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Object recognition can be performed on local or global features. While local
features are more robust against occlusions, global features are more powerful
to distinguish among many objects. In this paper we propose a novel approach
in construction of a shape model from local features aimed at achieving high
discriminative power as global features have, while keeping the robustness of
local features. We utilize a common reference point expressing the relative
position of local features like in a star graph representation. This model is
dynamically calculated during recognition which makes it flexible. With our
approach we achieve an improved recognition performance of 2% compared to
other shape models and even 6% compared to approaches that do not utilize
shape information.

1. Introduction

Object recognition in computer vision has gained more and more interest. It
is not surprising that this research has split into many different fields of more
theoretical or practical research. However, the process to learn and recognize
objects is mainly based on images. During learning information of the image is
extracted and compared with information of the query image in which a certain
object should be recognized.

In recent research for the task of content description in an image, local features
are used. Here information is described only in a tiny part of the whole image
which can be seen as a peephole. This procedure is often done at the so-called
region of interest. The major benefit of this approach is its stability. Even if parts
of the object are covered by other objects, the same information can be extracted
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from the remaining visible parts. This approach also has a drawback. By only
looking at such small regions, the discriminative power is lower as compared to
an approach which takes into account more information of the image.

In this paper we present an approach which has the stability of local features
and increases the discriminative power. We achieve this by providing a shape
model about the features and how they are arranged in the image. Our shape
model is based on a common reference point constructing a star graph repre-
sentation of the local features. By using the distance and the angle of the local
features to this reference point, this star graph is verified during recognition. Our
representation of the shape is soft in the sense that occlusions do not become a
major problem. We achieved an improved performance of around 2% on a chal-
lenging image dataset compared to other recently proposed shape models and up
to 6% compared to approaches only relying on local features without utilizing
any shape information.

2. Related Work

Object recognition and detection based on shapes is an often applied approach.
Some approaches use boundaries to define a shape. The approach of Toshev et
al. 1) is one of the most recent. The general strategy is to learn a vocabulary of
boundaries from a set of training images. The procedure to extract these bound-
aries can be pixel based 11) or as in the approach of Toshev et al. superpixel
based. Superpixels are connected regions normally defined over similar color in-
formation. Pixel based approaches often tend to recognize many different objects
in very structured regions. With superpixels this does not happen, since such
structured regions can be detected. However, they are still not scale nor orien-
tation invariant. These two properties are needed for many realistic use cases.
The difficulty lies in a proper model of boundaries to make them scale invariant.

Working on local features rather than boundaries we can avoid the above men-
tioned problems of scale and orientation invariance. The constellation model
proposed by Fei-Fei et al. 2) uses around 5 features which are most characteristic
for the object and creates a connected graph from them. To achieve scale invari-
ance one feature is selected as “landmark” and based on its spatial dimension
the graph is normalized.
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Leibe et al. are using with their implicit shape model 9) also on local features.
In contrast to Fei-Fei, they use the relative position of the features to a common
reference point called the centroid. With this approach, Leibe et al. proposed a
very flexible shape model.

However, we still have some unsolved problems. The constellation model is only
applicable for training images with a well-segmented object from the background
while the implicit shape model still needs a bounding box. Both requirements
will be impractical in many use cases. Also, these systems are rather complex
and require sophisticated environments such as Matlab.

The method we propose is of different nature. Systems based on SIFT-like
features can be easily extended to use our proposed model. It is inspired by the
implicit shape model and also uses one common reference point to define a shape
for all features. In contrast to the implicit shape model, our system does not
create this shape during training. Our utilization of such a reference point takes
place during recognition. This results in the high flexibility of our system and a
very simple implementation.

A recent approach which works on SIFT-like features is the weak geometric
consistency (WGC) proposed by Jégou et al. 4) Other than our approach, shape
information is verified based only on each individual feature without taking into
account their relation to each other. This model is really simple and thus it is
only applicable under “clean” conditions, e.g., on smaller databases and a low
involvement of background clutter as we will point out with our evaluations.

3. Overview

With this section we give a rough overview of our system while focusing on the
idea behind and the necessary elements needed for our proposed method.

Designing an object recognition system, the used features can be of local type by
only looking at a small part of the image, or of global type by taking into account
the whole image at once. While local features can address the problem of partially
covered objects, global features have a higher discriminative power. Achieving
both with one descriptor is not obvious. The goal of a highly discriminative
descriptor stands in contrast with a flexible descriptor addressing occlusions.

A more discriminative descriptor can be achieved by being stricter concerning

local features. However, slight changes in the illumination may result in an
unrecognizable object, since the descriptor is too strict. A different and often
applied way is to take into account more information of the image at once which
results in global descriptors. A problem with these global descriptors is that
occlusion can only be addressed in a limited manner.

In our model we are aiming to achieve both goals: addressing occlusions and
achieving a higher discriminative power. We utilize a special type of local feature,
providing an orientation and scale about this region. By using these properties we
express the position of the features with respect to one common point comparable
to a star-graph representation. This results in our global descriptor, the shape.
This shape is verified during recognition and fragmented shapes are ignored. If
some of the local features are missing due to occlusion, the remaining features
still form a proper shape.

The further details in this section explain the basic concepts needed for our
method. This includes an explanation about the local features and the prop-
erties needed for our shape model. After that we explain the voting scheme in
object recognition. This voting scheme requires nearest neighbor search which
can become expensive on large databases. With hashing we reduce these search
costs significantly. The search space can be controlled by arranging the features
into classes also called bins. For the query feature the corresponding bin is de-
termined and only within this bin, possible nearest neighbors are searched.

3.1 SIFT Features
The Scale-Invariant Feature Transformation (SIFT) proposed by Lowe 10) is

one example of local features. It utilizes a 128 dimensional feature descriptor
vector and for its entries mathematical values like derivations are used. This
descriptor has been used successfully in many fields in the current research of
object recognition.

PCA-SIFT 6) uses an even higher feature descriptor (3,042 dimensions) and
compresses these values by Principal Components Analysis 5) to the most signif-
icant eigenvalues. As Rahul et al. have also shown, the recognition performance
can be even higher and most importantly, the used memory to store these fea-
tures is reduced significantly. This is an important condition, since we apply
object recognition via a voting scheme, which involves nearest neighbor search
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Fig. 1 SIFT feature.

and, therefore, features must be kept in memory. We explain this strategy in the
next section.

These PCA-SIFT features are computed for regions of interest (ROI) in a
certain location in the image. These types of features additionally provide the
scale and orientation of the ROI as shown in Fig. 1 where l is the scale, θ is the
orientation and the position of the feature in the image is P (x, y).

3.2 Object Recognition by Voting
For object recognition by voting normally local features are used to represent

an image. These features together with the object ID are stored in a database.
The number of features may vary for different objects and images. From the
query image, in which an object should be recognized, the same type of features
are extracted. For each feature similar matches in the database are searched. If
features are found which fulfill a certain threshold in similarity, the match casts
a vote for the corresponding object. The more votes an object has, the higher is
the confidence for the object.

3.3 Hashing
A major problem with object recognition by voting is to find similar features

even in a large database. A naive approach to just compute the distance to every
feature is of complexity O(g ·h) where h is the number of features from the query
image and g the number of features in the database. The number h normally is
not large, while the number g can easily become several millions or more.

Hashing is an approach which reduces the complexity remarkably. A hash
table consists of many bins which are accessed via a hash value. Such hash

values are calculated from the features. The original features are then stored
in the corresponding bin. To calculate such a hash value for our used PCA-
SIFT features, the original real-valued vectors are transformed into their scalar
quantized form with 2 bit per dimension. Let p = (p1, . . . , pn) be the scalar
quantized feature vector. The bit-vector representation u = (u1, . . . , ud), where
d < n is the desired number of values which should be taken into account, is
calculated as

uj =

{
1, if pj − θj ≥ 0;

0, otherwise,
(1)

where θj is the median of the original vector values of each dimension j. Finally
the hash value itself is calculated from u as

Hindex =

⎛
⎝ d∑

j=1

uj2(j−1)

⎞
⎠ mod Hsize (2)

where Hsize donates the size of the hash table. In the case of a collision a specified
number c of elements can be kept by a chaining method. If this c is exceeded, all
entries for this hash value are marked as invalid.

4. Reference Point

After we discussed the advantages and disadvantages of the different features we
can derive some properties a model should hold to describe the local configuration
of features:
(1) Learning aptitude: The model should be adaptive from images, without

any additional information, like a segmented object, bounding box or other
specific information.

(2) Computation time: The computational cost for the model should be within
reasonable time constraints.

(3) Stability: The model should be stable and not only work under certain
conditions.

While with the first two constraints we intend a decreased interaction time of
the user with such a system and a reasonable runtime, the last one is to focus on
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the problems some models like the WGC can have, even if only a small amount
of background clutter must be considered. In such an environment one can ask,
whether it is possible to provide a practical approach.

Our proposed method increases the recognition performance with respect to the
three above mentioned conditions. The idea is that we do not generate one fixed
model during the learning phase of the system. Instead the model is generated
during detection which gives us a higher flexibility.

4.1 Learning Phase
As mentioned earlier our implementation is based on PCA-SIFT features. How-

ever, any descriptor could be used which provides a scale l and orientation θ about
the local region. These properties are shown in Fig. 1. The additional memory
needed to store these values is marginal compared to the 36 dimensions for the
PCA-SIFT descriptor. Additional computational cost does not occur, since these
values are also needed to calculate the descriptor itself. We just utilize them. For
all features we calculate its hash value as described in Section 3.3.

4.2 Recognition Phase
Assuming an image shows an object of interest which is stored in the database,

we extract the same type of PCA-SIFT features. Again we calculate the hash
value of these features and search for near neighbors in the corresponding bin.
Near features have to fulfill a certain threshold. The simple voting approach to
which we compare our system, now cast a vote for this object.

At this point we create our shape model. We assume to have all possible
matches between query features and features from the database. Let FD be this
set of matched features for one image I in the database. For this set we estimate
one point which we call reference point or in short RP . For this point we take
the mean (RPx, RPy) of the positions of the PCA-SIFT features. Let Kx be the
x-coordinate and Ky the y-coordinate of a point K:

RPx =

∑
K∈FD

Kx

|FD| , RPy =

∑
K∈FD

Ky

|FD| (3)

From this reference point we calculate for every matched feature in the database
image two new values shown in Fig. 2. These are the distance t of the feature to
this reference point RP and the enclosed angle α.

Fig. 2 Additionally calculated properties.

(a) Placing matching
features.

(b) Adapt the orien-
tation.

(c) Adapt scale. (d) Resulting reference
points of all matches.

Fig. 3 Steps of reference point matching.

This selection of the reference point has some advantages concerning numerical
errors, e.g., when the distance t to the reference point becomes large, small
errors in the orientation θ will lead to misplaced reference points. However, any
arbitrary selection of the reference point is possible.

After we have these two new values we proceed further with the query image.
Figure 3 illustrates these steps. Indicated are the features from the query image
and a matching feature attached with the new properties.
(a) We place the matched feature from the database over the feature from the

query image.
(b) We adjust the orientation of the database feature by letting it show in the

same direction as the query feature and update the location of the reference
point.

(c) Finally we adjust the scale of the database feature to be equal to the scale
of the query feature and again update the location of the reference point.

(d) Performing these steps for all matches for all objects results in a map of
reference point proposals.
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After these steps we have locations of proposed reference points in the image
plane for the different objects. In the ideal case only the reference points of the
correct object would be agglomerated in compact regions, while the proposed
reference points of the incorrect objects would be spread over the whole image
plane. This assumption is oversimplified since we are always confronted with
numerical inaccuracy. Therefore, we have to apply some clustering to find such
small and compact regions which will be described in the next section.

5. Clustering

Clustering of the proposed reference points is necessary to find dense regions.
The k-means clustering algorithm which is often applied for this task, is not
suited for our use-case since the k is nearly impossible to select automatically.
Fortunately the number of reference points is not high so that we can choose an
algorithm which can determine useful clusters without the need to provide a k.

In the standard clustering algorithm one would have to calculate for each cluster
its nearest neighbors. If the distance of this nearest neighbor is below a certain
threshold, the clusters are merged. In the next iteration again for each cluster its
nearest neighbor must be calculated, since the merging of the two clusters one
step before affects the distance among the clusters. This makes the application
of the standard clustering algorithm a time-consuming task.

For the purpose of a faster calculation of these clusters we choose the RNN
algorithm for Average-Link clustering with nearest-neighbor chains 9). The idea
of this algorithm is to select a random start point and search for this point
its nearest neighbor. From this nearest neighbor again its nearest neighbor is
searched by ignoring the former point. The idea of keeping all these nearest
neighbors in a chain gives this algorithm its name reciprocal nearest neighbor
(RNN) chain. If the next nearest neighbor is beyond the threshold the chain is
canceled. All points within the chain are merged and the process starts in a new
random seed. The major speed-up of this algorithm results from keeping the
nearest neighbors in this chain instead of leaving this information behind.

A complete proof of the correctness of this strategy could not be given in this
paper but in short it relies on Bruynooghe’s reducibility property which means
that before the agglomeration of two clusters and after, the nearest neighbors are

last← 0
lastsim[0]← 0
L[last]← v ∈ V
R← V \v
while R �= ∅ do

(s, sim)← getNearestNeighbor(L[last],R)
if sim > lastsim[last] then

last← last + 1
L[last]← s
R← R\{s}
lastsim[last]← sim

else
if lastsim[last] > t then

s← agglomerate(L[last], L[last− 1])
R← R∪ {s}
last← last− 2

else
last← −1

end if
end if
if last < 0 then

last← last + 1
L[last]← v ∈ R
R ← R\{v}

end if
end while

Fig. 4 The RNN algorithm for Average-Link clustering with nearest-neighbor chains.

still the same. Only the clusters might be closer to each other. This algorithm
is summarized in the pseudo code in Fig. 4.

For the clustering we make one slight adaption. We do not treat all clusters
points equally. If the distance t of a matching feature to its proposed reference
point becomes large, then even small errors in the adaption of the orientation can
lead to significant misplaced reference points. To solve this problem we estimate
a weight from this value t. Let RP ′ be a reference point and t′ the final distance
(Fig. 3 (c)) of the feature in the query image to RP ′ after the scale was adapted.
The weight wRP ′ for reference point RP ′ is:

wRP ′ =
√

t′ (4)
The weight of the agglomerated cluster is simply the addition of the weights of
the original clusters.
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In general the database can contain more than one image per object. However,
clustering is always done for reference points from one image. Reference points
of different images are not clustered together. If one would do so, clustering
becomes easy, if two near duplicates of the same image are stored in the database.
Additionally, the position of the reference point must be normalized, since the
object may be at different locations in different images. Currently we do not
consider such a normalization.

6. Voting

After we have performed the clustering on the proposed reference points, the
question raises how this information can be used to improve the recognition
performance of the system. This will be described in detail in this section.

Every cluster will have at the end at least one reference point, the point it
initially started with. During the clustering the number of individual points in
each cluster usually increases. If many reference points could be agglomerated in
one cluster, then the local configuration of the features is reliable. This means
that the configuration of the features, as they were placed in the training image,
is in a similar way, as in the query image. At this point we take a special care of
clusters which only have one point. These clusters come from matching features
which do not have any meaningful local configuration. Such clusters are discarded
and we do not analyse them further.

For the remaining clusters containing more than one point, we calculate a score
for the corresponding object. This is done by taking the number of containing
reference points in a cluster.

We also considered a voting based on the feature size or a normalization based
on the resulting area covered by the clusters. However, we were not able to
improve the overall performance. Special voting based on the features could only
improve the performance in some special cases. As the final score for the object,
we take the highest achieved score from one image of this object. At the end we
apply a normalization so that the scores lie within the interval [0, 1], where 1 is
then the highest value.

(a) Sliding window (b) Hough transform

Fig. 5 Comparison of sliding window and generalized Hough transform.

7. Localization

Sometimes the localisation of the object of interest is request. Here the object
is marked in the image to give the user additional feedback from the recognition
system. To formalize the problem of localization let o ∈ O be the set of trained
objects, let f ∈ F be the set of features extracted from the query image, W (o, f)
a scoring function defining a weight for a certain object given a feature and finally
let S(o) be the score for an object o.

7.1 Sliding Window vs. Generalized Hough Transform
To achieve the localization of the object of interest sliding window is a typi-

cally applied approach. The burden of this approach is its enormous calculation
overhead. A different approach is the generalized Hough Transform to which our
system has some similarities.

Figure 5 compares these two approaches in pseudo code. On the left hand
side (Fig. 5 (a)) we see the sliding windows approach while on the right hand side
(Fig. 5 (b)) the generalized Hough transform is summarized.

For the sliding window approach, a window smaller than the image is defined
and in its area the object will be searched. If the confidence for the object is high,
the region is often marked as occupied to prevent the system from searching for
other objects in this region. Since the system normally has no prior information
about the location of an object, this window is moved over certain places with
changing size all over the image. This results in high computational costs and an
often underestimated overhead, since for certain locations in the image the same
calculations must be performed only for different windows.

The Generalized Hough Transform processes the whole image only once. The
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overall idea is to find the object by voting for its center of gravity. In the case of
a circle, this would mean that all points on the circle vote for the center-point.
Since again the system does not have any prior information this involves a voting
for all possible circles through this point. For often voted parameter setting the
Hough space will show dense regions. These dense regions are a hint for correct
settings of parameters and, therefore, a possible object. In the Generalized Hough
Transform the parameters for voting are read from some kind of look-up table.
In this table for all point locations in the image the corresponding votes in the
Hough space are stored. With such a table any shape can be defined.

These two approaches look similar and in fact only the two loops in Fig. 5 at the
beginning are interchanged. These approaches are just two sides of the same coin
as Lehmann et al. 8) have shown. The reason that they are looking so different
is only due to the fact of different voting strategies. While the sliding window
approach wants to verify a hypothesis for a certain object in the image, the Hough
transform analyse for which objects the information in the image could vote.

7.2 Proposed Method
Since our model has similarities to the Hough transform we can apply the

same localization approach, which we shortly explain in this section. For our
explanation we use Fig. 6 which is an example query image of our evaluation.

In the first figure (Fig. 6 (a)) we indicated with holes in the building matching
features of the correct object. Indicated are only the features for which the
correct object has the closest match. For the voting strategy only these features
would be taken into account. As we see, these features are concentrated on a
smaller, more unique part of the object. For the localization with the reference
point approach we also use matches of lower evidence. By doing so we want to
achieve two goals. First, we have to challenge with numerical problems and by
only using less features clustering would become fragile. Since incorrect matches
will be eliminated in the shape verification, clustering can only benefit from using
more features. Second, with only less features a meaningful localization of the
object is hardly possible. The object may be cut into different parts.

Figure 6 (c) shows in striped regions the resulting proposed reference points.
The larger the scale of these striped regions, the more proposed reference points
could be clustered. As we can see these points do not necessarily have to be

(a) Correct matching nearest
neighbor features.

(b) Final segmented object.

(c) Resulting proposed reference points and their clustering.

Fig. 6 Localization of the object.

placed over the object, which exemplary shows the higher generality of our model.
The image in Fig. 6 (b) shows the segmented object. For the calculation of this
image, we applied the segmentation algorithm of Felzenszwalb et al. 3) and blank
out regions for which the extracted features have no similarity with any features
from the database or have inconsistent matching in the reference points. The
algorithm of Felzenszwalb et al. calculates such segments based on the color
information of the image. With this algorithm one can control the size of the
resulting patches to avoid too small regions as they would result from highly
structured regions, e.g., trees.
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Fig. 7 Misleading object segmentation.

In the case of a reasonable visible object this works quite satisfyingly. If the
object gets more and more covered, the object and the background become one,
and the results of the segmentation algorithm are not accurate enough. Therefore,
the localization also includes parts of the background as we can see in the example
on the right side of Fig. 7.

For the Hough transform normally no prior knowledge about the shape is given.
Therefore, for every point in the image plane multiple votes in the Hough space
are generated. This corresponds with the second iteration as shown in the algo-
rithm in Fig. 5 (b). To keep this multiple voting in one point below a reasonable
limit, Leibe et al. require such a bounding box.

Our proposed method does not require such a bounding box since it has a
different voting strategy. Our system calculates something like “prior” knowledge
as explained in Section 4.2 with Fig. 2. From this knowledge we directly calculate
one vote. Thus in the sense of algorithm in Fig. 5 (b) we do not have the second
for-loop. This makes our model faster and release it from the need of a bounding
box.

8. Experiments and Discussions

In our experiment we analysed the performance of a simple voting strategy
as in Ref. 7), the weak geometric consistency proposed by Jégou et al. 4) and
our approach utilizing shape information with the help of the reference point.
As summarized in Section 6, the voting strategy only takes into account the
matching local features by ignoring shape information. The WGC is a state-
of-the-art model and verifies some simple shape information like the scale and
orientation of the local features. In detail we used:

Vote We roughly summarized the voting scheme in Section 3.2. In our uti-
lization we search for each feature from the query image, the feature from
database with the smallest distance which is at least below a certain thresh-
old. The object from which this nearest feature is extracted receives one vote.
The number of votes defines the order in the ranked list. The more votes,
the better the rank is.

WGC The Weak Geometric Consistency proposed by Jegou et al. is one of the
most recent approaches verifying shape information on the base of SIFT fea-
tures. The shape information in this model is based only on the local features.
From the matching features in the database and query image, the differences
in scale and orientation are calculated. These differences are the same for
all matches of the correct object, since the object can only be transformed
homogeneously in all its parts. In this method, the object which agglomer-
ates its matches for similar parameter settings is assumed to be the correct
object.
These differences are quantized and stored into two histograms, one for the
differences in scale and one for the differences in orientation. Let g(δlj ) be the
score in scale difference histogram bin δlj and respectively h(δθj

) the score
in a bin of orientation difference histogram. The score s resulting from the
matches is:

s = min

(
max
δlj

∈δl

g(δlj ), max
δθj

∈δθ

h(δθj
)

)
. (5)

8.1 Mean Average Precision
As performance measurement we used the mean average precision in short

mAP. For this value, the rank of the correct object in a sorted result list is taken
into account. In detail, let N be the number of retrieved proposed objects, then
the average precision Pave is:

Pave =
∑N

r=1(P (r) × rel(r))
NrD

(6)

where r is the rank, rel() a binary function on the relevance of a given rank, and
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P (r) precision at a given cut-off rank:

rel(r) =

{
1, if r is relevant;

0, otherwise.
, P (r) =

∑r
i=1 rel(i)

r
(7)

We obtain the mean average precision by finally taking the mean over all queries.
This value is more reasonable, since the better the rank, the higher is the mAP.

If the correct object is at the first rank, we have a mAP of 1, at the second 1
2 ,

then 1
3 , 1

4 and so on.
8.2 Public Dataset
We evaluated our method on the INRIA holiday dataset for which results are

available for weak geometric consistency. This dataset consists of images 1,491
from which 991 are training images and the remaining 500 are query images.
The mAP for the weak geometric consistency reported on this dataset is 61.16%.
By using more prior knowledge, like the images are always up-right, the authors
could push this value to 75.07%. However, we do not use such prior knowledge
so this is not our competitor. For this dataset our system achieved a mAP of
71.83%.

However, this dataset is not fitting for our motivation. It was created to find
similar images in the database and, therefore, the impact of background clutter is
limited. To simulate such a higher impact, we used the following temple dataset.

8.3 Temple Dataset
As a task for the temple dataset we let the systems recognize temples and

shrines from Japan. As training images we used all images from Wikipedia
provided for these buildings. In detail we learned all buildings which belong to
the classes “temple in Kyoto Prefecture” and “treasure of Japan.” The number
of objects is 84 while the number of provided images is 819.

By using such a public database the difficulties for the system are already high.
The objects have a high similarity among all classes, since they are all temples or
shrines. On the other hand, the objects are not segmented from the background
and so the database contains much information extracted from these regions.
This would not be a serious problem, if the background would be different for
the objects. However, this is not the case. In the background we often have trees

Fig. 8 Random example images of the distractor data set loaded from Flickr.

Fig. 9 Example query images from the temple data set. From left to right, top to bottom 3
images of Kinkaku-ji, 3 images of Ginkaku-ji and 4 images of Kiyomizu-dera are shown.

or persons. These trees have a high similarity in all images. Voting based on
these features will result in an unexpected ranking of the objects.

To analyse the stability of the systems we prepared a distractor image dataset.
The only use of these images is to disturb the systems. These images are seen
as incorrect if they are returned as a result of the systems. For this task we
downloaded images from Flickr. To simulate more than one image per object in
the database, we used a random number of them and defined them to be one
object. This is done as an additional challenge, since also for each temple the
system have more than one image.

Some of these distractor images are shown in Fig. 8.
As query images we prepared our own data set. Our objective is to realize

object recognition under difficult conditions. So we prepared the images of the
dataset to show the objects from many different viewpoint and containing various
amount of clutter in the fore- and background. In Fig. 9 a short sequence of these
images is shown. As we can see, in some images the object is covered by trees
and other objects. Even if for the buildings the background remains stable (e.g.,
trees), we still have to struggle with seasonal changes like red autumn leafs or
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Table 1 Results for the temple data set. All values are in percentage. Shown is the mean
average precision for the simple voting strategy (Vote), the weak geometric consis-
tency (WGC) and our proposed method (RP). The table shows the results for a
clean database without distractor images.

Vote WGC RP
Ginkaku-ji 31.28 32.86 35.30
Kinkaku-ji 37.40 41.99 50.47
Kiyomizu-dera 17.15 24.27 18.79
average 28.61 33.04 34.85

snow.
We performed the experiments in two steps. First the database only contained

the “correct” temples, as we receive them from Wikipedia. This database is
clean, since no “wrong” objects disturb the systems. In the next experiment we
increased stepwise the amount of distractor images into the database.

8.4 Results and Discussion
In Table 1 we can see the results of our approach compared to a simple voting

strategy by only using the PCA-SIFT features and the weak geometric consis-
tency. For the discussion we split the results for the different objects. As we
see, our proposed method can increase the recognition performance for all ob-
jects compared to the simple voting approach. Remarkable are the results for
Kinkaku-ji, where the improvement is over 13%. The weak geometric consistency
(WGC) can also increase the performance. For Kiyomizu-dera this improvement
is remarkable while our proposed approach can hardly achieve an improvement
for this object. For this object our proposed method suffers from less match-
ing features from the nearest neighbor search. When the number of available
matching features is low, the space of proposed reference points is sparse and nu-
merical problems can not be addressed easily and the reference points can hardly
be clustered. The WGC has not to struggle from such numerical problems, if
only a few matches are available. Since it is working with quantized bins these
numerical errors do not effect the voting. From Table 1 we can also conclude an
averaged improved performance of our proposed method of around 6% for each
object compared to the simple voting approach and around 2% compared to the
WGC.

The results for the database with distractor images are given in Fig. 10. Com-

Fig. 10 Results for with distractor images increased database.

pared to the simple voting approach, the reference point improves the recogni-
tion performance even under such conditions. From this figure we can also see
a significant drop for all approaches in the region of around 10,000 additional
distractor images. For the WGC already after 2,500 distractor images, the first
improved performance nearly does not exists anymore. After 10,000 distractor
images the WGC has a lower recognition rate as the simple voting, while our
proposed method still achieves a significant improvement. This behaviour of the
WGC results from its only weak verification. With such a high amount of distrac-
tor images, the global histograms get disturbed and after the normalization no
meaningful separation among the objects is possible since the scores are nearly
equal.

Overall our proposed method can always increase the recognition performance.
However, that drop even after 2,500 distractor images is significant. Here our
chosen way to disturb the system is maybe too hard. Additionally as we can see
from the images in Fig. 9, many query images do not show the object perfectly.
Often only small parts are visible or the image is taken from far away. Without
distractor images, the results are unstable, i.e., only a few votes separate the
correct object from an incorrect. If only a few votes are missing, as it happens
after we add the 2,500 distractor images, the correct results descend in the rank-
ing. Despite from this fact, our proposed method is still capable of improving
the recognition performance as compared to the WGC which even has a lower
recognition rate than the simple voting.
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Table 2 Computational cost of the three main steps of the compared methods. Feature
extraction refers to the cost of the PCA-SIFT feature extraction, feature search to
the cost of finding suited nearest neighbors and shape calculation to the cost of
calculation of the WGC or the reference point of our proposed method (PM).

voting WGC PM
feature extraction 0.71
feature search 0.13
shape calculation 0.08 0.10
total 0.84 0.92 0.94

An overview of computational cost of the proposed method is given in Table 2.
We can see that the main computational cost resulting from the calculation of
the PCA-SIFT features. The costs for the nearest neighbor search and the shape
calculation are minor.

The weak point is still to find a near neighbor based on the descriptor part of the
PCA-SIFT vector. To keep the computational cost limited, approximations like
the hashing approach should be applied. If the system fails in this step to provide
the features of the correct object, every following step becomes meaningless. In
this evaluation our main purpose was the analysis of the stability under very hard
conditions. With changed parameters of the hash table we are able to improve
the performance with the drawback of an increased recognition time. Different
classifiers as for example support vector machines, are not suited for our task. By
using SVM a shape construction during recognition becomes difficult. It would
be possible to learn the shape during training which results in the requirements
of a segmented object.

With the proposed method we can improve the recognition performance on
a database without distractor images significantly by overall 6% and for some
objects even improvements of more than 13% are achieved. If only a few matching
features are available, e.g., in the case that the object of interest is only partial
visible, the shape reconstruction fails and the performance is lower as compared
to the WGC. However, for a database with distractor images the improvement
is still noticeable and does not result in a reduced performance as compared to
the WGC.

9. Conclusion

In this paper we have proposed a novel approach in calculation of a shape
model from local features to obtain the stability of local features and the power
to distinguish between many objects of global features. For this task we utilize a
reference point which holds the relative position of the local SIFT features. The
model is created and verified during recognition which results in a reduced cal-
culation time compared to the generalized Hough transform. With our approach
we are able to increase the recognition performance on a small database by 2%
and for a large database even up to 6% compared to the WGC which has even a
lower performance than a simple voting approach.

Further research will focus on better setting of parameters for the reference
point. Also additional information about local configuration to the next sur-
rounding features will be investigated. The results of an even further increased
database of one million distractor images will be analysed.
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