential for finding the global optimum.

4.4 Iterative Solution by Quadratic Approximation
A crucial procedure in the third step is quadratic approximation of the data

term with respect to the phase within a narrow search range from the DP solution.
First, the DP solution, s∗

DP and Y cp
DP , is set as the initial solution for this step,

s0
Q and Y cp,0, respectively. Then, the narrow search region of the phase at

the rth iteration is set as Rr
i = {s|sr−1

Q,i − stol ≤ s ≤ sr−1
Q,i + stol}. The data

term minimum for the ith phase sQ,i is found by the Newton method within the
intervals that include at least a part of the search region Rr

i . After the phase
minimizing the data term has been obtained as sdata,r

Q,i

∗
, the ith data term in

Eq. (17) is approximated by a Taylor expansion up to the second-order terms as

Êdata,r
i (sQ,i) = Edata,r

i (sdata,r
Q,i

∗
) +

dEdata,r
i

dsQ,i

∣∣∣∣∣
sQ,i=sdata,r

Q,i

∗
(sQ,i − sdata,r

Q,i

∗
)

+
1
2

d2Edata,r
i

ds2
Q,i

∣∣∣∣∣
sQ,i=sdata,r

Q,i

∗
(sQ,i − sdata,r

Q,i

∗
)2. (30)

Now, the total energy function is a quadratic form with respect to the phase sQ

and thus the optimal phase sQ is given as

sr
Q
∗= arg min

sQ

⎧⎨
⎩

1
N in

Nin−1∑
i=0

Êdata,r
i (sQ,i)+λs

1
N in

Nin−1∑
i=1

(
sQ,i+1−sQ,i− 1

fP ∗

)2
⎫⎬
⎭

(31)
s.t. sr−1

Q,i − stol ≤ sQ,i ≤ sr−1
Q,i + stol (32)

sQ,i+1 ≥ sQ,i, (33)
where Eqs. (32) and (33) are the lower and upper limit constraints and the mono-
tonically increasing constraints, respectively. As a result, the problem is formu-
lated as a convex quadratic programming one and is solved by the active set
method. Then the manifold control points at the rth iteration are updated in
the same way as in the previous steps.

Y cp,r = arg min
Y cp

E(Y cp, sr
Q
∗) (34)

These procedures are iterated until convergence by gradually relaxing the mani-
fold smoothness constraint so that the manifold fits the data.

4.5 Connection to Spatial Super Resolution
Conventional spatial super resolution typically contains two steps: acquisition
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of image registration data and spatial super resolution based on the image regis-
tration data. Considering relationship between the proposed periodic temporal
super resolution and the spatial super resolution, while phase estimation step
in the periodic temporal super resolution corresponds to image registration step
in the spatial super resolution, manifold reconstruction in the periodic temporal
super resolution corresponds to reconstruction of a super-resoluted image in the
spatial super resolution. More specifically, the manifold fitness data term and
the manifold smoothness term, namely, the first and the second terms in Eq. (17)
in the periodic temporal super resolution, correspond to so-called data term and
smoothness term in the spatial super resolution, respectively.

5. Experiments

5.1 Experimental Setup
In these experiments, the proposed temporal super resolution method is applied

to low frame-rate quasi-periodic image sequences. We used two different types
of image sequences: the first is CG data of a conical pendulum viewed from
an oblique direction (Fig. 3 (top)), while the other is real data in the form of
silhouette and color textured image sequences of a person walking on a treadmill
(Fig. 3 (middle, bottom)). Regarding the real data, size normalization and spatial
registration are done in advance. Moreover, images comprising one period are
manually extracted as a subsequence and a completely periodic image sequence
is constructed by repeating this subsequence. The image sizes, original frame
rates, and periods of the two types of image sequences are listed in Table 1.

Then, low frame-rate periodic image sequences are down sampled from the

Fig. 3 Periodic image sequences of conical pendulum (top), gait silhouette (middle), and
gait color textured image (bottom) used in the experiments.

original image sequences. Note that the original high frame-rate image sequences
were naturally not used in the temporal super resolution process at all and that
but used as ground truth data in quantitative evaluation in the following section.
In addition, quasi-periodic image sequences are produced by randomly changing
the sampling interval up to a predefined phase noise level from the linear phase
evolution. Figure 4 shows examples of quasi-periodic image sequences of the
conical pendulum at 6 fps and 1 fps, respectively.

Finally, the parameters for the energy minimization framework are determined
experimentally as follows. PCA is exploited for eigenspace projection and the
information loss rate is set to 1%, in other words, the cumulative contribution
ratios of the eigen values is 99%. The number of manifold control points is 100,
and the search range for the dynamic programming scdr and quadratic approxi-
mation stol are 0.25 and 0.02, respectively. The smoothness term coefficients λz

and λs are set to 50.0 and 1.0, respectively, with λz reduced by half, down to a
minimum of 1.0, in the iterative process of quadratic approximation.

5.2 Refinement Process
In this subsection, to explain the refinement process throughout the three steps,

i.e., Linear Approximation (LA), Dynamic Programming (DP), and Quadratic
Approximation (QA), we at first focus on a specific example of the conical pen-
dulum image sequence, with frame-rate, number of frames, and phase noise set
to 3 fps, 67 frames, and 20%, respectively.

First, phase estimation errors in the Ground Truth (GT) are shown in

Table 1 Image sequence properties.

Image sequence Image size [pixel] Original frame-rate [fps] Period [sec]
Conical pendulum 64 × 64 - (Arbitrary) 1.17

Gait 88 × 128 60 1.17

Fig. 4 Examples of input quasi-periodic conical pendulum image sequences with 10% phase
noise at 6 fps (top) and 1 fps (bottom).
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Fig. 5 Phase estimation error on relative phase (left) and manifold in three principal
components of eigenspace (right).

Fig. 6 A section of the conical pendulum image sequences sorted by estimated relative
phase. Rows from the top to the bottom indicate LA, DP, QA, and GT, respectively.

Fig. 5 (a). While the estimated phases in LA deviate widely, since LA can-
not absorb non-linear phase noise, those in DP and QA converge within a small
range and their deviation is approximately periodic. Although phase error biases
from GT (approx. −0.05) are observed in DP and QA, they are not necessarily
significant since phase registration up to a relative relation among all the in-
put frames is sufficient for temporal super resolution. In other words, only the
standard deviation of the phase estimation errors should be evaluated.

Next, to demonstrate the impact of the phase estimation errors in a more visual
way, image sequences sorted by estimated relative phases are shown in Fig. 6.
Based on these results, we can see several significant “phase backs” in LA and
hence, a sufficiently large manifold smoothness coefficient λz is essential for the
LA step, otherwise a manifold disturbed by the phase backs is reconstructed. On

Fig. 7 A section of the gait color textured image sequences. The first row: Input low frame-
rate image sequence (3 fps). The second to fourth rows: Super resoluted image sequence
by back projection of the manifold control points by LA, DP, and QA, respectively.

the other hand, relative phase orders of DP and QA are almost consistent with
that of the GT and hence, the smoothness coefficient λz can be relaxed.

Subsequently, manifolds in the three principal components of the eigenspace
are shown in Fig. 5 (b). We can see that the manifolds’ fitness to the input points
improves throughout the three-step phase estimation refinement. In particular,
the fitness of QA is the best, since the smoothness coefficient λz is relaxed in the
iteration process.

Although our energy minimization framework does not guarantee convergence
in theory, it does not induce any divergences throughout our experiments. In
practice, at most 10 iterations are sufficient for obtaining satisfactory accuracy
of manifold and phase registration in QA step.

Finally, to demonstrate the effectiveness of the propose method, super resoluted
image sequences for the gait color textured image sequences are generated by
back projection of manifold control points as shown in Fig. 7. As a result, we
can see that the reconstructed image sequences become clearer throughout the
three-step refinement and that sufficient visual quality is obtained in QA step
(Fig. 7 (bottom)).
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(a) Phase noise (b) # Frames used (c) Frame-rate (log scale) (d) Spatial registration noise (e) Salt and pepper noise

Fig. 8 Performance evaluation of manifold PSNR (top row) and phase error SD (bottom row) using conical pendulum image
sequence. Each column denotes each factor: (a) phase noise, (b) the number of frames used, (c) frame-rate, (d) spatial
registration noise, and (e) salt and pepper noise. The vertical axes in the top and bottom rows indicate the PSNR between
the reconstructed manifold and ground truth and the SD of the phase estimation error, respectively.

5.3 Evaluation
In this section, manifold reconstruction errors and phase estimation errors are

evaluated. First, as for manifold reconstruction, a single period of ground truth
images are initially projected to a manifold reconstructed from a low frame-
rate quasi-periodic input image sequence and then they are back projected to
the image domain to calculate Peak Signal to Noise Ratio (PSNR) between the
ground truth images and reprojected images. As for phase estimation, errors
between the ground truth phase and estimated phases of the input image sequence
are calculated and then their Standard Deviation (SD) is evaluated, since their
biases are not significant as discussed in the previous section.

The above two items are evaluated with respect to five factors: (1) phase noise,
(2) the number of frames used, (3) frame-rate, (4) spatial registration noise, and
(5) image noise (salt and pepper noise) as shown in Fig. 8. The baseline settings
for the three factors are 10%, 67 frames, 3 fps, 0%, and 0%, respectively.

As for the phase noise (Fig. 8 (a)), although LA achieves the lowest phase error
SD in the case of lower phase noise, both the manifold PSNR and the phase
error SD in LA deteriorate in proportion to an increase in phase noise. On the
contrary, such degradations in DP and QA are suppressed within a certain range.

Regarding the number of frames used (Fig. 8 (b)), the performance naturally
improves as the number of frames increases in DP and QA. On the other hand,
the performance in LP does not improve in proportion to the frames used. This
is because LP does not solve non-linear phase noise, and besides, an increase in
the phase-error input points in the eigenspace makes the manifold reconstruction
worse.

Regarding frame-rate (Fig. 8 (c)), the manifold reconstruction PSNRs improve
slightly as the frame-rate increases. On the other hand, critical phase errors are
observed in an extremely low frame-rate (1 fps and 2 fps) and this is discussed
further in the next section.
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Regarding spatial registration noise (Fig. 8 (d)), the manifold reconstruction
PSNRs and phase error SDs significantly degrade as the spatial registration noise.
This is because the propose method assume that the spatial registration has been
done in advance and hence the spatial registration process would be included in
the energy minimization framework as well as phase registration process if the
input image sequence is not spatially registered.

Regarding image noise (Fig. 8 (e)), while the phase error SDs are suppressed
within a certain range, the manifold reconstruction PSNRs are degraded as the
image noise increases. If this kind of noisy image sequence is given, image denois-
ing process (e.g., bilateral filtering, non-local mean filtering, or graph cut-based
denoising) should be done before applying the proposed method.

Moreover, we have made another experiment to check the sensitivity of the
proposed method in terms of the two significant parameters: manifold smooth-
ness coefficient λz and phase evolution smoothness coefficient λs as shown in
Fig. 9. As a result, the performances of both manifold reconstruction and phase
estimation in QA step are almost unchanged for a wide range of the smooth-
ness coefficients except for a case where the initial manifold smoothness term is
extremely small (e.g., λz = 1) or large (e.g., λz = 10,000). Consequently, we
can see that the proposed method is insensitive to the smoothness coefficients
if only the manifold smoothness coefficient is set within a middle range (e.g.,
10 ≤ λz ≤ 1,000).

5.4 Comparison with the Other Methods
In this section, the proposed method is compared with two shape morphing

techniques: signed distance field morphing 6) and Earth Mover’s Morphing 14) as
temporal interpolation. The morphing techniques only cannot deal with phase
noise and then we provide low frame-rate gait image sequence without phase
noise, which serve as key shapes for morphing (see the first row of Fig. 10). The
other factors are set to the same baseline setting as in the previous section.

The morphing techniques work well for interpolating relatively smooth image
sequence, namely, not so low frame-rate image sequence. They, however, suffer
from abrupt image changes existing in low frame-rate image sequence (see the
third and the fourth rows in Fig. 10.

Moreover, the proposed method is compared with a graph-based periodic mo-

(a) Manifold smoothness coefficient (b) Phase evolution smoothness coefficient

Fig. 9 Sensitivity of manifold smoothness coefficient and phase evolution smoothness coef-
ficient using a gait silhouette sequence. Top: manifold PSNR, bottom: phase error
SD.

tion path reconstruction technique 31). Although the method originally uses a
contour-based shape feature, we substitute silhouette-based shape feature be-
cause a single closed curve cannot represent silhouette holes between both legs
as shown in the first and second frames in Fig. 10.

As a result, while the graph-based technique works well for several parts of a
sequence, it suffers from a significant shortcut of a forward-step sequence which
should originally appear between the fourth and fifth frames in the bottom row
of Fig. 10. This type of failure has been already reported in Ref. 31) and one of
reasons for this failure is that the method does not consider the order information
of an input image sequence when reconstructing a periodic image sequence from
a set of images.
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Fig. 10 Comparison with the other methods. Rows from the top to the bottom indicate
ground truth, the proposed temporal super resolution, signed distance field morph-
ing 6), Earth Mover’s Morphing 14), and graph-based periodic motion path recon-
struction 31), respectively. Key frames are bounded by red box in ground truth image
sequence (top row).

On the other hand, because the proposed method integrates various phase
images from multiple periods and also considers phase evolution smoothness to-
gether with the order information of an input image sequence, it can reconstruct
better one period of gait image as shown in the second row in Fig. 10.

6. Discussion

In this section, prerequisites and limitations of the proposed temporal super
resolution are discussed. In cases where a periodic image sequence is observed
at a coarse sampling interval compared with its period, we need to consider two
main issues: (1) the stroboscopic effect (temporal aliasing), and (2) the wagon
wheel effect as reported in Ref. 23).

The stroboscopic effect typically occurs when the sampling interval coincides
with the period of a moving object. In such cases, the observed image sequence
appears to be standing still because the observed images are always the same
even though the object is actually moving periodically.

From this observation, we can introduce a theoretical upper bound of the tem-

Fig. 11 False period detection by “Wagon wheel effects” in the LA step. The horizontal and
vertical axes denote period and energy, respectively. False minimum by backward
play (blue broken circle) competes with true minimum by forward play (red broken
circle) at 1 fps, while true minimum is obviously the global minimum at 6 fps.

poral super resolution from a single period image sequence. Intuitively speaking,
temporal super resolution is impossible when each phase in one period is exactly
the same as the corresponding phase in the other periods, that is, the period in
the frame domain is not a sub-frame order, but merely a frame order defined as
an integer. Let us consider a low frame-rate periodic image sequence and denote
its period in the frame domain P ′ [frame]. Then, assume that the period P ′ is
expressed as a fraction by relative prime numbers, m and n,

P ′ =
m

n
∈ Q, m, n ∈ N. (35)

Now, if n = 1, the period P ′ is degraded from a fraction to an integer, that is, the
period is just a frame order and the temporal super resolution is impossible. On
the other hand, if n > 1, the period P ′ is a sub-frame order and hence different
phase images can be observed among multiple periods and the temporal super
resolution is possible. In summary, the low frame-rate image sequence can be
up-converted to a n-times frame-rate, if m input frames are given.

The wagon wheel effect typically occurs when the sampling interval is slightly
smaller than the period of a moving object as shown in the bottom row of Fig. 4,
where the sampling interval and period are 1.0 sec and 1.17 sec, respectively. In
this case, the false minimum by backward play competes with the true minimum
by forward play, and then the false minimum is often adopted in the LA step as
shown in Fig. 11. This is the reason that the critical phase errors occur in the
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extremely low frame-rate in Fig. 8 (c).

7. Conclusion

This paper described a method for temporal super resolution from a single
quasi-periodic image sequence. The temporal super resolution was formulated
as simultaneous phase registration and reconstruction of a manifold of the peri-
odic image sequence in a phase parametric eigenspace. An energy minimization
framework considering data fitness, and the smoothness of both the manifold and
the phase evolution, was introduced and solved through three-step coarse-to-fine
procedures to avoid local minima. Experiments using synthesized conical pendu-
lum and real gait silhouette and color textured image sequences were conducted
to evaluate the effects of phase noise, the number of frames used, frame-rate, spa-
tial registration noise, and salt and pepper noise on the PSNR of the manifold
reconstruction and the standard deviation of the phase estimation errors.

In this paper, we focused mainly on phase registration while ignoring spatial
registration process and blur effects, and hence, it is necessary, in future, to
include the spatial registration and blur effects in the manifold reconstruction
framework. Moreover, not only phase fluctuation, but also inter-period image
deformation (e.g., view or speed transition in gait scenes) should be considered
for real applications.
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