
Vol. 47 No. 12 IPSJ Journal Dec. 2006

Regular Paper

Efficient Lock Algorithm for Shared Objects in SMP Environments

Takeshi Ogasawara,
†,††

Hideaki Komatsu,
†

and Toshio Nakatani
†

We propose a new algorithm that is effective for objects that are shared among threads
but are not contended for in SMP environments. We can remove the overhead of the serial-
ization between lock and other non-lock operations and avoid the latency of complex atomic
operations in most cases. We established the safety of the algorithm by using a software tool
called Spin. The experimental results from our benchmarking on an SMP machine using Intel
Xeon processors revealed that our algorithm could significantly improve efficiency by 80% on
average compared to using complex atomic instruction.

1. Introduction

Multithreaded programming is becoming
popular as programming languages with built-
in thread support are coming into wide use. By
using these languages, programmers can easily
exploit the thread-level parallelism of programs
in multiprocessor environments.

Synchronization among threads is necessary
to protect shared resources. All library routines
must assume multithreading and perform locks
before accessing data that can be modified by
multiple threads. Synchronization is thus per-
vasive in many Java applications.

It is critical for Java programs to efficiently
implement locks because they frequently per-
form lock operations. We observed that many
benchmark programs need a lock for every 15
to 30 heap accesses.

There are two problems with prior research
that used compare-and-swap operations to ac-
quire locks 1)∼5) in an SMP environment. Be-
cause of these, the processor typically has to
stall for many CPU cycles for each lock acqui-
sition, during which it could execute tens or
hundreds of simple instructions.

The first problem is the need to serialize pro-
cessor execution. Any operations in these al-
gorithms that follow lock acquisition have to
wait until the acquisition has been completed
to read consistent data. This partly counters
the advantage of out-of-order execution or re-
laxed memory consistency models, which can
hide the latency of loads. The second problem

† IBM Tokyo Research Laboratory
†† Applied Computer Science Course, Interfaculty Ini-

tiative in Information Studies, Graduate School of
Interdisciplinary Information Studies, The Univer-
sity of Tokyo

is the inefficiency of special atomic instructions.
Simple instructions such as stores and loads are
optimized in modern processors. However, the
special atomic instructions are not as efficient
as simple instructions, since they are complex
and use various special hardware resources.

Kawachiya, et al. 5) solved these problems by
introducing the idea of object reservation. They
observed that if an object is first locked by a
particular thread, the object then tends to be
locked again by the same thread. For any re-
served object, that thread can avoid the cost
of serialization and special atomic instructions.
If a thread is not the reserving thread when it
tries to lock an object, then the reservation of
the object is cancelled and any subsequent lock
for the object requires a lock operation.

The biggest problem with this approach lies
in the assumption that the majority of lock
requests for a given object originate from a
single thread. This is certainly effective for
single-threaded programs or multithreaded pro-
grams having few or no shared resources. How-
ever, there are many real-world applications
that tend to access a number of shared objects
with multiple threads, and in such cases this
degrades to the same level of performance as
that of the previous approaches using compare-
and-swap operations.

Considering the sequence of lock operations
for a shared object, the compare-and-swap ap-
proach presumes that the owner of the object
can change for every successive lock. However,
the granularity of the code protected by the lock
is not especially fine in practice for most shared

A preliminary version of this paper appeared in the
Proceedings of the 13th International Conference on
Parallel Architecture and Compilation Techniques.
(PACT 2004). c©2004 IEEE

3287



3288 IPSJ Journal Dec. 2006

objects and the owners rarely change. In fact,
we observed that for 76% of the lock operations
for shared objects, the thread that performed
lock operation was the same as the thread that
last released the object. We called this ratio
owner locality.

We propose a novel locking algorithm in this
paper, called the tentative-ownership lock or
TO-lock, which exploits the high owner locality.
The algorithm still tentatively owns the lock
when it releases it. It does not incur the cost
of serialization or expensive atomic instructions
that prior research required as long as the same
thread locks an object. When a thread does not
own an object and attempts to acquire the lock
for the object, it performs compare-and-swap
operation to claim ownership of the object.

The most useful feature of this algorithm is
that lock and other non-lock operations can be
independently executed in uncontended cases.
This is similar to the well known optimization
for recursive locks, in which the same thread
acquires the same lock again without releasing
it. The actual lock operation for the recursive
lock using special atomic instructions is usually
skipped and the nesting level is maintained in-
stead.

We validated the algorithm to ensure its
safety and liveness properties by using a stan-
dard software tool called Spin, which gener-
ates all the possible cases for an algorithm and
checks the assertions at selected program points
for each. We will also explain a special tech-
nique to implement our algorithm on real pro-
cessors. The existing memory ordering models
did not support our requirements.

In summary, the contributions of our paper
are as follows:
• We designed a lock operation using only

simple instructions, which can be per-
formed independently of other non-lock op-
erations in most cases.

• We validated the algorithm by using Spin.
• We demonstrated that the algorithm signif-

icantly improved the performance of code
performing lock operations by 80% on aver-
age for a real-world owner-locality scenario
on Intel Xeon processors.

The rest of this paper is organized as follows.
We first discuss related work. We then present
an empirical study of lock behavior by using
benchmark programs and real-world server ap-
plications. We next explain our algorithm. We
then describe how we verified our algorithm by

using Spin. Finally, we investigate the pros and
cons of real processors to implement our algo-
rithm and evaluate it.

2. Related Work

Many techniques of reducing the overhead of
synchronization have been proposed for Java.
Bacon, et al. 1) proposed the thin lock, which
only requires one atomic operation to acquire
and release it. The thin lock does not use
any multi-word monitor structures in most
cases. Onodera, et al. 3) proposed the Tasuki
lock to fix the thin lock’s problems with un-
bounded busy-waiting by using a flc (flat lock
contention) bit. For techniques that always
use a multi-word monitor structure, Agesen,
et al. 2) proposed the meta lock. However, the
meta lock requires an extra atomic operation
when the lock is released and therefore per-
forms two atomic operations for each synchro-
nization operation. Dice 4) also proposed the
relaxed lock, which only performs one atomic
operation. These techniques require serializa-
tion and one or two atomic operations in their
best cases.

Addressing the problems of cost for serializa-
tion and complex atomic operations in SMP en-
vironments, Kawachiya, et al. 5) proposed lock
reservation. Bacon, et al. 6) independently pro-
posed a similar idea of eliminating atomic oper-
ations for non-shared objects. Their techniques
are effective for non-escaping objects, which are
not shared among multiple threads. Domani, et
al. 7) also presented an idea for global bits that
indicate whether or not objects have escaped.
Onodera, et al. 8) proposed a reservation-based
spin lock, in which non-reserving threads can-
not reserve locks but perform a spin lock instead
of canceling the reservation.

In comparison to lock reservation, our ap-
proach has advantages when locking shared ob-
jects, i.e., every thread benefits from an effi-
cient lock using temporal locality, and a non-
owner can efficiently change ownership using
compare-and-swap operation. Lock reservation
must suspend and resume a thread whenever a
non-owner tries to safely change the status of
a lock reserved by another thread. Therefore,
if lock reservation were extended to change the
owners, both the new and the previous owners
would incur penalties: the new owner would
suffer from the cost of the suspend and resume
operations, and the previous owner would suf-
fer from the overhead of being suspended and



Vol. 47 No. 12 Efficient Lock Algorithm for Shared Objects in SMP Environments 3289

then resumed. The cost of suspend and resume
operations is usually very large.

In the absence of contention for the lock,
Lamport 9) presented a fast mutual exclusion
algorithm, which has constant time complexity
using only simple instructions. Lamport’s algo-
rithm performs five memory accesses for enter-
ing and two for leaving critical sections. How-
ever, the code within the critical sections can-
not start executing until the third memory ac-
cess has been completed, since the memory ac-
cess has acquire ordering semantics for the criti-
cal section. In terms of memory efficiency, Lam-
port’s method requires memory space ☆ propor-
tional to the number of threads. It also uses
two variables that can have process IDs for each
lock. Our algorithm, in contrast, allows the lock
algorithm and the critical section code to be ex-
ecuted in parallel and only requires two bits and
the thread ID field for each lock (or object).

Andersen, et al. 10) surveyed algorithms for
shared-memory mutual exclusion in the dis-
tributed algorithm community, including fast
mutual exclusion algorithms, which have a
constant-time fast path in the absence of con-
tention. To the best of our knowledge, there
has been no research on fast mutual exclusion
algorithms that not only use a fixed number of
simple instructions, but also allow the execu-
tion of critical sections in parallel while only
requiring a fixed memory space.

3. Study of Lock Behavior

This section presents our analysis of lock be-
havior. We first consider the frequency of lock
operations in Java programs to clarify the im-
portance of efficient lock operations. We next
demonstrate that owner locality for shared ob-
jects can be observed in real-world applications.

We used SPECjvm98, SPECjbb2000, and
VolanoMark version 2.5.0.9 as well known
benchmark programs. As real-world pro-
grams, we used the IBM WebSphere Applica-
tion Server and used Trade3 and 22 bench-
marks of Web primitives for Web services on
the server, which simulated typical server be-
haviors.

3.1 Lock Frequency
Since lock operations synchronize memory

accesses and modern processors usually have

☆ A Boolean variable b[i] used in Algorithm 2 9) usu-
ally consumes one byte in actual processors due to
the atomicity of stores.

Fig. 1 Ratio of lock operations to heap accesses
(higher bars indicate more frequent locks).

memory-dedicated execution pipelines, lock op-
erations can be regarded to stall the memory
pipelines. We therefore measured the ratio of
lock operations to memory accesses, in partic-
ular the heap accesses. These profiled heap
accesses include accesses to instance variables,
class variables, array elements ☆☆, and internal
fields such as array sizes and tables for virtual
methods.

Figure 1 shows this ratio for each bench-
mark. The 1/N labels on the Y-axis signify
that N heap accesses are performed for every
lock operation. On average, a lock operation is
performed for every 55 heap accesses. Locking
performance is therefore critical for programs
that perform lock operations with such high fre-
quency, considering that a single lock acquisi-
tion stalls many CPU cycles.

3.2 Owner Locality
We focused on shared objects, which are ac-

tually locked by more than one thread during
the measurement. A non-shared object is an
object that is only locked by a single thread.
Non-shared objects can be non-escaping ob-
jects, which are only visible to one thread but
not to other threads. Since the lock opera-
tions for these non-escaping objects could be
removed by various other techniques using the
knowledge about their non-escaping character-
istics, e.g., by allocating these objects in a spe-
cial thread-local heap 7), we have not discussed
them further in this paper.

The first bars in Fig. 2 show the ratio of the
number of lock operations for shared objects
relative to the total number of lock operations.
The taller bars indicate that those threads
most frequently perform lock operations for
shared objects. The ratio of lock operations

☆☆ Array elements copied by System.arraycopy are not
included.



3290 IPSJ Journal Dec. 2006

Fig. 2 Owner locality relative to all lock operations.

Fig. 3 Owner locality for shared objects.

for shared objects ranges up to 92.6% and
is 41.0% on average, excluding SPECjbb2000
and SPECjvm98. Since SPECjbb2000 and
SPECjvm98 rarely perform lock operations for
shared objects, these benchmarks are mostly
single threaded.

The second bars in Fig. 2 and the first bars
in Fig. 3 show owner locality. The owner local-
ity in Fig. 2 is the ratio of the total number of
lock operations, whose locks are acquired mul-
tiple times, consecutively, by the same thread,
to that of the total lock operations. The owner
locality in Fig. 3 is the ratio of the same num-
ber to the count of lock operations for shared
objects. The taller bars indicate that the own-
ers of those objects rarely change during all the
lock operations.

We focused on owner locality for shared ob-
jects in Fig. 3 while Fig. 2 shows the ratio to the
total number of lock operations. The owner lo-
cality is up to 86.4% and 76.0% on average for
the numbers of lock operations for shared ob-
jects in Fig. 3.

The third bars in Fig. 2 and the second bars
in Fig. 3 show the ratios of the first repeti-
tions 5). The first repetition is a special se-
quence of lock operations for a given object,
which starts from the first lock and continues

until a different thread from the first locker ac-
tually locks the object. The taller bars indicate
when the first locker continues locking without
the other threads’ locks.

The first repetition is up to 13.5% and only
5.9% on average, excluding VolanoMark ☆. In
contrast, excluding VolanoMark does not af-
fect owner locality, which is still up to 86.4%
and 75.6% on average. We ignored the high
owner locality for some of the SPECjbb and
SPECjvm98 benchmarks in Fig. 3, since the ra-
tio of lock operations for the shared objects is
very low, as can be seen in Fig. 2.

4. TO-lock

This section explains the algorithm for the
tentative ownership lock or TO-lock. We en-
hanced it 11) by eliminating a flag and simpli-
fying the handling of lock collisions. We first
explain the variables used in the algorithm and
then cover it step-by-step. Finally, we explain
the memory ordering that the algorithm re-
quires.

4.1 Variables
The algorithm uses a variable, tid, and two

1-bit flags for each object.
4.1.1 Tid
The tid field holds the identifier of the thread

that currently has the lock or that last released
it. We use this variable to keep track of the
temporal locality of the threads that acquire
the lock for the object.

The thread checks the tid several times dur-
ing the locking process. If the tid reveals an-
other thread’s ID, then the thread attempts to
replace the tid with its own ID.

4.1.2 Tel1 and tel2
There are two 1-bit flags, tel1 and tel2. These

flags are used to indicate the status of the ob-
ject.

A pair consisting of a tel1 flag and a tel2
flag indicates the progress of the locking pro-
cess. These flags are set by the thread that
started the locking process for the object. Once
a thread sets both flags for an object, lock ac-
quisition will succeed for that thread, and other
threads cannot acquire the lock for the object.
A thread first sets tel1 and then tel2. The tel1
flag prevents other threads from changing the

☆ We should interpret the results for VolanoMark
carefully. The lock operations for objects of a spe-
cific class dominate 70% of the lock operations for
shared objects, and these objects are mostly non-
shared.



Vol. 47 No. 12 Efficient Lock Algorithm for Shared Objects in SMP Environments 3291

Fig. 4 Flow chart for TO-lock algorithm.

tid to restore the temporal locality of threads
while the current thread is executing the algo-
rithm’s fast path. We will explain this change
in tid in Section 4.2.4.1. We need the tel2 flag
to show that the lock has been acquired. Before
setting each, the thread checks if certain condi-
tions have been met. Therefore, the threads can
observe which step of the locking process has
been reached for a given object by using these
flags. These flags are cleared by the thread that
acquired the lock when that thread releases the
object.

4.2 Locking Algorithm
This section explains the algorithm. Fig-

ure 4 is a flow chart for the algorithm, which
consists of three components: (1) temporal lo-
cality tests, (2) thread shift, and (3) collision
handling. We describe each of these steps in
detail in the following subsections. The dia-
monds within rectangles in Fig. 4 denote atomic
operations. For the conditions specified within
diamonds, the algorithm proceeds downward if
the condition is true and rightward otherwise.

4.2.1 Temporal Locality Test - Phase 1
The thread first checks if the tid is still the

same as its own ID. If this test succeeds, the
thread sets the tel1 flag to inhibit a thread
shift, i.e., an attempt by some other thread to
change the tid. If the tid does not match, the
thread proceeds to the step for thread shift.
The details on thread shift are explained in Sec-
tion 4.2.4.1.

4.2.2 Temporal Locality Test - Phase 2
The thread again checks to ensure the tid is

still the same as its own ID. This test is re-
quired to ensure a thread shift did not occur
in the period between the load and the store of
Phase 1. If the test succeeds, the thread sets
the tel2 flag to inhibit collision handling. If the
tid does not match, the thread proceeds to the
step for collision handling. The details on this
step are explained in Section 4.2.4.2.

4.2.3 Temporal Locality Test - Phase 3
The thread again checks to ensure the tid

is still the same as its own ID. This test is
required to ensure that no other threads have
succeeded in collision handling in the period be-
tween the load and the store of Phase 2. If the
test succeeds, lock acquisition has succeeded.
Otherwise, the thread proceeds to the step for
thread shift.

As the thread completes Phases 1 through
3, it prevents other threads from proceeding
through these same phases. When Phase 3 has
succeeded, the tel1 and tel2 flags are set and
the tid matches its own ID. This status remains
until the object is released.

4.2.4 Ownership Restoring Path
If the thread proceeds to this path, there has

been a break in the temporal locality of the
thread’s use of the object. The thread then
tries to reclaim the ownership of the object.

4.2.4.1 Thread Shift
This step restores the temporal locality of

threads. The thread attempts to place its own



3292 IPSJ Journal Dec. 2006

Fig. 5 Atomic operation in collision handling
performs another form of thread shift.

thread ID into the tid. It can change the tid if
and only if the tel1 and tel2 flags are cleared.
As explained in Section 4.1.2, the cleared tel1
and tel2 flags show that the object is not cur-
rently locked by any thread.

Phase 1 assumes that thread shift has not
modified the tid after it set the tel1 flag. To en-
sure that the thread only changes the tid if the
tel1 and tel2 flags are cleared, it uses compare-
and-swap atomic operation. This restores the
ownership of the object and acquires the lock if
the atomic operation succeeds.

If multiple threads perform thread shift at
the same time, only one thread succeeds. The
other threads fail and performs a spin-locking
loop, similar to other compare-and-swap-based
algorithms 1),3),12).

4.2.4.2 Collision Handling
If another thread changed the tid using

thread shift in the period between the test and
the setting of Phase 1 performed by the cur-
rent thread, the current thread enters this step.
Since locks are rarely contended for and the
period is usually very short, this step rarely
occurs. Assume that another thread not only
acquired but also released the lock within the
same period (see Fig. 5). Without this step,
the tel1 flag set by the current thread is never
cleared and no threads can acquire the lock by
thread shift. Atomic operation in the step re-
solves this situation.

Atomic operation by the current thread, how-
ever, also succeeds if another thread acquired,
released the lock, and entered Phase 2 to ac-
quire the lock but has not yet set tel2 within
the same period as previously explained (see
Fig. 6). In this case, if the current thread re-
leases the lock acquired by atomic operation
and then another thread sets tel2, a situation
in which tel2 is set but tel1 is not occurs. The
algorithm does not allow for this situation.

Fig. 6 Phase 2 check inhibits another thread from set-
ting tel2 after the current thread releases the
lock.

To avoid this, the phase 2 check that fol-
lows atomic operation ensures that the current
thread completes lock acquisition after another
thread that was captured by atomic operation
(denoted by otid in Fig. 4) leaves Phase 2. The
phase 2 check can be implemented by obtain-
ing the current instruction address for otid and
comparing it with the registered code regions
for Phase 2. For other implementations, we can
use a flag in the thread structure, which indi-
cates whether or not a thread is within Phase
2, by adding an overhead to maintain the flag
in Phase 2.

4.2.5 Releasing Algorithm
The thread just clears tel1 and tel2 to release

the object. By arranging these flags within a
single memory word, most processors can clear
them using a simple store operation.

4.3 Memory Ordering
The stores to the tel1 and tel2 flags and the

succeeding load of tid are ordered for the tem-
poral locality tests. However, since this mem-
ory ordering for the tests is independent of
other non-locking operations, no further mem-
ory ordering is required between the tests and
non-locking operations.

When releasing the object, we ensure release
ordering semantics to clear the two flags to re-
lease the object. Clearing the flags using release
ordering semantics ensures that any updates to
the memory when the object is being locked
will become visible to the other processors be-
fore the object is released.

5. Verification

Here, we discuss the safety and liveness of our
algorithm. To verify these properties, we used
Spin, which is a software tool that checks the



Vol. 47 No. 12 Efficient Lock Algorithm for Shared Objects in SMP Environments 3293

logical consistency of specifications in the de-
sign of distributed systems. We used Spin as an
exhaustive verifier, which rigorously proved the
validity of user-specified correctness require-
ments.

5.1 Safety
We checked three safety properties for our al-

gorithm, mutual exclusion, avoidance of illegal
states of variables, and liveness.

5.1.1 Mutual Exclusion
For mutual exclusion, we must prove that any

given threads i and j never enter the critical
section at the same time.

We confirmed that only one thread will al-
ways successfully acquires the lock with con-
sistent values for the variables by using Spin’s
assertion feature. We tested the following as-
sertions at points in the program where a thread
acquires the lock, i.e., (1) the tid is the thread’s
own ID, (2) the tel1 and tel2 flags are set, and
(3) only a single thread acquires the lock by
using multiple threads. All the threads lock a
single shared object, and each thread repeats
our algorithm infinitely. We only ran up to five
threads because of the limited physical memory
of the machine we used for the verification.

5.1.2 Illegal State of Variables
The algorithm does not allow for a situation

in which tel2 is set but tel1 is not set, as ex-
plained in Section 4.2.4.2.

We confirmed that this situation never oc-
curred by using Spin’s linear time temporal logic
formulae feature. Using this, we could verify
that this correctness requirement holds for ev-
ery step of all the traces.

5.2 Liveness
We confirmed the liveness properties: If

threads are trying to acquire a lock, one of them
will eventually acquire it. We used Spin’s fea-
ture of the linear time temporal logic formulae.

We also performed another experiment to
verify that each thread that was going to ac-
quire the lock would eventually acquire it. We
examined the number of lock acquisitions for
each thread for this experiment. We confirmed
that every thread acquired the lock a specified
number of times. The compare-and-swap oper-
ation in the ownership-restoring path of our al-
gorithm ensures that these threads can change
ownership as in other compare-and-swap-based
algorithms 1),3),5),13).

6. Experimental Results

This section presents an evaluation of our al-

gorithm. We first explain how we performed
the experiment. We next show how we imple-
mented the algorithm on real-world processors.
We then present the results of the experiment.

6.1 Methodology
We wrote a program that executes in a loop,

containing a code segment and single lock oper-
ation, using a hand-optimized IA-32 assembly
code. The code segment consists of repetitions
of a simple sequence, four loads, and the store
of their total, which simulates heap accesses in
server programs. We determined this ratio be-
tween the loads and stores based on the obser-
vation that loads were about 80% of the total
memory operations in the server programs an-
alyzed in Section 3. We ran our experiments
on an SMP machine, i.e., an IBM IntelliStation
Z-Pro with two physical Intel Xeon 3.06-GHz
processors.

We measured execution times for two ex-
treme cases with no lock contentions, chang-
ing the number of memory operations from 10
to 80. For all lock operations, we only per-
formed phases one through three (or the fast
path) of the algorithm in the first case and
only performed thread shift (or compare-and-
swap) in the second case. We calculated the
estimated execution times for cases when the
fast path was used for 86.4% and 76.0% of the
total locks and compare-and-swap was used for
the remaining locks. For real-world owner lo-
cality scenarios, the owner locality ranges up
to 86.4% and is 76.0% on average as shown in
Section 3. We can compare ours with the algo-
rithm proposed by Kawachiya, et al. 5) by using
the results for compare-and-swap since theirs
performs compare-and-swap for shared objects
as explained in Section 1. We ran the program
five times for all lock frequencies and used the
average of the execution times.

6.2 Processor-specific Considerations
Our algorithm does not rely on memory or-

dering between lock and non-locking opera-
tions, though it does rely on the memory or-
dering within the lock operation.

Existing memory ordering models, such as
acquire and release, do not support the memory
ordering that the algorithm requests, or the or-
dering of a specific store or specific load. We
therefore need some hardware support to ef-
ficiently implement the algorithm on existing
processor architectures.

We used a special technique, store forward-
ing avoidance, in this experiment to control the



3294 IPSJ Journal Dec. 2006

memory ordering for our algorithm. If a store
to a memory area and a load from the same
area appear in the code in that order, these op-
erations are performed in that order for most
processors, even under relaxed memory consis-
tency models. Furthermore, the store-to-load
forwarding feature 14) makes it possible to en-
sure that these store-then-load operations are
performed before the stored data becomes vis-
ible to other processors. However, this store
forwarding is inhibited if the data size of the
load is larger than the size of the store on some
processors 15). In that case, the store becomes
visible and then the data is then loaded from
the memory hierarchy. We relied on this charac-
teristic to ensure the memory ordering expected
by the scalable synchronization algorithm in the
relaxed consistency model.

For out-of-order execution processors, the
CPU hardware can reorder independent in-
structions. The locking and non-locking in-
structions are independent of each other, and
therefore the CPU can execute non-locking in-
structions while it executes a sequence of lock-
ing instructions. However, the hardware usu-
ally has some restrictions to perform this spe-
cial memory ordering using store forwarding
avoidance to perform efficiently. For example,
Intel’s NetBurst-based processors, such as the
Xeon we used, incur penalties of replays for
failed speculative loads. Therefore, compilers
should schedule these instructions to avoid such
penalties. We scheduled these instructions in
this experiment. For in-order-execution proces-
sors such as IA-64, the compilers should care-
fully schedule the instructions using store for-
warding avoidance to evade unnecessary stall
cycles.

6.3 Results
Figure 7 plots the results of the experiment.

The X-axis represents the lock frequency. The
1/N labels for the X-axis signify that N mem-
ory operations are performed for every lock op-
eration. A large 1/N indicates a high lock fre-
quency. The Y-axis shows the speedup in av-
erage execution time for each loop iteration,
where taller is faster.

Our algorithm significantly improved the per-
formance for each lock frequency. For a real-
world owner locality scenario, or 86.4% owner
locality, we achieved 2.02 times speedup on av-
erage. For another real-world owner locality
scenario, or 76.0% owner locality, we achieved
1.80 times speedup on average. For both sce-

Fig. 7 Speedup in execution time per loop iteration
(taller is faster).

narios, we achieved the best speedup for 1/20
lock frequency, i.e., 2.21 times for 86.4% owner
locality and 1.93 times for 76.0% owner locality.

7. Conclusion

This paper presented a novel algorithm for
optimizing lock operations, which is particu-
larly useful for Java programs that frequently
perform lock operations for shared objects. It
only uses simple memory operations in the ab-
sence of contention, even if these objects are
actually shared and locked by multiple threads.
By exploiting owner locality, lock operation and
the code protected by the lock can be exe-
cuted in parallel so that the protected code
no longer needs to wait for the relatively long
latency of lock operation. We experimented
with many Java programs to profile lock behav-
iors. The results revealed that, for real-world
server-side programs, objects are shared among
multiple threads and owner locality is not in-
fringed. We verified the safety of the algorithm
by using a software tool called Spin, and con-
sidered combining our algorithm with existing
approaches to balance the overheads for spin-
ning and blocking.

We also have evaluated the efficiency of our
algorithm with complex atomic instruction by
experimenting with assembler programs that
perform a typical number of memory operations
within and outside the critical section. The ex-
perimental results demonstrated that our algo-
rithm can improve the performance of the code
by 80% on average for a real-world owner local-
ity scenario on Intel Xeon processors, compared
to the existing approach using atomic compare-
and-swap instruction.

Acknowledgments We would like to thank



Vol. 47 No. 12 Efficient Lock Algorithm for Shared Objects in SMP Environments 3295

Dr. Akira Koseki for his useful comments on our
algorithm and for guiding us toward improving
it and verifying of one of its safety properties.
Thanks also go to Drs. Kiyokuni Kawachiya and
Tamiya Onodera for their feedback and encour-
agement, and to Mr. Toshio Suganuma for his
many suggestions to improve the presentation
of the paper. Finally, we wish to thank the
anonymous reviewers of IPSJ and PACT2004
for their constructive suggestions on how to im-
prove the paper.

References

1) Bacon, D.F., Konuru, R., Murthy, C. and
Serrano, M.: Thin Locks: Featherweight Syn-
chronization for Java, ACM SIGPLAN ’98
Conf. on Programming language design and
implementation, pp.258–268, ACM Press New
York, NY (1998).

2) Agesen, O., Detlefs, D., Garthwaite, A.,
Knippel, R., Ramakrishna, Y.S. and White, D.:
An efficient meta-lock for implementing ubiq-
uitous synchronization, Proc. ACM SIGPLAN
Conf. on Object-Oriented Programming Sys-
tems, Languages and Applications, pp.207–222,
ACM Press, New York, NY (1999).

3) Onodera, T. and Kawachiya, K.: A Study of
Locking Objects with Bimodal Fields, Proc.
ACM SIGPLAN Conf. on Object-Oriented
Programming Systems, Languages and Applica-
tions, pp.223–227, ACM Press, New York, NY
(1999).

4) Dice, D.: Implementing fast Java monitors
with relaxed-locks, Proc. Java VM Research
and Technology Symp., pp.79–90, USENIX As-
sociation (2001).

5) Kawachiya, K., Koseki, A. and Onodera, T.:
Lock reservation: Java locks can mostly do
without atomic operations, Proc. ACM SIG-
PLAN Conf. on Object-Oriented Programming
Systems, Languages and Applications, pp.130–
141, ACM Press, New York, NY (2002).

6) Bacon, D.F. and Fink, S.J.: Method to pro-
vide concurrency control over objects without
atomic operations on non-shared objects, U.S.
patent (2000).

7) Domani, T., Goldstein, G., Kolodner, E.K.,
Lewis, E., Petrank, E. and Sheinwald, D.:
Thread-Local Heaps for Java, Intl. Symp.
Memory Management, pp.183–194, ACM Press,
New York, NY (2002).

8) Onodera, T., Kawachiya, K. and Koseki,
A.: Lock Reservation for Java Reconsidered,
Proc.18th Euro. Conf. on Object-Oriented Pro-
gramming, pp.560–584, Springer-Verlag Berlin
(2004).

9) Lamport, L.: A fast mutual exclusion algo-
rithm, ACM Trans. Comput. Syst., Vol.5, No.1,
pp.1–11 (1987).

10) Anderson, J.H., Kim, Y.-J. and Herman, T.:
Shared-memory mutual exclusion: major re-
search trends since 1986, Distributed Comput-
ing, Vol.16, No.2-3, pp.75–110 (2003).

11) Ogasawara, T., Komatsu, H. and Nakatani,
T.: TO-Lock: Removing Lock Overhead Using
the Owners’ Temporal Locality, Proc.13th Intl.
Conf. on Parallel Architectures and Compila-
tion Techniques, pp.255–266, IEEE Computer
Society, Los Alamitos, CA (2004).

12) Dimpsey, R., Arora, R. and Kuiper, K.:
Java server benchmarks, IBM Systems Journal,
Vol.39, No.1, pp.151–174 (2000).

13) Gagnon, E.M. and Hendren, L.J.: SableVM:
A Research Framework for the Efficient Execu-
tion of Java Bytecode, Proc.Java VM Research
and Technology Symp., pp.27–39, USENIX As-
sociation (2001).

14) Johnson, M.: Superscalar Microprocessor De-
sign, Prentice Hall, Englewood Cliffs, NJ
(1991).

15) Intel Corporation: Intel Pentium 4 and Xeon
Processor Optimization Reference Manual, In-
tel Corporation, Mt. Prospect, IL (2002).

(Received April 26, 2005)
(Accepted September 14, 2006)

(Online version of this article can be found in
the IPSJ Digital Courier, Vol.2, pp.759–767.)

Takeshi Ogasawara joined
the IBM Tokyo Research Labo-
ratory in 1991. His research in-
terests include optimizations us-
ing compilers and runtime sys-
tems for parallel computers. 　
　　　　　　　　　　　　　　

Hideaki Komatsu joined
the IBM Tokyo Research Lab-
oratory in 1985. His research
interests include compiler opti-
mizations for parallel architec-
tures and loop optimizations for
massively parallel computers.

Toshio Nakatani joined the
IBM Tokyo Research Labora-
tory in 1987. His research inter-
ests include computer architec-
ture, optimizing compilers, and
algorithms for parallel computer
systems.


