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A method for detecting moving objects using a Markov random field (MRF)
model is proposed, based on background subtraction. We aim at overcoming
two major drawbacks of existing methods: dynamic background changes such
as swinging trees and camera shaking tend to yield false positives, and the ex-
istence of similar colors in objects and their backgrounds tends to yield false
negatives. One characteristic of our method is the background subtraction us-
ing the nearest neighbor method with multiple background images to cope with
dynamic backgrounds. Another characteristic is the estimation of object move-
ment, which provides robustness for similar colors in objects and background
regions. From the viewpoint of the MRF, we define the energy function by con-
sidering these characteristics and optimize the function by graph cut. In most
cases of our experiments, the proposed method can be implemented in (nearly)
real time, and experimental results show favorable detection performance even
in difficult cases in which methods of previous studies have failed.

1. Introduction

Extracting moving objects from image sequences is a fundamental problem
in computer vision systems that are used in a variety of applications, such as
video surveillance, human tracking, motion analysis, and image synthesis. In
most of these cases, a stationary camera is used, which means that background
subtraction techniques can be a powerful tool for object detection.

The simplest implementation of background subtraction is to evaluate the dif-
ference between a background image (captured previously or estimated) and a
current image in a pixel-wise manner, and then thresholding the difference value
to determine the pixels that belong to moving objects. This simple background
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subtraction is used in many applications, because it can be easily implemented
with low computational costs and without any a priori knowledge of the target
objects. However, this method has some major drawbacks. First, it cannot adapt
to dynamic background changes, such as fluttering leaves, illumination changes,
or camera shaking. Second, the detection performance deteriorates when moving
objects and the background contain similar colors. These drawbacks generally
produce false positives and false negatives, respectively.

In this paper, we deal with such pixel-level moving objects detection, and
present a novel method for overcoming the above-mentioned drawbacks. In our
approach, we define an energy function based on a Markov random field (MRF)
and minimize the function by graph cut 1),2). The proposed method holds multiple
background images to cope with dynamic background changes and performs the
subtraction process with small computational costs using the nearest neighbor
method. Further, object motion is estimated by interframe local patch matching
for each pixel, and incorporating this motion information into the energy func-
tion leads to favorable performance, even when the colors in the foreground and
background are similar. Before describing the details of our method, we briefly
review some previous approaches.

1.1 Previous Work
Many algorithms have been proposed to tackle the false detection due to dy-

namic background changes. Most of these algorithms attempt to model the
distribution of the background and often that of target objects as well. Refer
to Ref. 3) for an inclusive survey of background modeling techniques. Wren, et
al. 4) used a single Gaussian distribution to model both the background and tar-
get objects (usually human), and the distributions were updated every frame.
Haritaoglu, et al. 5) adaptively determined the binarization threshold according
to the maximum and minimum of pixel values in multiple background images
updated in frame by frame. Further, they achieved human tracking based on the
current subtraction result and the location of previously tracked objects. Stauf-
fer and Grimson 6) utilized the Gaussian mixture model in a pixel-wise manner
to model the background and provided an update rule for parameters of the
distributions based on the K-means method. They detected moving objects as
pixels indicating the low likelihood of background. Elgammal, et al. 7) stressed
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that nonparametric distributions were needed to adapt to more general and com-
plex background variations. From this viewpoint, they constructed a background
model by means of the Parzen estimation. Ko, et al. 8) utilized a histogram as
a nonparametric model and measured the Bhattacharyya distance to determine
the fore/background assignment. Because most of these methods construct pixel-
wise distributions, they are generally susceptible to noise. Thus, post processing
such as erosion and dilation has often been utilized to obtain less noisy output.
As another direction, Dickinson, et al. 9) addressed this problem by modeling ho-
mogeneous regions using a mixture of Gaussians in color and spatial coordinates.

Approaches based on MRF have also been proposed, which naturally incorpo-
rate prior knowledge of local smoothness, i.e., spatially (and temporally) neigh-
boring pixels tend to have the same affiliation (object/background in this case).
This provides better robustness to noise compared with former approaches. The
energy minimization on MRF is equivalent to the maximum a posteriori (MAP)
estimation described in Section 3.1. Kamijo, et al. 10) utilized the spatiotempo-
ral MRF to determine the correct boundary for occluded regions among multi-
ple objects. Because they resorted to the time-consuming Markov chain Monte
Carlo method (Gibbs sampler) to minimize their energy function, the applica-
tion of MRF was limited to local regions. Howe and Deschamps 11) defined a
global energy function consisting of two terms, the subtraction value and the
local smoothness, and minimized the function by graph cut. This method, how-
ever, uses only one background image and cannot adjust to dynamic background
changes. Migdal and Grimson 12) modeled the background using the Gaussian
mixture model 6), and then defined the energy function incorporating spatial and
temporal smoothing effects. Although this approach can adjust to dynamic back-
ground changes, the Markov chain Monte Carlo method is required to minimize
the energy function, which does not seem practical in terms of computational
cost. Sheikh and Shah 13) generated distributions of target objects and back-
ground with a single function for each in the entire image and updated them
in a frame-by-frame manner. They utilized not only RGB values but spatial
locations as feature vectors and constructed these distributions by the Parzen
estimation. The energy function consisting of the induced log likelihood ratio
and the local smoothness is minimized by graph cut. Although their method is

currently thought of as a sophisticated algorithm in terms of quality, the perfor-
mance tends to deteriorate at the regions where objects and their background
have similar colors, because they did not explicitly utilize motion information.
Sun, et al. 14) proposed a smoothness term in the energy function to reduce the
segmentation errors caused by strong edges in background regions. Mu, et al. 15)

reduced computational cost by performing energy minimization only for bound-
ary regions which are separately obtained with simple block-based segmentation
using the frame difference and color information. Tang and Miao 16) improved the
Gaussian mixture model and the update rule of relevant parameters to acceler-
ate the processing speed of the MAP-MRF estimation. As another application of
MRF in regard to background subtraction, McHugh, et al. 17) proposed a simple
idea for determining the binarization threshold on a pixel-by-pixel basis using
the MRF model.

The above-mentioned methods share the common weakness that the perfor-
mance of their algorithms often deteriorates when similar colors exist in objects
and the background. Zhang and Yang 18) recently found that detection errors
(mainly false negatives) due to color similarities occurred around a confusion
point, where the posterior probabilities of belonging to the foreground and back-
ground were equal. To reduce the false negatives in such regions, they purposely
increased the posterior probability for foreground and decreased that for back-
ground. However, the performance improvement is still not sufficient, because it
does not incorporate object-motion information which can be key to overcoming
this difficulty. Yu, et al. 19) utilized the idea of tracking for object detection. In
their algorithm, the foreground and background spatial-color (five-dimensional)
Gaussian mixture models are combined, and the spatial components are first up-
dated for this joint model using the EM algorithm with color components fixed,
which corresponds to the object tracking. Then, graph cut is performed for mini-
mizing the induced energy function, and the color components are finally updated
according to the segmentation results. Because the reliability of color components
is important for updating spatial components, the specific designation of target
objects is required in some way, and the objects coming into frames are difficult
to detect. Tang and Gao 20) focused on the contour of segmented objects and
incorporated its similarity to the prior shape silhouette in the energy function
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of MRF. To consider the time evolution of the silhouette by dynamic modeling,
multiple learning samples are usually required, which seems unpractical in real
situations. Bugeau and Pérez 21),22) utilized motion information (optical flow) as
well as color information to construct the energy function although their purpose
was not necessarily to improve the accuracy when similar colors exist in objects
and the background.

The main objective of this study is to resolve this remaining problem caused
by color similarities, while maintaining the tolerance for dynamic background
changes. Under the framework of MRF, we define an energy function based on
background subtraction and motion estimation without any prior knowledge of
target objects, and minimize it by graph cut. Our major contribution is in the
definition of the energy function, and this will be described in Section 3 after we
show the flow of our proposed method.

2. Algorithm Flow

In this section, we provide an overview of the flow of our algorithm. Figure 1
shows the block diagram of our algorithm, and the process of each block is briefly
described below. A detailed explanation is given in the next section from the
viewpoint of constructing the energy function.
Generation of initial background samples: We initialize background sam-

ples. Even when a background scene without moving objects is not captured,
in most cases, the (sub-)median images for a few hundred frames can work
well as background samples.

Increment of frame number: The following processes are executed on a
frame-by-frame basis.

Background subtraction by nearest neighbor search: For each pixel, we
perform background subtraction, in which the difference between the pixel
value in the current frame and that of each background sample is calculated.
The minimum among calculated subtraction values, which is obtained by the
nearest neighbor search, constitutes the data term of our energy function.

Interframe matching for foreground objects: We perform interframe lo-
cal patch matching only for the object regions of the previous frame. The
pixels predicted as the object destination are biased toward the foreground

Fig. 1 Block diagram of our algorithm. Note that our algorithm is basically executed on a
frame-by-frame basis and that the interframe matching for object regions is performed
between the current frame and the adjacent former frame.

by modifying the data term.
Estimation of object regions by graph cut: We estimate the object and

background regions by minimizing the energy function consisting of the data
term and the spatial smoothing term. This minimization is conducted by
graph cut.

Update of background samples: We update the background samples every
δ frames by discarding the oldest sample and incorporating the current frame.

3. Energy Function

Let us first define notation used in this paper. The RGB values of pixel
i (i = 1, 2, . . . , N ; N is the number of pixels) in the t-th frame (t = 1, 2, . . .)
are expressed as ct

i (three-dimensional vector), and the set of them is denoted
as Ct = {ct

1, c
t
2, . . . , c

t
N}. In this paper, the detection of moving objects means

assigning each pixel a label lti(∈ {0, 1}), which indicates that it belongs to the
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moving object by lti = 1 and background by lti = 0. The array of these labels is
expressed as a vector, lt = (lt1, l

t
2, . . . , l

t
N ). The index of a frame number, t, is

omitted when there is no possibility of misunderstanding.
3.1 MAP-MRF Estimation and Energy Minimization
In the t-th frame, the posterior probability of labels, lt, for a given image Ct

can be defined as the following Gibbs distribution,

P (lt|Ct) =
1

Z(Ct)
exp{−U(lt;Ct)}, (1)

where U(lt;Ct) is an energy function that should take smaller values in more
favorable configurations of lt, and Z(Ct) =

∑
lt1

∑
lt2
· · ·∑lt

N
exp{−U(lt;Ct)} is

a normalization factor. According to the MAP strategy, the detection results,
lt∗, are estimated by maximizing this posterior probability.

Our energy function is defined as

U(lt;Ct) = λ
∑
i∈P

vi(lti ; c
t
i) +

∑
(ij)∈N

sij(lti , l
t
j ; c

t
i, c

t
j), (2)

where vi is generally called the data term representing the unlikelihood of assign-
ing pixel i to an object or background label, and sij is a smoothing function of
neighboring pixels, which reflects the prior knowledge for general images. These
two terms are described in more details in the following sections. Parameter
λ(> 0) controls the balance between these two terms. The symbols, P and N ,
represent a set of all pixels and that of all nearest neighboring pixel pairs, respec-
tively. This energy function is defined on an MRF where the pixel-wise posterior
probability derived from the above joint posterior probability (1) depends only
on labels of the nearest neighbors.

This MAP-MRF estimation is equivalent to the minimization of the energy
function, i.e.,

lt∗ = argmin
lt

U(lt;Ct). (3)

In this study, this optimization is implemented by graph cut described in Sec-
tion 3.4 instead of maximizing the posterior probability Eq. (1).

3.2 Data Term for Label Assignment
3.2.1 Nearest Neighbor Search Among Multiple Background Images
We require a background model, which can adapt to dynamic background

changes. As described in the previous section, the Gaussian mixture model and
the Parzen estimation using multiple background images has been recently used
for this purpose. Given a new observation, thresholding the induced background
probability or the likelihood ratio between foreground and background proba-
bilities is a representative method for determining the fore/background assign-
ment. However, under this probabilistic strategy, in some cases, the rare patterns
with small contributions in the learning samples are erroneously detected as fore-
ground. Even such infrequent background patterns should be correctly recognized
as background. We present an efficient nonparametric background modeling that
achieves this purpose by means of the nearest neighbor method.

In the t-th frame, L previously observed images ctα(tα < t;α = 1, 2, . . . , L)
serve as background samples written as Bα ={bα

1 , bα
2 , . . . , bα

N}. Note that these
samples do not necessarily consist of successive L frames. We also retain the es-
timation results for the corresponding previous frames ltα , which are reexpressed
as mα = (mα

1 ,mα
2 , . . . , mα

N ).
We evaluate the following value to determine whether the pixel i in the t-th

frame belongs to objects or the background:

dt
i = min

α s.t. mα
i
=0
||ct

i − bα
i ||2. (4)

As small values of dt
i represent affinity to background and vice versa, the data

term vi(lti ; c
t
i) is defined by thresholding this value as

vi(lti =0; ct
i) = Θ(dt

i − TA),
vi(lti =1; ct

i) = 1−Θ(dt
i − TA),

(5)

where TA is a threshold, and Θ(x) is the step function as Θ(x) = 1 (x ≥ 0),
and 0 otherwise. However, for pixels which have no valid background sample,
i.e., m1

i = m2
i = . . . = mL

i = 1, we define vi(li = 0; ci) = vi(li = 1; ci) = 0.5. In
the above process Eq. (4), the nearest neighbor of ct

i is searched for among L

background samples in the RGB space. When these L samples include probable
background variations by setting L appropriately, this model can adjust to dy-
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namic background changes. Furthermore, this method can correctly determine
even infrequent patterns as background using the nearest neighbor search.

Considering that the data term vi takes only the value of 1 or 0, it does not
necessarily require L references to implement the process Eq. (4). Once a value
below TA is found, the remaining references are redundant, which significantly
contributes to reducing computational costs. The proposed method requires L

references only when the data term becomes 1. Therefore, when the region of
moving objects is relatively small, which is common in most real situations such
as video surveillance, the required calculations can be reduced greatly.

We need to renew the background samples as time advances. Although it is
ideal to pick a small number of representative frames that can cover all probable
background patterns, the automatic selection of these frames is highly difficult.
Thus, in our study, the background images are simply updated every δ frames
(usually, a few frames) by discarding the oldest sample and incorporating the
current frame. In this process, the objects that are stationary during some frames
are eventually incorporated into the background. This seems reasonable because
our purpose is to detect moving objects, and when the object moves again, it can
soon be correctly detected as the foreground.

In the situation where we can obtain enough background images without mov-
ing objects, they are available as L initial background samples. Otherwise, we
convert the first 2L frames to gray-scale images, then sort the 2L intensity values
for each pixel, and finally extract L RGB components corresponding to the in-
tensities that lie around the median. In most of the cases that we tried, L images
generated from these extracted RGB values serve well as the initial background
samples.

3.2.2 Utilization of Motion Information
The performance in many previous studies deteriorated when objects and back-

ground contained similar colors. For such difficult regions, the difference value
defined by Eq. (4) is small, and this probably leads to false negatives. To solve
this problem, Zhang and Yang purposely multiplied the probability of belonging
to the foreground 18). However, they did not explicitly utilize motion information,
and as a result, false positives conversely occur around boundaries between the
foreground and its background. Each frame generally has significant correlations

with the previous frame, and consequently, using the history of detection results
is effective for subsequent estimation. In our method, we track the object by
a small patch (block) and modify the data term only for relevant pixels. From
the viewpoint of optical flow, we implement interframe matching and modify the
value of vi obtained by Eq. (5).

In the t-th frame, the following processes are performed only for pixels where
lt−1
i =1 (i.e., the object regions estimated in the previous frame).
1) For the (t−1)-th frame, we define a 15-dimensional vector consisting of RGB

values of pixel i and its four nearest neighboring pixels. This vector is ex-
pressed as gt−1

i .
2) For the t-th frame, a square search region of w pixels on each side centered at

pixel i is considered, and this region is expressed asW(i). The 15-dimensional
vector for pixels in the region are expressed as gt

j (j ∈ W(i)).
3) The pixel j∗ in region W(i) having the minimum matching error with gt−1

i

is obtained by

j∗ = argmin
j∈W(i)

||gt
j − gt−1

i ||2. (6)

4) In the case of i �= j∗ and ||gt
j∗ − gt−1

i ||2 < TB , the data term is modified so
as to increase the affinity of pixel j∗ to objects as

vt
j∗(ltj∗ =0; ct

j∗)← vt
j∗(ltj∗ =0; ct

j∗) + β. (7)

In this process, TB and β (>0) are predetermined parameters. When the best
matching point is the same as the original pixel, i.e., i=j∗, we do not modify
the data term because a pixel of a false positive in the previous frame often
matches itself, and a pixel of a moving object should not match itself.

Parameter β can be regarded as a temporal smoothing term on a three-
dimensional MRF, representing that the most similar pixels in terms of the
above 15-dimensional local vectors are expected to belong to object regions in
the current frame. Further, the spatial smoothing term is also incorporated in
Section 3.3.

There are other possibilities for utilization of motion information. For in-
stance, we can employ a probability density estimation based on the proposed
15-dimensional joint features. However, since these inference methods also re-

IPSJ Transactions on Computer Vision and Applications Vol. 3 9–20 (Mar. 2011) c© 2011 Information Processing Society of Japan



14 Object Detection Using Background Subtraction and Foreground Motion Estimation

quire more computational cost, we adopt the above simple motion estimation
on the basis of optical flow for real-time implementations. The extension of the
current framework is left for future works.

The 15-dimensional vector defined above is expected to incorporate color tex-
ture information to some extent and be useful for object detection. For real
images, even if some regions are not visually distinguishable, the RGB values of
pixels included in these regions usually have at least slight differences. Multiple
dimensions in a patch are expected to enhance these (slight) differences due to
the increase in possible configurations. Utilizing a patch size larger than the five
pixels (reference pixel and its four nearest neighbors) tends to invoke detection
errors, particularly in boundaries between the foreground and background. This
tendency becomes pronounced when the target objects are fairly small because
the background region may occupy most of the patch and the contribution of
objects is very small. The image sequences we deal with in Section 4 include rel-
atively small objects; therefore, we limited the patch size to the five pixels. We
have also used this 15-dimensional vector for the segmentation of static images 23),
and its effectiveness and some comparisons are shown there.

3.3 Spatial Smoothing Term
When neighboring pixels have similar RGB values, labels for these two pixels

are expected to be the same. This prior knowledge is incorporated into the energy
function as a smoothing term defined by

sij(li, lj ; ci, cj) =
1

ln(||ci − cj ||+ 1 + ε)
|li − lj |, (8)

where ε� 1. Since a smoothing term utilized in some previous methods such
as Refs. 11)–13) does not reflect the influence of the gradient between the pixels,
estimation errors tend to arise around foreground and background boundaries.
For segmentation of static images, an edge-preserving smoothness term has been
known to be highly effective 24),25).

3.4 Optimization by Graph Cut
Minimization Eq. (3) is a combinatorial optimization problem, and its imple-

mentation with respect to whole variables l=(l1, l2, . . . , lN ) seems difficult. Re-
cently, graph cut algorithms have been used to solve this type of MAP-MRF
optimization within a practical time scale not only for moving object detection

but also for segmentation, stereo matching, and so on 26),27).
Graph G = 〈V, E〉 consists of a set of vertices V including two special nodes,

called source and sink, and a set of (directed) edges between nodes E ⊂ V × V.
An edge from node i to node j is assigned with the capacity expressed as q(i, j).
The minimum cut problem is to divide the set V into two subgroups, such that
each group includes only a source or sink, and the sum of the capacity of excluded
edges is minimized. This problem can be solved in the polynomial order with
respect to the number of nodes 1),2).

According to the argument of Boykov and Jolly 26), in the current problem, the
special nodes, source and sink, correspond to a moving object and background,
respectively, and the other general nodes correspond to pixels. Defining the
capacities as

q(i, j) = q(j, i)

=

{
1

ln(||ci−cj ||+1+ε) ((ij) ∈ N )
0 otherwise,

q(source, i) = λ · vi(li =0; ci), (9)
q(i, sink) = λ · vi(li =1; ci),

the solution of this minimum cut problem is equivalent to that of Eq. (3). We
use the efficient algorithm proposed by Boykov and Kolmogorov 28) to solve this
minimum cut problem.

4. Experimental Results

We investigated the performance of the proposed method for various sequences.
Although the values of the parameters λ,L, δ, TA, TB , β, and w significantly affect
the final detection accuracy, it is currently difficult to automatically optimize
them depending on sequences, which is the same as in most of the previous
studies. Because it seems impractical to use different values for each sequence,
we try to empirically (in a brute-force way) find the values of these parameters
used in common for every sequence to detect objects as favorably as possible.
Table 1 shows the tuned values of the parameters. Although the optimal value
of w actually depends on the velocity of moving objects which can be estimated
by the optical flow, w = 11 adapted to most of the sequences in our experiments.
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Table 1 The values of parameters.

λ L δ TA TB β w
0.22 50 3 250 350 3.6 11/31

Since the frame rate of the sequence for Fig. 5 (a)-(c) is so low that movements
of persons appear to be intermittent, we increased the value of w to 31 only for
this sequence. The parameters in previous methods used for comparison were
also optimized manually.

Figure 2 shows the effectiveness of our method. Both sequences have been
utilized in the context of the gait recognition problem 29),30) and published by the
authors. Figure 2 (a) and (e) depict the situation where a man with black pants
is entering a region of dark background. Results by the proposed method are
shown in Fig. 2 (b) and (f) indicating favorable detection performance. On the
other hand, the results without interframe matching (this corresponds to TB = 0)
are shown in Fig. 2 (c) and (g), and we can see that motion information is use-
ful in detecting the lower body of the person. Figure 2 (d) shows the value of
vi(li =0; ci) as binary images for these cases (left: with the interframe matching,
right: without the interframe matching). Pixels matching with object regions of
the previous frame are painted in red except for self-matched pixels, and it can
be seen that parts from the hip to thighs are appropriately tracked by using the
interframe matching, while this region shows an affinity to background without
the matching. Figure 2 (h) shows the result of simple background subtraction for
comparison. Although the detection area becomes large with a smaller thresh-
old, we also have more false positives in the upper-left region of swinging trees.
Because the simple background subtraction retains only one background sam-
ple, it is difficult to adaptively handle dynamic background changes. Figure 2 (i)
shows the result using the method of the Gaussian mixture model 6), where a
mixture Gaussian distribution serves as the background model. This result is
obtained by setting the parameters such that false positives in the upper-left re-
gion vanish, which conversely leads to false negatives in the object region. The
proposed method provides no false positives in the upper-left region because it
holds multiple background samples to handle background changes.

Figure 3 shows another example, in which the camera on a tripod is swinging

(a) Original image (b) Our result (c) without match (d) vi(li =0; ci)

(e) Original image (f) Our result (g) without match (h) Simple BS

(i) GMM (j) Smaller β (k) Larger β (l) Smaller λ

Fig. 2 Example of situations where a moving object and its background have similar colors.
(a), (e): The black pants of a person is in front of the shade of trees, which blurs the
boundary. (b), (f): Detection results of the proposed method. Motion information
of the target estimated by interframe matching works effectively for the detection.
(c), (g): Detection results without interframe matching. (d): The value of data term
vi(li =0; ci). Pixels in white and black represent vi(li =0; ci)=1, and vi(li =0; ci)=0,
respectively. Pixels matching with some foreground pixels of the previous frame are
red in the left image. (h): Results for simple background subtraction (BS). Setting the
threshold reasonably low, false detection in a upper-left region is pronounced because of
swinging trees. (i): Results using the background model constructed by the Gaussian
mixture model (GMM). Although this method can adjust to the swinging trees by
tuning some parameters included in the algorithm, false negatives become pronounced
in the object region. (j), (k), (l): Examples of estimation failure due to inappropriate
parameter settings.

and captured images are also shaking in every frame. Even in such a difficult
case, our results are favorable (Fig. 3 (b) and (j)). Figure 3 (d) and (l) show results
by the method of the mixture Gaussian distribution 6) with the parameters set
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(a) Original (324th) (b) Our result (c) vi(li =0; ci) (d) GMM

(e) Ground truth (f) Smaller L (g) Larger TB (h) Larger TB

(371st frame)

(i) Original (427th) (j) Our result (k) vi(li =0; ci) (l) GMM

(m) Ground truth (n) Smaller L (o) Larger TB

Fig. 3 Example of a situation where the camera is shaking. These are detection results for the
324th and 427th frames (figures (a) and (i)). Our results show favorable performance
(figures (b) and (j)). Figures (d) and (l) show results by the method of the Gaussian
mixture model 6) with parameters adjusted such that the object region is detected
as much as possible. In this case, false detection is pronounced all over the image
compared to our raw subtraction results before performing the graph cut, i.e., the data
term vi(li = 0; ci) (figures (c) and (k)). Ground truth data generated by hand 13) is
shown in figures (e) and (m). Results by changing the value of one parameter are
shown in the figures (f)-(h), (n), (o).

to detect a moving person as correctly as possible, which leads to a lot of false
positives in the background region despite the fact that the mixture Gaussian
distribution was originally introduced to adjust to dynamic background changes.
This is because infrequent background patterns cannot form a component large

(a) Precision (b) Recall (c) F-measure

Fig. 4 Quantitative evaluation. The precision (a), recall (b), and F-measure (c) are calculated
for the movies shown in Fig. 3. The superiority of our method compared to the method
of Sheikh and Shah 13) is observed in almost all frames. Values before the 270th frame
are excluded because there is no moving object in these frames. Around the 270th and
490th frames, the number of true positives is so small that the occurrence of only a few
more mistakes may have a large detrimental effect. Because the MAP-MRF estimation
tends to yield slightly smoother outlines of objects due to the smoothing term, some
of the evaluated values are relatively low for these frames.

enough to be correctly recognized as background. On the other hand, our method
on the basis of the nearest neighbor search can recognize such rare patterns as
the background correctly, as shown in Fig. 3 (c) and (k), expressing the value of
vi(li =0; ci). Using ground truth data manually produced by Sheikh and Shah 13)

(Fig. 3 (e) and (m)), a quantitative evaluation is performed for this movie by
calculating the precision, recall, and F-measure, defined as

Precision =
the number of true detected positives

the number of whole detected positives
, (10)

Recall =
the number of true detected positives
the number of whole true positives

, (11)

F-measure =
2

(1/Precision) + (1/Recall)
. (12)

Because the precision and recall are generally in relation of a tradeoff, the F-
measure is frequently utilized as an integrated criterion, which becomes 1 for
a perfect estimation without excess or deficiency. Figure 4 shows these three
quantities. Since our method incorporates motion information, it is expected that
false negatives decrease even when the foreground objects have similar colors to
their background (in this sequence, the clothes that a person wears have a similar
color to that of the ground). This can be observed from the fact that the recall
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of our method is better in almost all frames than that of the method of Sheikh
and Shah 13). On the other hand, the precision provides an indication of false
positives. Our precision values are better than or comparable to those of the
method of Sheikh and Shah in the former part of the sequence. However, our
precision becomes slightly lower in the latter part, because false detection comes
into existence at regions beneath the car around the 400th frame and these errors
remain (Fig. 3 (j)) until the 475th frame. This may be regarded as a kind of
side effect attributed to interframe matching, and in the worst case, this false
detection could be propagated with the expansion into the surrounding regions,
as shown below. From the viewpoint of F-measure, it can be said that except
for a fraction of the latter part, the performance of our method is better than
or comparable to that of the sophisticated method of Sheikh and Shah. This
indicates the effectiveness of the proposed method.

As described in the first part of this section, parameter tuning is important for
obtaining favorable results. Some failure examples due to inappropriate parame-
ter settings are shown in Fig. 2 (j)-(l) and Fig. 3 (f)-(h), (n), (o), where one of the
parameters is changed while the others remain unchanged. The smaller value of
β (= 1.5, in Fig. 2 (j)) reduces the effect of object tracking, and as a result, false
negatives increase as in the case of Fig. 2 (g). On the other hand, a too-large value
of β (= 10.0, in Fig. 2 (k)) tends to provide counterresults, because the interframe
matching is not necessarily correct and accidentally matched pixels are likely to
be determined as the foreground when such a large value of β is used. In the
worst scenario, these mismatched pixels are propagated in subsequent frames, as
shown in Fig. 2 (k). Also, adjusting the value of λ is generally crucial for energy
minimization in MRF. In Fig. 2 (l), the smaller value of λ (= 0.08, in this case)
over-smoothes the object outlines, and parts of the head and feet and the smaller
person moving around the center of the image are taken into the background.
As for the sequence of Fig. 3, it seems that a certain number of background sam-
ples are needed to adjust to dynamic background changes due to the shaking of
the camera. When setting the smaller value of L (= 10, in Fig. 3 (f), (n)), the
number of pixels having vi(li =0; ci) = 1 increases. As a result, we can observe
the expansion of object regions in Fig. 3 (n), in which the smoothing effect works
negatively to bridge the two objects, while it works positively to suppress the

unfavorable false positives in Fig. 3 (f). In the limit of infinite TB , the modifica-
tion of the data term is necessarily performed for the pixel having the minimum
matching error, unless it is the self-matched pixel. However, this operation could
increase false positives if a pixel in the actual background regions is (weakly)
matched, as happens for various reasons. When setting the larger value of TB

(= 300, in Fig. 3 (g), (h), (o)), we run into this undesirable situation in the mid-
dle of the sequence (Fig. 3 (h)), and worse, these false positives are propagated
around (Fig. 3 (o)).

Further examples in which similar colors are included in both target objects
and background regions are shown in Fig. 5. These movies except the last two
were used in recent works 13),18), and those previous algorithms could not achieve
sufficient detection performance in the extracted frames (for their results, see
Refs. 13), 18)). Our results are far more favorable than the previous algorithms,
and in most cases, motion information works effectively for detecting objects,
even when the foreground and background contain similar colors. In Fig. 5 (a),
the detected region on the right-hand edge of the image is another entering object,
not a false detection. In Fig. 5 (d), a car around the center of the image is detected
because it has just stopped there, and the background samples have not yet been
completely updated. We can understand this from the fact that the car has few
tracked pixels; note that a pixel matching itself is not painted in red. Finally, we
show the results for consecutive frames in Fig. 6 to enhance the reliability of our
proposed method. The base frame in each row corresponds to that of the earlier
examples in Figs. 2, 3 and 5. It can be observed that favorable performances are
achieved without a drastic deterioration during these frames.

Our method works at a low computational cost, owing to the nearest neighbor
search in the subtraction process. An example of computational time is as follows:
The speed of our method is 25 fps for the video sequence in Fig. 3 (image size
is 360 × 240) on a personal computer with a Core 2 Duo Processor 2.67 GHz
and 4 GB RAM without parallel computation. When moving objects are much
smaller compared to the image size, as in Fig. 5 (d), the processing speed of our
method exceeds 30 fps.
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Original images Our results vi(li =0; ci) GMM 6)

(a) Hair of the walking woman has a similar color with its background.

(b) Hair of the walking man has a similar color with its background.

(c) Hair of the woman and her skirt have similar colors with each background.

(d) A white van is running in front of another parked white car.

(e) A man wearing a gray shirt is walking in front of a gray column.

(f) A man in red shirt is walking in front of a red car.

Fig. 5 Examples of difficult cases, where foreground objects and background regions have
similar colors.

two frames ago one frame ago base frame one frame later two frames later

Fig. 6 Results for some consecutive frames. The base frames are those displayed in Figs. 2, 3
and 5.
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5. Conclusions

In this paper, we proposed a novel moving object detection method based on
a MAP-MRF approach. Our method utilizes the nearest neighbor method with
multiple background samples to accommodate dynamic background changes. Be-
sides, object motion estimation is incorporated to improve the detection perfor-
mance. As a result, the performance of our method is better than that of previous
methods, even when similar colors exist in objects and the background.

A remaining issue for our method is how to adaptively determine the set of
parameters, λ,L, δ, TA, TB , and β, the optimal values of which can produce more
favorable detection results. Statistical inference methods such as the maximum of
the marginal likelihood 31) could be used for this parameter estimation. Another
direction is to apply other color spaces such as the normalized RGB space and
the HSV color space, which have been used for object detection in the context of
adapting to illumination changes 32) or removing shadows 33).
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