
Journal of Information Processing Vol.22 No.2 410–416 (Apr. 2014)

[DOI: 10.2197/ipsjjip.22.410]

Regular Paper

HMM-Based Probabilistic Flick Keyboard
Adaptable to Individual User

Toshiyuki Hagiya1,a) Tsuneo Kato1,b)

Received: April 1, 2013, Accepted: December 4, 2013

Abstract: To provide an accurate and user-adaptable software keyboard for touchscreens, we propose a probabilistic
flick keyboard based on hidden Markov models (HMMs). Touch and flick operations for each character are modeled
by HMMs. This keyboard reduces input errors by taking the trajectory of the actual touch position into consideration
and by user adaptation. We evaluated the performance of an HMM-based flick keyboard and maximum-likelihood
linear regression (MLLR) adaptation. Experimental results showed that a user-dependent model reduced the error rate
by 28.3%. In a practical setting, the MLLR adaptation to a specific user with only 10 words reduced the error rate by
16.6% and increased the typing speed by 11.9%.

Keywords: PDA interfaces, usability, input technologies, personalization

1. Introduction

With the recent popularity of smartphones and tablets, key-
board input on a touch screen display has become essential. A
touch screen display provides the benefits of a large display area
and a flexible software keyboard that can change its orientation,
switch languages, and modify the key layout. Despite these ben-
efits, a number of users still prefer physical keyboards because
they make more errors with a software keyboard [1], [2]. Ma-
jor reasons for the errors are the lack of tactility and the small
keys [3]. A software keyboard is sometimes too small for fingers
to hit the correct keys [4].

Various keyboards have been proposed to improve the usabil-
ity. The flick keyboard, which determines a character through a
combination of the touched area and the following flick direction,
is a popular method, especially for Japanese. Formerly, the stan-
dard input method for Japanese was the toggle input which deter-
mines a character by pressing one of the ten keys several times to
switch the characters assigned to the key. The flick keyboard has
become popular because it is possible to switch characters with
a single flick operation (Fig. 1) instead of pressing a key multi-
ple times. However, the detection areas and the flick directions
are fixed on a conventional flick keyboard, although the distribu-
tion of the touch positions and trajectories change depending on
various factors such as the size of the user’s hand, and the user’s
hand posture. Moreover, the actual trajectory is not a straight line
but an arc, which causes errors in interpreting the flick directions.
Users have different preferences in hand posture and often change
the hand posture depending on their situation [5]. For these rea-
sons, it is important to adapt the keyboard to the user’s individual
characteristics.

1 KDDI R&D Laboratories, Inc., Fujimino, Saitama 356–8502, Japan
a) to-hagiya@kddilabs.jp
b) tkato@kddilabs.jp

Fig. 1 Input screen with a flick keyboard.

We propose a hidden Markov model (HMM) based probabilis-
tic flick keyboard that takes into consideration the time series of
the touch positions while the user is touching the screen. HMMs,
which are known for their use in temporal pattern recognition
such as speech recognition, are effective in pattern recognition of
signal sequences that extend in time and are continuous [6]. Eval-
uation of the time series by a probabilistic model is expected to
improve the typing accuracy because the features of each user’s
touch and flick operations are taken into account. In addition,
to adapt the touch distributions modeled by HMMs to an indi-
vidual user and a specific hand posture, we adapted the HMMs
by using a maximum-likelihood linear regression (MLLR) with a
small amount of data.

This paper is organized as follows. In Section 2, we describe
the related research. In Section 3, we describe the proposed tech-
nique in detail. Next, we evaluate the basic performance of an
HMM-based flick keyboard off-line in Section 4 and evaluate its
performance on an actual mobile device in Section 5. Then, we
discuss the performance in comparison with other studies in Sec-
tion 6. Finally, we present our conclusions in Section 7.

c© 2014 Information Processing Society of Japan 410



Journal of Information Processing Vol.22 No.2 410–416 (Apr. 2014)

2. Related Research

Previous studies on reducing typing errors fall into two cat-
egories: language-model-based and touch-model-based. In the
language-model-based methods, the next characters or words are
predicted and displayed [7], [8], and the next keys with high prob-
abilities are displayed with bigger key sizes [9]. However, the
performance of the language-model-based method is heavily de-
pendent on a dictionary. Unregistered words, such as new words,
abbreviations, or colloquial expressions, are ignored.

In contrast, in a touch-model-based method examined in one
study, a wealth of touch data that were collected through a smart-
phone game were analyzed, and patterns were identified in users’
touch offsets [10]. Another study found that users touched the
surface with a consistent offset from targets. Subsequent studies
showed that a user’s perceived contact point was approximated
by the center of the fingernail, which was above the actual contact
point along the finger’s axis [11]. Other studies proposed trans-
forming the keyboard layout according to actual touch distribu-
tions [12], [13]. In these studies, the center of each key moved to
follow the centroid of actual touch distributions, and the boundary
was set in the middle of the keys. However, the studies reported
that some users were confused by the dynamic changes in key
layout.

Furthermore, some studies proposed methods of transform-
ing the detection areas using both the language-model-based and
touch-model-based approaches. The probability that a particu-
lar character would be next was assumed to be the product of
two probabilities, one from the language model and one from the
touch model [14], [15]. Reference [14] used character n-grams
for the language model and the Gaussian mixture model (GMM)
of stylus input positions in the touch model. Reference [15] pro-
posed methods of transforming the detection areas based on the
typing history in the language model, although the central region
of the key remained fixed to suppress excessive transformation.

Moreover, a study showed that users often change their hand
postures [5]. Hence some studies analyzed the touch distributions
for different hand postures, and proposed a keyboard that would
adapt to users and hand postures [16], [17]. Reference [16] pro-
posed to switch to various keyboard models by detecting the hand
posture based on tap sizes and time elapsed between taps. Refer-
ence [17] defined a hierarchical submodel for each user and hand
posture, in order to adapt each model according to the amount of
available training data. Finally, some studies analyzed the differ-
ence in touch distributions exhibited while sitting and walking,
and proposed adaptation techniques for these contexts [18], [19].

All of these studies involved keyboards where one touch cor-
responded to one character. Some keyboards were proposed that
used input trajectories, such as “VOKB [20]”, “Swype [21]” and
various flick keyboards. However, these keyboards were not stud-
ied for their adaptability to methods that use touch distributions,
although improving them by changing the dictionary or the layout
of the keys was investigated.

3. Probabilistic Flick Keyboard based on
HMMs

The flick keyboard, which determines a character through a
combination of the touched area and the following flick direction,
is a popular method, especially for Japanese. Japanese characters
can be input by a vowel and a consonant preceding the vowel.
They can be organized in a matrix with ten consonants of the
rows and five vowels of the columns in Table 1. The flick key-
board assigns the consonants to the keys, and assigns the vowels
to the directions. The characters which have vowel “A” corre-
spond to staying at the center, and the others which have vow-
els “I”, “U”, “E”, “O” correspond to the four flick directions as
shown in Fig. 2 in a conventional Japanese flick keyboard. How-
ever, the detection areas and the flick directions are fixed on a
conventional flick keyboard although the distribution of the touch
positions and trajectories change depending on various factors.

Hence, we propose an HMM-based probabilistic flick key-
board that uses the time series of the touch positions and adapts to
the user. HMMs are effective for pattern recognition in signal se-
quences that can extend in time and be continuous, such as speech
and gestures [6]. It is considered that HMM is useful for a flick
keyboard because touch trajectories in flick operations also have
these characteristics. The HMM-based flick keyboard determines
a character by evaluating the time series of the touch positions
while a user is touching the screen, whereas the conventional flick
keyboard senses only the positions of touch and release events.
The key areas and flick directions are defined as shown in Fig. 2.
Using a time series and a probabilistic model to determine a char-
acter is expected to improve the typing accuracy because the fea-
tures of the individual user’s touch and flick operations can be
taken into consideration. In this method, the flick operations of a
character are modeled by a left-to-right HMM as shown in Fig. 3.
The flick operations of each character are modeled by a HMM.
The probability of each character is calculated by searching the
HMM network with the Viterbi algorithm, as described later. The
search determines which character has the highest probability at
the terminal state of the last time frame. Each state has mixtures

Table 1 Japanese characters represented by Roman alphabet letters.

A I U E O

a (あ) i (い) u (う) e (え) o (お)
K ka (か) ki (き) ku (く) ke (け) ko (こ)
S sa (さ) si (し) su (す) se (せ) so (そ)
.
.
.

.

.

.
W wa (わ) - - - wo (を)

Fig. 2 Key arrangement and directions of the flick operation with a conven-
tional Japanese flick keyboard.

c© 2014 Information Processing Society of Japan 411



Journal of Information Processing Vol.22 No.2 410–416 (Apr. 2014)

of normal distributions for four-dimensional feature parameters.
The four parameters are two-dimensional time series of the touch
coordinates (xt, yt) and the displacement (δxt, δyt) between the
current position and the initial position of the touch.

Next, we explain the Viterbi algorithm used in this method.
The Viterbi algorithm is a dynamic programming algorithm for
finding the most likely sequence corresponding to a particular
state. Suppose we are given a HMM with N states and input a
character with a flick operation from time 0 to T. The most likely
sequence of the state corresponding to the observations is given
by the following relations;

δt, j =

⎧⎪⎪⎨⎪⎪⎩
πi (t = 0)
maxi[δt−1,iai j] · bi(ot) (1 ≤ t ≤ T )

(1)

(0 ≤ i ≤ j ≤ N)

For the last time frame, the probability of a character on the most
likely path (P) is obtained from the following equation.

P = maxi[δT,i] (2)

Here δt, j is the probability of the most likely state that accounts
for the first t observations and ends in state j. πi is the initial prob-
ability of being in state i. ot is the feature parameters for time t.
ai j is the probability of transitioning from state i to state j, and
bi(ot) is the observation probability for a symbol in state i. bi(ot)
is a mixture of the normal distribution with a diagonal covariance
matrix, the same as the GMM shown by the equation:

bi(ot) =
K∑

k=1

ωkN(ot |μk,Σk) (3)

where K is the number of mixtures of normal distributions.
N(ot |μk,Σk) denotes a normal distribution with a mean vector μk

and a covariance matrix Σk. The connection between the models
is ergodic. No language model is used.

In addition, we evaluate the performance of MLLR with var-
ious number of words used in the adaptation to individual users
and typing postures. MLLR is a model adaptation technique that
estimates a set of linear transformations for the mean and covari-
ance parameters with a small amount of data [22]. In MLLR,
both the mean and covariance parameters are transformed and re-
estimated as

μ′k = Aμk + b (4)

Fig. 3 Configuration of the HMM network and assignment of the time se-
ries observations.

Σ
′−1
k = HTΣ−1

k H (5)

where μk is the mean vector, Σk is the covariance matrix of Eq. (3),
and μ′k and Σ

′
k are the adapted mean vector and covariance matrix,

respectively. (A, b, H) are estimated in a maximum-likelihood
(ML) manner.

4. Evaluation of Flick Keyboard based on
HMMs

In this section, we first analyze the touch distributions for each
flick operation with each hand posture. Second, we evaluate the
performance of the HMM-based flick keyboard and the MLLR
adaptation off-line by comparing their input accuracy with that of
the conventional flick keyboard.

4.1 Data Collection
Participants input words in whatever hand posture they nor-

mally use of those as shown in Fig. 4 (a)–(e), while sitting a chair.
Hand postures (a) and (b) are operations with one thumb, i.e.
holding and typing with one hand. Hand postures (c) and (d)
are operations with one index finger, or holding with one hand
and typing with the other. Hand posture (e) uses both thumbs
for typing while holding with both hands. Hand postures (a) and
(c) are typing with the right hand. The device obtains the touch
coordinates (xt, yt) by using a standard Android API, i.e., an ap-
plication program receives the finger motion as down/move/up
events. Then the device records the data sampled at 50 Hz be-
cause the raw data have randomness in timing, and the time in-
formation cannot be correctly taken into consideration for HMM.
We considered that 50 Hz was high enough to detect operations
because 97.7% of the operations took more than 0.10 sec (aver-
age 0.32 sec). We employed a conventional flick keyboard, in
which the key areas were defined in a rectangular region as shown
in Fig. 2 (a). The flick motions were in the standard four direc-
tions, plus staying at the center when the movement was less
than 25 pixels, as shown in Fig. 2 (b). The participants typed 100
words per set, and typed six sets with a break between each set.
Six hundred words with a length of 3–6 (average 4.25) characters

Fig. 4 Hand postures.

c© 2014 Information Processing Society of Japan 412



Journal of Information Processing Vol.22 No.2 410–416 (Apr. 2014)

Table 2 Participants using each hand posture.

Participants’ hand posture male female Total

(a) Right thumb 8 2 10

(b) Left thumb 3 0 3

(c) Right index finger 3 2 5

(d) Left index finger 0 3 3

(e) Both thumbs 0 0 0

Fig. 5 Touch distribution of the horizontal flick operation with each hand
posture.

were randomly chosen from JUMAN dictionary [23] for each par-
ticipant. When participants typed incorrect characters, they were
permitted to correct by using the delete key or the back key and
retyping. We chose twenty-one participants (fourteen male, seven
female) between the ages of 23 and 60 (average 31.8), who had
experience with a flick keyboard (but, were not researchers in
this field). Fifteen participants (eleven male, four female) were
right-handed and the rest were left-handed. Table 2 shows the
breakdown of participants using each hand posture. None used
(e). The device was a Nexus S running Android 4.0 with a 4.0-
inch screen whose resolution was 800× 480 pixels (223 ppi). The
size of a key was 84 × 96 pixels.

4.2 Distribution of Users’ Touch Positions
In this section, participants’ touch distributions are shown for

each hand posture because there is a large difference in distribu-
tions for each hand posture. Figures 5 and 6 show the averages
of all participants’ touch and release positions for each flick di-
rection in each hand posture. With respect to the touch position,
similar tendencies were observed in the same typing hand. Hori-
zontally, the center of the touch positions leaned in the direction
of the typing hand in all hand postures. The biases were bigger for
one thumb than one index finger. The mean horizontal differences
were 5.9 pixels (SD = 13.0) with one index finger, and 10.0 pixels
(SD = 12.6) with one thumb. On the other hand, the vertical cen-
ter of the touch positions generally leaned to the bottom. The
mean vertical differences were 19.8 pixels (SD = 16.4) with one
index finger, and 16.4 pixels (SD = 17.3) with one thumb. The
reason of these differences was that the participants set their typ-
ing hand in a home position that was different for each hand pos-
ture, and then moved their hand as little as possible.

Next, Table 3 shows the movement between the touch and the

Fig. 6 Touch distribution of the vertical flick operation with each hand pos-
ture.

Table 3 Movement between the touch and the release positions of the flick
directions with each hand posture.

Hand Movement between the touch and the release position (δx, δy)

posture upper right bottom left

(a) (20.0, 105.5) (101.1, 5.2) (−7.7, −98.0) (−94.3, −18.7)

(b) (−25.4, 112.5) (103.1, −20.9) (5.7, −103.1) (−105.4, 5.8)

(c) (18.0, 110.0) (104.7, 5.2) (−2.4, −100.4) (−93.5, −9.6)

(d) (−25.0, 110.5) (102.1, −10.8) (2.0, −101.1) (−103.4, 5.0)

release position for each direction with each hand posture. The
flick directions were leaned to the upper right side for operations
towards the upper and the right directions, and to the bottom left
side for operations towards the left in hand postures (a) and (c)
that used right-hand typing. A tendency to reverse left and right
was seen in hand postures (b) and (d) that used left-hand typ-
ing. The displacements were larger with the one-thumb posture
than the one-finger posture, especially with operations towards
the outside or upper side. The reason was that the movement of
the hand was limited in the one-thumb posture, so that the input
trajectory drew not a straight line but an arc.

4.3 Training and Evaluation Method
We trained the HMM models with the collected data sampled at

50 Hz, and compared three kinds of user models: user-dependent
(UD), user-independent (UI), and user-adaptation (UA). The UD
model was trained with 500 words of input by the user him/herself
using the Baum-Welch algorithm. The UI model was trained
with 12,000 words of input by twenty other participants. The UA
model was obtained by MLLR adaptation based on the UI model
with a limited number of words of input by the user him/herself.
The number of states of the HMMs was set to two or three be-
cause the minimum number of touch events acquirable in a series
of operations by the Android API is two by a touch operation,
and three by a flick operation. Two-state HMMs were assigned
to the characters which have vowel “A”, corresponding to staying
at the center, and three-state HMMs were assigned to the charac-
ters which have vowels “I”, “U”, “E”, “O”, corresponding to the
four flick directions. The number of mixtures of the normal dis-
tribution varied in the range of 1-6. The number of words for the

c© 2014 Information Processing Society of Japan 413



Journal of Information Processing Vol.22 No.2 410–416 (Apr. 2014)

Table 4 Average ER and ERR for all participants with different training
models.

HMM recognition error error reduction
model rate (ER) [%] rate (ERR) [%]

A 3.20 6.71
B 2.47 28.3

E0 3.43 -

MLLR adaptation was varied in the range of 5-100. The number
of classes for the regression tree was 8. The cross validation (CV)
for evaluation was conducted by leave-one-out, that is 6-fold for
each user for the UD model and 21-fold for the UI and UA mod-
els. We evaluated their performances by comparing their error
rate (ER) [24] with the input error rate of the conventional flick
keyboard (E0).

4.4 Experimental Results of the Off-line Evaluation
4.4.1 Baseline Evaluation for Model Selection

To investigate the validity by using time series data, we com-
pared the method that was implemented by the two-state HMM
models that did not have self-transition and were just assigning
the touch and release position to a particular state (Model A), with
the proposed method with the two-or-three state HMM models,
by using the time series of touch positions (Model B). We used
the UD model for evaluation and set the number of mixtures at 4.

As shown in Table 4, the average E0 of all participants was
3.43%, and ER was 3.20% with Model A and 2.47% with Model
B. In other words, the UD model reduced the ER by 6.71% and
28.3%. The performance of Model B was better than that of
Model A. A Welch’s T-test (p < 0.05) showed that there were
significant differences in ER for each model. Therefore, we use
Model B hereafter.
4.4.2 Evaluation of the HMM-based Flick Keyboard Off-

line
First, we focus on the input accuracy of the UD and the UI

models by changing the number of mixtures of the normal distri-
bution. Figure 7 shows the relationship between the number of
mixtures and the average ER of the UD and the UI models. The
number of mixtures that best reduced the ER was 2 for the UD
model, and 4 for the UI model. No great improvement was pro-
duced by larger numbers. The average E0 of all participants was
3.43%, and the ER was 2.47% for the UD model and 3.04% for
the UI model. In other words, the UD and the UI models reduced
the ER by 28.3% and 11.4%, respectively, compared with E0. A
Welch’s T-test (p < 0.05) showed that there were significant dif-
ferences in ER for each keyboard. The reason why the ER of the
UD model was lower with a small number of mixtures was that
the touch positions were stable for each individual participant be-
cause the same hand posture was used. The ER of the UI model
was higher than E0 with a small number of mixtures because the
HMM model was trained by data from various participants who
used various hand postures. The ER of the UI model became
lower than E0 with more than two mixtures. We consider that the
UI model was able to reduce the ER because the touch distribu-
tions were more or less similar within the same hand posture.

Next, we describe the influence of the number of words on the
UA model. Figure 8 shows the relationship between the number

Fig. 7 Average ER for all participants versus the number of mixtures of
normal distributions.

Fig. 8 Average ER for all participants versus the number of words used for
adaptation; vertical bars show standard deviation.

of words used for adaptation and the average ER for all partic-
ipants. The ER was greatly reduced by adaptation with 5–20
words. The ER as more words were used approached that of
the UD model asymptotically. The results show that the adap-
tation by the MLLR is effective even in early stages of its use,
because the MLLR is able to improve the performance with a
smaller amount of training data than the UD model requires.

5. Evaluation on the actual mobile device

In this section, we evaluate the total performance of the HMM-
based flick keyboard on a mobile device, assuming usage in the
real environment.

5.1 Training and Evaluation Method
Participants typed six sets of 60 words each using the con-

ventional flick keyboard and the HMM-based keyboard. The
words, with lengths of 3–6 (average 4.25) characters, were ran-
domly chosen from the JUMAN dictionary [23] for each partici-
pant. The presentation order of the keyboards and the set of words
were determined at random. We evaluated their performance by
comparing each ER and words per minute (WPM) using the fol-
lowing equation [24], [25].

WPM =
L − 1

s
× 60 × 1

l̄
(6)

Here, s is the time in seconds measured from the first key press
to the last in a set, including deletes and other edit and modi-
fier keys. L is the length of the final text in the set entered by
the participant in a set. Although l̄ means the average length of

c© 2014 Information Processing Society of Japan 414



Journal of Information Processing Vol.22 No.2 410–416 (Apr. 2014)

Table 5 Breakdown of participants by hand posture.

Participants’ hand posture male female Total

(a) Right thumb 4 0 4

(b) Left thumb 2 0 2

(c) Right index finger 1 2 3

(d) Left index finger 0 1 1

(e) Both thumbs 0 0 0

Table 6 Average ER, ERR and WPM for all participants for every keyboard
(standard deviation in parentheses).

Keyboard
recognition error error reduction

WPM
rate (ER) [%] rate (ERR) [%]

Normal 3.80 (0.98) - 17.0 (4.90)

HMM 3.17 (0.90) 16.6 (6.02) 19.3 (5.04)

a word, the constant 5 is conventionally used in this field [24].
The constant 60 is the number of seconds per minute. The HMM
model was the UA model that was adapted on the device based on
the UI model of the previous section. Data for adaptation were
the correct input data of the first 10 words of each set. Correct
data means that a character identical to the displayed character
was input and not deleted. We evaluated 50 words, skipping the
first 10 words of each set. We chose ten participants (seven male,
three female) between the ages of 24 and 57 (average 33.0) who
had not been selected in the previous section. Seven participants
(five male, two female) were right-handed and the rest were left-
handed. Table 5 shows the breakdown of participants who used
each hand posture.

5.2 Experimental Results Obtained on Actual Mobile De-
vice

Table 6 shows the average ER and WPM for every keyboard.
The ER and WPM were respectively 3.80% and 17.0 with the
conventional flick keyboard, and 3.17% and 19.3 with the HMM-
based flick keyboard. In other words, the HMM-based keyboard
reduced the ER by 16.6% and increased WPM by 11.9% com-
pared to the conventional flick keyboard. The improvement in
WPM was due to the fact that the time needed to correct input er-
rors was reduced. A Welch’s T-test (p < 0.05) showed that there
were significant differences in ER and WPM for each keyboard.
These results show that the proposed method is also effective on
an actual mobile device.

6. Discussion

The HMM-based flick keyboard decreased the ER and in-
creased the WPM significantly. Moreover the error reduction rate
in our study was around 20% for the flick input, which is similar
to that in some of the latest studies [16], [17] on touch input, such
as qwerty. Therefore, we consider that our approach is effective
for the flick keyboard. Additionally, even more performance im-
provement can be expected from using an n-gram language model
in addition to the results of these studies.

On the other hand, mobile devices are used with various dif-
ferent hand postures in the real environment, whereas the par-
ticipants in our experiment did not switch hand postures. Ref-
erences [16] and [17] propose to detect hand posture by touch
distributions and to change models based on the detected hand

posture. The rate of detection of hand posture was less than 90%
in these studies, and it was stated this error rate might not degrade
the performance. If the rate is high enough as argued in Ref. [16],
the model should be adapted periodically with more training data
in our methods. In addition, more improvement is expected by
the adaptation based on the model which is defined as each hand
posture instead of UI model because touch distributions of flick
operations are different for hand posture shown in Section 4.2. In
contrast, if the rate of detection is not enough, the model should
continue being adapted with the latest input data in a short inter-
val.

Besides, users typed in various situations, such as while stand-
ing and walking in the real environment, although we focused
on typing only while sitting. Reference [18] showed that on the
whole, the average touch positions while walking were similar to
those of while sitting, although the variance was greater. Mean-
while, Ref. [19] analyzed the differences in detail and showed that
touch distributions of the touch operation differed depending on
which side of the foot struck the ground. Considering these dif-
ferences, it seems that the adaptation is difficult without the use
of any external sensors. the ways that sensor information might
be used in the adaptation to various contexts.

7. Conclusion

In this paper, we investigated an HMM-based flick keyboard
that uses the time series of the touch coordinates to select the
most probable intended character. The results showed that the
proposed method with a user-dependent model reduced the error
rate by 28.3% compared to the conventional flick keyboard off-
line. Moreover, the MLLR adaptation with 10 words reduced the
error rate by 16.6% and increased the typing speed by 11.9% on
an actual mobile device. As a future area of study, we will in-
vestigate the application of these findings in the real environment
and in various contexts.

References

[1] Lee, S. and Zhai, S.: The performance of touch screen soft buttons,
CHI’09 Proc. SIGCHI Conference on Human Factors in Computing
Systems, pp.309–318 (2009).

[2] Sears, A., Revis, D., Swatski, J., et al.: Investigating touchscreen typ-
ing: the effect of keyboard size on typing speed, Behaviour&Informa-
tion Technology, Vol.12, pp.17–22 (1993).

[3] Hoggan, E., Brewster, S. and Johnston, J.: Investigating the ef-
fectiveness of tactile feedback for mobile touchscreens, CHI’08
Proc. SIGCHI Conference on Human Factors in Computing Systems,
pp.1573–1582 (2008).

[4] Sunghyuk, K., Donghum, L. and Min, K.C.: Effect of key size and ac-
tivation area on the performance of a regional error correction method
in a touch-screen QWERTY keyboard, Proc. International Journal of
Industrial Ergonomics, Vol.39, No.5, pp.888–893 (2009).

[5] Shiri, A. and Shumin, Z.: Touch Behavior with Different Posture on
Soft Smartphone Keyboard, MobileHCI’12 Proc. 14th International
Conference on Human-computer Interaction with Mobile Devices and
Services, pp.251–260 (2012).

[6] Rabiner, L.R. and Juang, B.H.: An introduction to hidden markov
models, IEEE Magazine on Accoustics, Speech and Signal Process-
ing, Vol.3, No.1, pp.4–16 (1986).

[7] Nils, K. and Michael, R.: Word n-grams for cluster keyboards, Tex-
tEntry’03 Proc. 2003 EACL Workshop on Language Modeling for Text
Entry Methods, pp.51–58 (2003).

[8] Ahmet Cunyed Tantug: A Probabilistic Mobile Text Entry System for
Agglutinative Languages, IEEE Trans. Consumer Electronics, Vol.56,
No.2 (2010).

[9] Khaldoun, A.F., Mustapha, M. and Nadine, V.: BigKey: A Virtual

c© 2014 Information Processing Society of Japan 415



Journal of Information Processing Vol.22 No.2 410–416 (Apr. 2014)

Keyboard for Mobile Devices, Proc. 13th International Conference,
HCI International 2009, San Diego, CA, USA, Part III (2009).

[10] Henze, N., Rukzio, E. and Boll, S.: 100,000,000 taps: Analysis and
improvement of touch performance in the large, MobileHCI’11 Proc.
13th International Conference on Human Computer Interaction with
Mobile Devices and Services, pp.133–142 (2011).

[11] Holz, C. and Baudisch, P.: The Generalized Perceived Input Point
Model and How to Double Touch Accuracy by Extracting Finger-
prints, CHI’10 Proc. SIGCHI Conference on Human Factors in Com-
puting Systems, pp.581–590 (2010).

[12] Himberg, J., Hakkila, J., Kangas, P., et al.: On-line Personalization
of a Touch Screen Based Keyboard, IUI’03 Proc. 8th International
Conference on Intelligent User Interfaces, pp.77–84 (2003).

[13] Leah, F. and Jacob, W.: Personalized input: Improving ten-finger
touchscreen typing through automatic adaptation, CHI’12 Proc.
SIGCHI Conference on Human Factors in Computing Systems,
pp.815–824 (2012).

[14] Goodman, J., Venolia, G., Steury, K., et al.: Language Modeling for
Soft Keyboards, IUI’02 Proc. 7th International Conference on Intelli-
gent User Interfaces, pp.194–195 (2002).

[15] Asela, G., Tim, P. and Christopher, M.: Usability Guided Key-Target
Resizing for Soft Keyboards, IUI’10 Proc. 15th International Confer-
ence on Intelligent user Interfaces, pp.111–118 (2010).

[16] Goel, M., Jansen, A., Mandel, T., et al.: ContextType: Using hand
posture information to improve mobile touch screen text entry, CHI’13
Proc. SIGCHI Conference on Human Factors in Computing Systems,
pp.2795–2798 (2013).

[17] Yin, Y., Ouyang, T.Y., Partridge, K., et al.: Making Touchscreen Key-
boards Adaptive to Keys, Hand Postures, and Individuals - A Hi-
erarchical Spatial Backoff Model Approach, CHI’13 Proc. SIGCHI
Conference on Human Factors in Computing Systems, pp.2775–2784
(2013).

[18] Hagiya, T. and Kato, T.: Probabilistic Keyboard Adaptable to User and
Operating Style Based on Syllable HMMs, 21st International Confer-
ence on Pattern Recognition, Tsukuba, Japan, pp.65–68 (2012).

[19] Goel, M., Findlater, L., Wobbrock, J.O., et al.: WalkType: Using
accelerometer data to accomodate situational impairments in mobile
touch screen text entry, CHI’12 Proc. SIGCHI Conference on Human
Factors in Computing Systems, pp.2687–2696 (2012).

[20] Hashimoto, M. and Togasi, T.: A virtual oval keyboard and a vector in-
put method for pen-based character input, CHI’95 Proc. SIGCHI Con-
ference on Human Factors in Computing Systems, pp.254–255 (1995).

[21] Swype - Nuance, available from 〈http://www.nuance.com/products/
swype/index.htm〉.

[22] Leggetter, C.J. and Woodland, P.C.: Maximum likelihood linear re-
gression for speaker adaptation of continuous density hidden Markov
models, Computer Speech and Language, Vol.9, pp.171–185 (1995).

[23] Kurohashi, S. and Kawahara, D.: Japanese Morphological Anal-
ysis System JUMAN 7.0 Users Manual. available from DOI:
http://nlp.ist.i.kyoto-u.ac.jp (accessed 2013-02-08).

[24] Arif, A.S. and Stuerzlinger, W.: Analysis of Text Entry Performance
Metrics, Proc. Science and Technology for Humanity (TIC-STH 2009),
pp.100–105, IEEE (2009).

[25] Yamada, H.: A historical study of typewriters and typing methods:
From the position of planning Japanese parallels, The Journal of In-
formation Processing, Vol.2, pp.175–202 (1980).

Toshiyuki Hagiya received his B.E. and
M.E. degrees from Kyoto University in
2008 and 2010, respectively. He is cur-
rently with KDDI R&D Laboratories, Inc.
He has been engaged in research and de-
velopment of spoken dialogue systems
and interactive user interface. He is a
member of IPSJ.

Tsuneo Kato received his B.E., M.E. de-
grees and Ph.D. from The University of
Tokyo in 1994, 1996, and 2011, respec-
tively. He joined Kokusai Denshin Denwa
Co. Ltd. in 1996. He is currently with
KDDI R&D Laboratories, Inc. He has
been engaged in research and develop-
ment of automatic speech recognition,

spoken dialogue systems, and interactive user interface. He re-
ceived IPSJ Kiyasu Special Industrial Achievement Award in
2011. He is a member of ASJ, IPSJ, IEEE, and IEICE.

c© 2014 Information Processing Society of Japan 416


