
IPSJ Transactions on Computer Vision and Applications Vol. 3 95–108 (Dec. 2011)

Survey Paper

Fundamental Strategies for

Solving Low-Level Vision Problems

Marshall F. Tappen†1

Low-level vision encompasses a wide variety of problems and solutions. Solu-
tions to low-level problems can be broadly group according to how they prop-
agate local information to global representations. Understanding these cat-
egorizations is useful because they offer guidance on how tools like machine
learning can be implemented in these systems.

1. Introduction

Computer vision tasks can be roughly divided into the categories of low-level,
mid-level, and high-level vision. These categories can be understood in the con-
text of a model of visual processing shown in Fig. 1, which is based on Fig. 1 in
Ref. 46). In this model, the processing culminates in a high-level, object-centered
representation, with the first step starting with low-level processing that extracts
scene and surface properties, such as depth, orientation, texture, and shading,
that will be used to identify the objects.

Given the breadth of problems that could be considered low-level vision prob-
lems, it is difficult to survey the entire field. Instead, this paper will focus on
identifying three general strategies that can be used to solve a wide-variety of
problems. The discussion will also include the incorporation of machine learning
into these systems.

The three general strategies are:
( 1 ) Systems utilizing only local information,
( 2 ) Systems that perform global processing via hand-specified local relation-

ships,
( 3 ) Low-level vision systems that perform global processing, again using lo-
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cal relationships, but using machine-learning to extract relationship from
training examples.

These strategies do not represent vastly different approaches, but instead build
upon each other. The key differences in these strategies lie in how the inter-
relationships between the values being estimated are modeled.

A benefit of viewing low-level vision problems from the perspective of these
three categories is that it helps clarify the design of the system. This is particu-
larly useful when machine learning techniques are part of the solution. Machine
learning offers a number of powerful tools for building systems that can cope
with the complexity of real-world imagery. Each of these tools is designed for
modeling particular types of relationships. Understanding the type of behavior
that is desired in the low-level vision system will help facilitate the choice of
mathematical models and algorithms.

The description of these strategies will be motivated by three different prob-
lems: lightness recovery, optical flow, and image enhancement. Learning is
straightforward to implement in the first two strategies, so the learning discus-
sion for these strategies, described in Sections 4.4 and 5.5, will be brief. However,
the topic of learning local relationships in data, covered in Section 6, will be the
focus of more discussion. The description of the final two strategies will largely
focus on Markov Random Field (MRF) models because they offer a straightfor-
ward model for implementing the desired behavior, though Section 7 will discuss
alternative approaches. It is useful to focus on the Markov Random Field model
because many of the issues raised in learning MRF models can be applied to
other models.

2. Low-Level Vision

Before turning to actual models, it is helpful to consider what is meant by the
term low-level vision. After the discussion in this section, Section 3 will begin
the discussion of the three strategies described above.

As pointed out in Ref. 46), low-level visual processing can be thought of as
extracting intrinsic images of the scene. In an intrinsic image representation,
first proposed in Ref. 4), intrinsic properties of the scene are represented using
an image for each characteristic. Useful characteristics suggested in Ref. 4) in-
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96 Fundamental Strategies for Solving Low-Level Vision Problems

Fig. 1 Low-level vision can be seen as the first step in a hierarchy of tasks shown here, which
is similar to Fig. 1 from Ref. 46). However, low-level vision can also be seen as an
important problem in itself.

clude distance, reflectance, orientation, and illumination. The pixel values in
each intrinsic image encode the value of that characteristic at the location of the
corresponding point in the scene. Thus, an intrinsic image representing orien-
tation will contain pixels encoding surface normal orientations, while the pixels
in an intrinsic image expressing reflectance could denote the albedo of different
points on the surface.

In this framework, low-level processing can be seen as a preliminary step on
the path to the ultimate goal of an object-centered description of the scene. In
Ref. 46), Szeliski stated that work on representations like intrinsic images, “was
motivated by disappointment with feature-based approaches to vision . . . ,” but
also pointed out contemporary work that successfully matched features directly
to object models, such as Ref. 37).

In recent years, progress in feature-based recognition has built on work such as
Ref. 37) and most current systems have taken a decidedly feature-based approach.
Successful bag-of-words systems, such as the system in Ref. 55) that was a co-
winner in the 2009 PASCAL Object Detection Challenge, can be seen as using

no intermediate representations. In these systems, dense features are identified
in the image and objects are found by analyzing the spatial distribution of these
features in the image.

2.1 Defining of Low-Level Vision in Terms of Operations
Even though low-level vision has not proven vital to object recognition, strong

low-level visual processing systems are still important. Before considering the
importance of low-level vision, which will be discussed below in Section 2.2, it
is useful to consider how low-level vision should be defined. Given that object-
based representations have not proven to be the most useful application of low-
level processing, it is reasonable to consider a definition of low-level vision that
is broader than the hierarchy outlined in Fig. 1.

As has been recently suggested by Weiss 57), a good working definition of low-
level vision is those processing operations that output dense pixel-based repre-
sentations. This is in line with Szeliski’s suggestion that low-level vision can
be thought of as extracting intrinsic images. In thinking about the relationship
between low-level vision and other processing, this definition of low-level vision
moves away from a hierarchy like Fig. 1. Instead of being an intermediate rep-
resentation on the path to a high-level result, low-level vision can instead be
thought of as encompassing a set of tasks where the most natural output is a
dense, pixel-based representation.

2.2 Why Pursue Low-Level Vision?
Although intermediate representations have not proven essential to object

recognition, low-level visual processing is still important. The following sections
will review these examples of important problems in low-level vision, including:
• Computer graphics applications
• The importance of low-level processing for image enhancement and editing
• The estimation of scene characteristics for tasks beyond recognition
2.2.1 Application in Computer Graphics and Image Editing
A significant trend in computer graphics over the last several years has been the

development of systems that use photographs to create renderings of the scene
pictured in those photographs. Often, this requires the extraction of intrinsic
images capturing key characteristics necessary to re-render the scene.

A good example of this type of graphics application is the pop-up photography
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work of Hoeim et al. 23). This system creates a 3D representation of the photo-
graph by identifying regions as being vertical, part of the ground, or belonging
to the sky. Once each region has been classified, the surfaces can be rendered
from different views. The key low-level visual processing step in this system is
the classification of every image region, and thus pixel, as belonging to one of
three geometric categories of vertical, ground, or sky.

The material-editing work of Khan et al. in Ref. 28) also shows how low-level
visual processing can be used to change and edit objects in an existing photo-
graph. In this work, heuristics are used to estimate quantities such as the local
orientation and depth of points on the objects to be edited. These estimates make
it possible to re-render objects with new material properties or replace objects
in the image with rendered models of new objects.

Low-level vision also has application in video-centered graphics applications. In
Ref. 60), Zitnick et al. use depth information recovered from multiple cameras to
implement a number of video effects. In this system, a depth image is estimated
for each camera view. These depth maps can be used to reason about the visibility
of pixels in different views.

In some systems, an intrinsic image is actually the desired output. In Ref. 34),
Levin et al. show how to estimate a full color image from a gray-scale image. The
result can be viewed as an intrinsic image representing the chromaticity at each
pixel.

2.2.2 Low-Level Vision and Image Processing
The definition of low-level vision as processing that leads to dense pixel-based

outputs makes image processing and enhancement systems a natural problem for
low-level vision.

The computer vision research literature has seen significant work on
image enhancement problems such as denoising 15),36),42),43),49),52), super-
resolution 12),16),45),52),53), dehazing 19), and image matting 35).

2.3 Low-Level Vision for General Applications
It is also important to note that many applications lie outside the object-

centered view in Fig. 1. In these applications, the intrinsic images returned by a
low-level processing system may be the key piece of data that must be extracted
from the scene. For example, if a robot is to successfully maneuver through an

area, it must be able to measure the relative location of possible obstacles in the
scene – making depth-maps returned by a low-level visual system a crucial input.

3. Paper Organization

As described in the introduction, the discussion of incorporating learning into
low-level vision problems will be facilitated by roughly dividing low-level vision
systems into three basic types:
( 1 ) Systems utilizing only local information,
( 2 ) Systems that perform global processing via hand-specified local relation-

ships, like Markov Random Fields,
( 3 ) Low-level vision systems that perform global processing, again using local

relationships, but using relationships extracted from training example using
machine learning algorithms.

The differences between these methods will be motivated by three different
problems, which will be introduced in Section 4. The process of incorporating
learning into each of these strategies will be discussed after each of these three
strategies is introduced. Table 1 summarizes some of the advantages and dis-
advantages of these strategies. The remaining sections of this paper will focus
on this discussion, focusing on how these different strategies are applied to the
problem. Section 8 will conclude by discussing important factors driving progress
on low-level vision.

4. Utilizing Local Information

Because low-level vision systems must output results at every pixel, the solu-
tions are typically structured as a set of operations repeated at each pixel. The
most basic solutions use only local information as the basis of these operations.
The following subsections each describe a significant low-level vision problem and
a basic solution that uses only local information.

In many of these problems, there are fundamental ambiguities that make it
impossible to solve this problem using only local information. These ambiguities
will drive the need for models built that capture relationships in the estimated
image.
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Table 1 This table summarizes some of the advantages and disadvantages of the three strategies discussed here for designing low-level vision systems.

Strategy Advantages Disadvantages

Local Information Only
• Typically requires relatively little computation.
• Problems typically reduce to standard machine learning tasks,

such, as classification and regression.

• Local information is not sufficient in many cases, such as the
aperture problem in optical flow.

Manually-Specified
MRF Models

• Global processing makes it possible to overcome ambiguities in
local information,

• Hand-specified models can be designed intuitively.

• Using an MRF makes it necessary to perform inference, which
can be computationally demanding.

MRF Models Trained
on Data

• Learning models from data makes it possible to use more com-
plicated models with more parameters.

• Because learning depends on inference, the learning process can
be very slow – and possibly intractable.

4.1 Optical Flow
In the optical flow problem, two frames, I1 and I2, are used to estimate the

motion at every pixel in the image. The solutions to this problem are typically
based on the brightness constancy equation, which can be expressed in a discrete
form as

E(u,v) =
∑
i,j

(I1(i, j) − I2(i+ ui,j , j + vi,j)2 (1)

similar to 44), where u and v encode the horizontal and vertical motion vectors
at each pixel in the image. This equation expresses that all points in the scene
should have the same brightness and that all changes are due to motion.

One of the most well-known local solutions for the optical flow problem is the
Lucas-Kanade approach 38), which solves for the motion by solving a series of
quadratic approximations to the local brightness constancy equations. The key
assumption in these approximations is that motion is constant over a window
surrounding each point.

This type of local approximation can be limited because of the well-known
aperture problem. As shown in Fig. 2 (a), when only an edge is visible, the
motion seen inside the ring could either be caused by the bar moving vertically
or diagonally, as shown in Fig. 2 (b) and Fig. 2 (c). Using only local information,
the motion in (a) is ambiguous.

4.2 Separating Illumination and Albedo
Section 2 described how low-level vision can be thought of as extracting intrin-

sic images representing the different intrinsic characteristics of the scene. These
characteristics include the albedo and illumination of each point in the scene.

(a) (b) (c)

Fig. 2 These figures describe the aperture problem in optical flow. Perceived through the
aperture in (a), the motion appears to be diagonal. However, (b) and (c) show that
the same both horizontal and vertical motion could cause the same observation. This
is a fundamental ambiguity in computing optical flow from only local information.

Assuming that surfaces are approximately Lambertian, albedo refers to the pro-
portion of light reflected from the surface and the illumination of each point
expresses the angle between the surface normal and the dominant orientation
of the illumination. Figure 3 shows a synthetic example of a surface and the
corresponding shading and reflectance images.

In Ref. 32), Land and McCann propose the Retinex algorithm to solve this
problem, which is sometimes referred to as lightness recovery 26). The Retinex
algorithm is designed with a specific type of image in mind, but has been shown
to be remarkably robust on more complicated imagery 18).

The Retinex algorithm is designed for Mondrian images where the albedo is
painted from large squares of constant intensity and the illumination varies slowly
over the image. Figure 4 shows an example of this type of image. The Retinex
algorithm separates the albedo from the illumination in three steps:
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(a) (b) (c)

Fig. 3 These images show an example of how the image in (a) can be decomposed into the
albedo and shading images shown in (b) and (c), respectively.

(a) (b) (c)

Fig. 4 The images show an example of a Mondrian image. The Retinex algorithm is designed
to separate the albedo and illumination in images with a similar appearance. The
image in (a) is composed of the smooth illumination in (b) and an albedo pattern like
(c), which consists of large patches of constant albedo.

( 1 ) Compute the derivative along each scan-line in the image.
( 2 ) Find derivatives with a magnitude below a certain threshold and replace

those derivatives with zero.
( 3 ) Re-integrate along each scan-line to recover the estimated albedo image.

The Retinex algorithm is based on the assumption that the illumination varies
slowly, while changes in the albedo image will be caused by derivatives with a high
magnitude. Unfortunately, this fundamental assumption is frequently violated in
images of complex surfaces. Figure 5 shows a pair of image patches that appear
very similar. However, given the broader images, it is clear that one of these

Fig. 5 These images show how a system based on using only patches of data can encounter
difficult ambiguities. The two enlarged patches look very similar, but one patch comes
from an edge caused by a change in albedo, while the other comes from a change in
shading.

patches is an illumination change and one is an albedo change. A successful
system must be able to overcome this local ambiguity.

4.3 Low-Level Image Enhancement
Low-level image enhancement can be thought of as a problem where the goal is

to improve corruption of pixel intensities. This includes the problems discussed
in Section 2.2.2, like denoising, single-image super-resolution, and in-painting 5).

With only local information, the solution to most of these problems will primar-
ily involve local filtering or interpolation. Other types of local edge-enhancement
has also been considered, such as the method proposed by Greenspan et al., where
the edges of an image are boosted with non-linear processing 17).

For tasks where the data is fully observed, like denoising, the primary obstacle
is the correct choice of the window size when estimating the result. However, for
many tasks, like in-painting or super-resolution, data is missing and local pixels
may not provide enough information for a good result.

4.4 Learning Systems That Use Only Local Information
Using only local information, the learning problems in low-level vision directly

map onto traditional problems like classification and regression. Fortunately,
this also makes it straightforward to apply learning algorithms that have proven
successful, such as GentleBoost 14) and the Support Vector Machine 6). Given
the power of current learning algorithms, the challenge in implementing these
systems lies in choosing the appropriate features.

5. Global Processing Through Local Relationships

The limitations of local information, discussed in the previous section, make
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Fig. 6 Using only local information, the vertical edge at the center of the image could be
viewed as either a painted line or a sharp fold in the surface. However, if informa-
tion is propagated from the regions highlighted with circles along the edges, then the
classification can be disambiguated.

it necessary to perform global processing. Formulating this global processing is
one of the key problems in low-level vision.

Just as it is natural to express low-level processing in terms of operations that
are repeated at each pixel, it is natural to express global processing in terms of
local relationships. In Ref. 58), Weiss discusses how these local relationships can
be used to implement global behavior.

Figure 6 shows an example of how local relationships can induce global be-
havior for a shading and illumination problem. In the center of the edge in this
image, it is difficult to differentiate whether that edge is caused by a painted line
or crease. However, at the top or bottom of the edge, it is clear that this is a
painted line. To disambiguate the center of the edge, local relationships can be
induced between vertical neighbors along the edge. If these local relationships
constrain the neighbors along the edge to have the same classification as either
an illumination change or an albedo change, then the pixels at the left and right
edges can propagate their knowledge into the center pixels.

5.1 Markov Random Fields
These local relationships are conveniently implemented using Markov Random

Fields. A distribution that is a Markov Random Field can be expressed as

Fig. 7 This figure shows the graph for a pairwise lattice, which is a common model used for
pixel relationships in a low-level vision model.

p(x) =
1
Z

∏
c

ψ(xc) (2)

where x is the vector of random variables being estimated. The vector xc repre-
sents cliques, which can be thought of as subsets of pixels. The functions ψ(xc)
are functions on the values in each clique. These functions express the relation-
ships between pixels in the clique and can be referred to as potential functions 6).
These functions can be thought of as expressing the compatibility between the
different possible states of the pixels in a clique.

As an example, a commonly used model is the pairwise lattice, where relation-
ships are expressed between vertical and horizontal neighbors. For a four-pixel
model, with labels shown in Fig. 7, the model could be expressed as

p(x) = ψ(xa, xb)ψ(xc, xd)ψ(xb, xd)ψ(xa, xc) (3)
What is notable about the structure of Eq. (3) is that the model is limited

to the pairwise interactions. An important aspect of designing low-level vision
systems is keeping the local relationships as simple as possible. This reduces the
complexity of both the design of the potentials and the inference process, which
will be discussed in Section 5.2. Pairwise models similar to Eq. (3) are particularly
popular because they can implement the propagation behavior discussed earlier,
in Section 5, or can be used to smooth out noisy, inconsistent decisions based on
local information.

This type of model is also known as a graphical model because each element of
x can be represented as a node in the graph with edges representing the structure
of the clique potentials. The graph representation of the pairwise model in Eq. (3)
is shown in Fig. 7. The graphical model is a flexible, powerful tool for designing
probabilistic models. A full discussion of these models is not possible here, but
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excellent references include Refs. 6), 13), 29).
5.2 Inference in Markov Random Field Models
Given the distribution in the form of Eq. (2), the key problem is to use this

distribution to estimate values for x. In low-level vision applications, this is
most often accomplished by finding a vector, x∗ that maximizes Eq. (2). This
is sometimes referred to as MAP inference, where MAP is an abbreviation of
maximum a posteriori.

If x∗ is estimated in this fashion, the probabilistic details can be largely dropped
and the estimating x∗ can be viewed as simply minimizing an energy or cost
function, which can be found by taking the negative log of Eq. (2). This is a
particularly convenient route because it is no longer necessary to consider the
normalizing constant, Z, in Eq. (2).

The advent of powerful inference algorithms is one of the reasons that MRFs
are such a popular tool in low-level vision. As mentioned in the previous section,
an MRF can be represented as a graph. If the graph representing the MRF
has loops, then finding x∗ becomes NP-Hard 8), with some exceptions, including
certain binary-valued MRFs and Gaussian MRFs.

Fortunately, a number of algorithms for providing an approximate MAP so-
lution have been introduced, including the well-known Graph Cuts 8) and Belief
Propagation algorithms 41). A recent comparison by Szeliski et al. 47) presents
a good review of several different types of MRF-based low-level problems and
compares their performance on several different problems.

5.3 Connections to Other Types of Models
If only MAP inference is performed on the MRF, the probabilistic aspects of

the MRF, discussed in Section 5.1 become less important. As mentioned above,
with MAP inference in an MRF is equivalent to a model based on minimizing
a factorized energy function. From this point of view, the MRF is connected
to models based on optimizing energy or penalty functions, such as the KSVD
model of images 1).

5.4 Designing MRF Potentials for Low-Level Vision
The clique potentials, ψ(·), in Eq. (2) can be both hand-designed and learned

from data. Section 6 will focus on how they can be trained, while we focus on
hand-designed models here.

When potentials are hand-designed, they are typically designed to implement
smoothing or propagation behaviors. For these applications, the pairwise-lattice
is particularly popular, as mentioned above, because the clique potential func-
tions are only functions of two variables. For discrete-valued problems, such as
segmentation, the potential function becomes a table where each entry describes
the compatibility between a pair of states.

This compatibility is problem dependent. In Freeman et al.’s work on super-
resolution, the goal is to estimate a high-resolution image as a mosaic of individual
patches 12). The compatibility between patches at neighboring pixels is measured
by examining the similarity of the patches in an overlapping region between the
two patches.

Another commonly used type of potential is the Potts model. For an MRF
with three states per node, the clique potential has the form

ψ(xa, xb) =

⎡
⎢⎣
a b b

b a b

b b a

⎤
⎥⎦ . (4)

The defining characteristic of the Potts model is that one compatibility value is
used when the neighboring pixels have the same label and a different compatibility
value if the states differ, with the same compatibility value being used for all
pairs of differing states. The Potts model has been used for a number of different
applications, including stereo 8) and image enhancement 10). When the MRF is
used for smoothing, it is common to modify the difference in a and b based on
whether the observations indicate the presence of a discontinuity, as in Ref. 8),
where the image is used to find edges in the underlying surface.

5.4.1 Application of MRFs in Optical Flow
It is interesting to note that one of the classic optical flow algorithms, the Horn

and Schunck method 25), is essentially based around an MRF. The Horn and
Schunck method optimizes an energy function that includes both a data term
imposing brightness constancy and a smoothnes term that penalizes the flow
changing from pixel to pixel. These smoothness terms, which are expressed as∑

i,j

(u(i,j) − u(i+1,j))2 + (u(i,j) − u(i,j+1))2
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Fig. 8 This figure compares different functions used for enforcing smoothness in applications
like optical flow. The advantage of a penalty like the Lorentzian penalty is that its
growth slows down as the value of the penalty increases. This has the effect of letting
the surface break into piecewise constant sections.

+ (v(i,j) − v(i+1,j))2 + (v(i,j) − v(i,j+1))2 (5)

have the effect of propagating information from areas where the correct motion
is clear to areas of the frame where it ambiguous, such as the example shown in
Fig. 2.

In later work, Black and Anandan improved on this formulation by replacing
the quadratic terms with robust penalty. Figure 8 compares a type of robust
penalty, the Lorentzian, with a quadratic penalty. The robust penalty is useful
because it stops growing after the magnitude of the error grows beyond a certain
level. This has the effect of not enforcing smoothness once the cost becomes
too high. In the context of estimating a surface, this can be thought of as
enforcing the prior that the surface should be smooth, but is allowed to have
discontinuities. In Ref. 7), Black and Rangajaran show how this type of robust
potential is equivalent to the line process proposed by Geman and Geman 15),
where a separate random variable determines where the discontinuities should
lie.

As discussed recently in Ref. 44), the choice of the penalty function can affect
the performance of the system. In Ref. 44), Sun et al. discuss how different choices
in system design affect the performance of an optical flow system.

5.4.2 MRFs for Illumination and Albedo
In Ref. 51), separating illumination and albedo is posed as a classification prob-

lem, similar to the Retinex algorithm. As mentioned in the beginning of this sec-
tion, this classification can be ambiguous given only local information. Thus, the
MRF is configured to propagate information along edges. This is implemented
with a Potts model that strongly encourages pixels along an edge to have the
same label.

5.4.3 Hand-Designed MRFs for Image Enhancement
In image enhancement tasks, compatibility between overlapping patches is a

common approach. As described in Section 5.4, this was used in Freeman et al.’s
super-resolution system to choose the patches that form the high-resolution esti-
mate. Similar strategies have also been used for texture synthesis 31) and demo-
saicing 53).

5.5 Learning in Hand-Designed Models
In a hand-designed model, a simple classifier or regression system can be imple-

mented as a component of the system that is integrated in a hand-specified way.
This is related to an approximate learning technique, which will be discussed in
Section 6.3.1, where the system is trained on small subsets of the data.

6. Learning Local Relationships from Data

The MRF models discussed in the previous section provide a powerful tool that
typically leads to significantly improved results on most low-level vision problems.
The systems described in the previous section are similar in that they all rely on
hand-designed models.

Because these systems are hand-designed, they tend to be simple, often relying
on pairwise lattice models. This opens the question of whether performance can
be improved by examining more complex models and how these more complex
models should be constructed.

These questions parallel similar issues in the development of classifiers. Us-
ing rules like the Neyman-Pearson Hypothesis Test, it is possible to hand-design
classifiers based on the distribution of the observations and labels. The develop-
ment of classifiers like the Support Vector Machine have made it possible to use
training data to learn more complex, powerful classifiers than can be created by
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hand. These classifiers are more complex because the parameters of the model
are optimized directly on the data. This makes it possible to develop non-linear
models with much larger numbers of parameters than could be set manually.
In the SVM, for example, there is one parameter associated with each support
vector in the final classifier.

The power of optimizing classifiers on training data has made these models
an important component of most modern computer vision systems. Thus, it is
natural to pursue training strategies to improve the performance of MRF-based
low-level vision systems.

6.1 Learning MRF Parameters for Low-Level Vision
The following subsections will outline different strategies for learning MRF

parameters. Before describing different methods, Section 6.2 will introduce the
central problem in learning MRF parameters. Section 6.3 will then review meth-
ods for learning parameters. This discussion will start with simple methods that
are based on learning using local approximations and continue to newer methods
that perform more global optimizations.

6.2 Maximum Likelihood Estimation of MRF Parameters
As mentioned in Section 5.1, a probability distribution based on an MRF can

be expressed in the form shown in Eq. (2). With this distribution, the maximum-
likelihood method can be used to estimate the parameters of the MRF. Given
a set of training examples, t1, . . . , tN , and a set of corresponding observations,
y1, . . . ,yN , the negative log-likelihood function can be written as

L = −
N∑

i=1

∑
c

logψ
(
xi

c

)
+ logZ (6)

where xi
c is clique c in the ith image.

If this model depends on a vector of parameters θ, these parameters can be
found by minimizing the negative log-likelihood function. This is expressed for-
mally as

θ∗ = arg min
θ

−
N∑

i=1

∑
c

logψ
(
xi

c; θ
)

+ logZ(θ). (7)

In this formulation, both the potential functions ψ(·) and the normalization

constant, or partition function, are functions of the parameters θ.
The central problem in implementing the minimization in Eq. (7) is that eval-

uating the partition function is often NP-complete, just as finding the MAP
estimate is NP-complete. This makes it impossible to compute the log-likelihood
function, much less optimize it.

6.3 Approximate Methods for Learning MRF Parameters
A number of different strategies have been proposed for learning the parameters

θ despite the difficulties with computing the partition function. The following
subsections outline several strategies that have been successfully applied.

6.3.1 Learning with Local Approximations
One of the simplest strategies is to use approximations based on local data to

learn the MRF parameters. For example, in Ref. 51), the potentials are based on
a logistic regression classifier that estimates the probability of two pixels having
the same label. This classifier is trained directly from pairs of nodes.

The limitation of this approach is that this classifier is trained independently
for pairs of nodes. The logistic regression function that is used to create the
potentials is simply trained to estimate the probability of two neighboring nodes
having the same label. While this is likely related to the overall goal of correctly
labeling derivative values, it does not directly optimize the final objective.

The pseudo-likelihood approximation, used in Ref. 30), is a similar approxi-
mation where the log-likelihood is replaced with the log of the product of the
conditional distributions of each node, conditioned on all other nodes. This has
the effect of eliminating the need to compute the partition function 29).

6.3.2 Bounding the Partition Function
Another strategy is algorithms that bound the partition function, such as

Ref. 56). This approach was successfully used for segmentation in Ref. 33).
6.3.3 Sampling Strategies
If the negative log-likelihood function is optimized with a derivative-based al-

gorithm, the gradient can be expressed in terms of expectations of the clique
potentials 29). Unfortunately, computing the necessary expected values is also
typically intractable when computing the partition function is intractable. An
alternative to computing them exactly is to draw a set of samples from the
distribution defined by the particular values of θ, then use those samples to ap-
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proximate the expectation values. This strategy is used in the work of Zhu and
Mumford 59); where sampling is used to estimate MRF models of texture.

Typically, these samples are drawn using Markov Chain Monte-Carlo sampling
methods. Neal’s survey in Ref. 40) is an excellent introduction to these methods.

6.3.4 Contrastive Divergence
One of the disadvantages of the sampling strategy is that the computational

cost of generating enough samples to compute the expectation accurately can be
prohibitive. In Ref. 22), Hinton points out that this expectation can be approx-
imated from just a single sample and lead to good estimates of the parameters.
This strategy works in the same way as stochastic gradient descent, where the
parameter vector is updated using a gradient calculated from a small number of
examples. In stochastic gradient descent, using only a subset of the data to cal-
culate the gradient makes gradient computation fast, which makes it possible to
update the parameter vector many times. Updating the parameter vector many
times has the effect of averaging out the inaccuracies in the gradient generated
using only a subset of the data. In the same way, a single sample can be gener-
ated very quickly, which makes it possible to update the parameter vector often,
also averaging out inaccuracies in the gradient computation.

In Ref. 22), this is referred to as minimizing a quantity called the contrastive
divergence. One of the most well-known applications of this technique in low-
level vision is the Field of Experts model proposed by Roth and Black 42), which
will be discussed in Section 6.4. Contrastive divergence learning has also been
applied to segmentation problems by He et al. in Ref. 20).

6.3.5 Discriminative Learning of Parameters
Discriminative methods present an alternative to the maximum likelihood ap-

proach to estimating the MRF parameters. To understand how discriminative
methods can be applied for learning MRF parameters, it is helpful to review
the discriminative approach for training classifiers. When implementing a clas-
sifier, the defining characteristic of a discriminative classifier is that it is not
constructed by estimating the joint distributions of observations and labels. In-
stead, a function is directly fit for the sole goal of correctly labeling observations.
This function can be fit using different criteria, such as the max-margin criterion
used in Support Vector Machines or the log-likelihood criterion used in logistic

regression.
In estimating MRF parameters for low-level vision, discriminative methods also

avoid fitting distributions to the data. Instead, discriminative approaches define
alternate criteria for estimating parameters. Since distributions will not form the
basis for estimation, current discriminative methods base the learning criterion
on the MAP solution of the MRF.

As in Section 5.2, the MAP solution is the vector that has the highest proba-
bility or

x∗ = arg max
x

−
∑
C

logψ
(
xC

i

)
+ logZ. (8)

It should be noted that while the MRF in Eq. (8) is expressed in terms of a
probability distribution, the partition function, Z, does not depend on x and can
be ignored. In this view, the MRF can be viewed as simply defined by an energy
function over possible states of x.

The training procedure is based on a loss function that measures how similar
x∗ is to the ground-truth value. The goal during training is to minimize this loss
by optimizing the parameters θ so that the MAP solution of the MRF defined
by θ is as similar as possible to the ground-truth.

If the MRF is defined by an energy function E(x;y, θ), based on observations
y, then this training can be expressed as

θ∗ = arg min
θ
L(x∗, t)

where x∗ = arg min
x
E((x;y, θ) (9)

In this optimization, changing the parameters θ changes the MRF and also
changes the location of the MAP estimate x∗. The goal of the optimization is
to find a value of θ that makes x∗ as close to the ground truth t as possible, as
measured by the loss function L(·).

6.3.6 Optimizing Parameters in Discriminative Methods – Gradient
Descent

If the optimization of x∗ can be expressed as a closed-form set of differentiable
operations, then the chain rule can be used to compute the gradient of L(·) with
respect to the parameters θ.

As pointed out in Ref. 52), if the energy function defining the MRF is a

IPSJ Transactions on Computer Vision and Applications Vol. 3 95–108 (Dec. 2011) c© 2011 Information Processing Society of Japan



105 Fundamental Strategies for Solving Low-Level Vision Problems

quadratic function, which corresponds to an MRF that is also a Gaussian random
vector, then the MAP solution, x∗, can be found with a set of matrix multipli-
cations and a matrix inversion operation. These are differentiable operations,
so it is possible to compute the gradient vector ∂L/∂θ. While the quadratic
model typically does not perform as well as models like the Field of Experts 52),
and Ref. 49) show how the training process makes it possible to learn to exploit
the information in the observations to perform surprisingly well on both image
enhancement and segmentation tasks.

For models where x∗ cannot be computed analytically 49), and Ref. 3) propose
using an approximate value of the MAP solution. Both of these systems propose
using an approximate value of x∗ that is computed using some form of minimiza-
tion, that may not lead to a global minimum of the energy function E(·). If the
minimization is itself a set of differentiable operations, then the chain rule can
be applied to compute how this approximate x∗ changes as the parameter vector
θ changes.

These papers differ in the type of optimization used. In Ref. 49), the training is
built around an upper-bound minimization strategy that fits a series of quadratic
models during the optimization process. Taking a different approach, Barbu
proposes using a small number of steps of gradient descent, which leads to a very
efficient learning system 3).

6.3.7 Optimizing Parameters in Discriminative Methods – Large
Margin Methods

Just as the support vector machine uses quadratic programming to optimize the
max-margin criterion, quadratic programming can be used to learn parameters in
MRF models. In Ref. 54), Taskar et al. describe the M3N method, which is one
of the first margin-based methods for learning MRF parameters. This approach
poses learning as a large quadratic program and and has been pplied to vision
problems by Anguelov et al. 2).

The most influential approach, across all options for learning MRF parameters,
is the cutting plane approach for training 27). In this approach, the inference
system is used as an oracle to find results that violate constraints in the training
criterion. A major advantage of this approach is that it does not require that
the inference process be differentiable in some way. This makes it possible to use

a wide variety of structures, including MRF’s where inference is intractable 11).
Recent vision systems based on this training approach include 9),48). In addition,
a high-quality implementation of this algorithm is available in the SVMStruct
package 27).

6.4 Application and Benefits of Learning to Low-Level Problems
These learning systems have made it possible to learn more complicated, better

performing models of images than could be fit by hand or with only local evidence.
An influential, recent model is the Field of Experts model proposed by Roth and
Black 42). This model uses robust penalty functions 7) to penalize the response of
a set of higher-order filters. In Ref. 42), this results in a model defined by 245×5
filters with associated weights. This models led to significant improvements on a
number of tasks, including denoising, in-painting, and the estimation of optical
flow.

These methods have also led to improved capabilities in estimating albedo
and shading images. The binary-valued MRF used in Ref. 51) was changed to a
continuous-valued, quadratic MRF in Ref. 50). This made it possible to train the
MRF discriminatively. The resulting model was able to produce estimates with
less noise and artifacts than the classification-based system.

7. Learning-based Low-level Vision Systems without an MRF

Throughout this paper, the discussion on learning in low-level vision has been
focused on systems based on Markov Random Fields. The MRF provides a
rigorous, well-specified tool for gathering and propagating information across the
image. As mentioned in the introduction, an MRF model is also similar to other
types of low-level vision models.

The following sections will first review the K-SVD model, which is similar to
the MRF model, then describe an alternate approach that is very different from
the MRF models presented.

7.1 The K-SVD Model of Images
While the K-SVD model for image enhancment, described in Ref. 39), is not

considered an MRF model, it has many similarities. In this model, image en-
hancement is posed as an optimization, similar to MAP inference in an MRF.
Formally, this optimization is described as
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{α̂ij , D̂, x̂} = arg min
D,αij ,x

λ||x − y||22 +
∑
i,j

μi,j ||αi,j ||0 +
∑
i,j

||Dαij − Rijx||22,

(10)
where y is the observed image, x̂ is the estimated image, α are reconstruction
coefficients, and D is a dictionary that forms a kind of image model. The terms
depending on the dictionary are similar in form to potentials in an MRF.

In this optimization, the dictionary D is optimized during the reconstruction.
In Ref. 39), an initial estimate of this dictionary is produced by performing the
optimization over a set of training images. Because the minimization is over
the reconstruction and the dictionary, this optimization is similar in form to the
optimization in Eq. (9). A key difference is that the dictionary is expected to
change with each image to which it is applied. In an MRF model, in contrast,
the potentials typically do not change.

7.2 Cascading Classification
However, it should be noted that the MRF is not the only tool for accom-

plishing this behavior. The desired propagation and aggregation can also be
implemented using cascading layers of classification steps 21),23),24). This strategy
is fundamental to the photo pop-up work of Hoiem et al. 23). As discussed in
Section 2.2.1, this system operates by labeling pixels as belonging to one of three
categories. This labeling is created by beginning with multiple segmentations
then progressively merging segments into larger segments. The decision as to
whether to merge a segment is made by a classifier. This makes the labeling
process a series of classification steps.

This process is more formalized in Refs. 24) and 21). In these models, the image
is processed by layers of off-the-shelf classifiers. These classifiers can examine
both the observations and the results of the previous layers. The advantage of this
approach is that it can be implemented with standard classification techniques.

8. Learning for the Next Generation of Low-Level Vision Systems

The MRF learning algorithms discussed in the previous section have been par-
ticularly valuable for learning models of images because they have made it pos-
sible to learn higher order models that better match the low-level statistics of
images. The success of these models for image enhancement, and other applica-

tions, raises the question of how low-level vision systems can continue to improve.
With the development of practical learning algorithms, MRF models, and sim-

ilar classification-based strategies discussed in Section 7, are able to perform well
at modeling the local relationships in data. However, system performance will be
limited by whether those local relationships are correctly specified. This is a sig-
nificant limitation in current systems because many systems apply the same local
relationships across the whole image or only make modest adjustments based on
image information.

However, the advent of strong learning techniques makes it likely that systems
are already capturing much of the information available at the local-level. It
can be argued that further progress can only be made by involving higher-level
recognition. With high-level recognition, the knowledge of the objects and types
of surfaces in the image can be used to better determine the local behavior of
pixels.

Interestingly, this inverts the hierarchy in Fig. 1. Instead of serving as a step for
high-level vision, high-level vision becomes a tool for improving low-level vision.
As problems in both areas progress, the major advances in the capability of low-
level vision systems will likely come from the combination of low and high-level
vision systems.
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