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Abstract

Graphics processing units (GPUs) are the state of the
art embracing the concept of many-core technology. Their
significant advantage in performance and performance-
per-watt compared to traditional microprocessors has fa-
cilitated development of GPUs in many compute applica-
tions. However, GPUs are often treated as “black-box”
devices due to proprietary strategies of hardware vendors.
One of the greatest challenges of this research domain is
the in-depth understanding of GPU architectures and run-
time mechanisms so that the systems research community
can tackle fundamental problems of GPUs. In this pa-
per, we present an open-source implementation of CUDA
runtime, which is the most widely-recognized programming
framework for GPUs, as well as a documentation of “how
GPUs work” investigated by our reverse engineering work.
Our implementation is based on Linux and is targeted at
NVIDIA GPUs.

1 Introduction

Graphics processing units (GPUs) have become very
powerful platforms in the parallel computing market, best
embracing the concept of many-core technology. Appli-
cation domains of GPUs now spread across embedded
and high-performance computing. Examples include au-
tonomous vehicles [17], software routers [11], encrypted
networks [12], storage and file systems [7, 9, 19], and
a plenty of scientific applications. Such a rapid growth
of GPUs is brought by recent advances in programming
languages and hardware architectures. CUDA [1] and
OpenCL [3] are particularly powerful programming frame-
works for general-purpose computation on GPUs, a.k.a.,
GPGPU, which facilitated deployment of GPUs in many
compute applications. Thanks to the emergence of GPGPU
techniques, GPUs are getting more and more generalized
for compute workload. Peak performance of GPUs in the
current state of the art exceeds 3 TFLOPS, integrating more
than 1,500 cores on a single chip, which is nearly equiv-
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(a) Single-precision performance.
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(b) Single-precision performance-per-watt.

Figure 1. Trends on NVIDIA GPUs and Intel
CPUs.

alent of 19 times that of traditional microprocessors such
as Intel Core i series. Trends on the performance and the
performance-per-watt of well-known NVIDIA GPUs and
Intel CPUs depicted in Figure 1 explain an advantage of
massively parallel computing achieved by GPUs.
Currently the most common use of GPUs is to acceler-

ate a particular application program dedicated to the system
such as a game or scientific simulation. In this scenario,
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stand-alone performance is a major concern, and there is no
need of multiprogramming with GPUs. This is why current
systems can meet requirements of applications using black-
box proprietary driver and runtime software: the problem
definition is often made at the programming level rather
than the system level. However recent work in the systems
research community have argued that GPUs could be first
citizens in the system such as CPUs, if multiprogramming
is well-supported [10, 15, 16, 18]. There are many applica-
tions that benefit from this paradigm shift. It is high time to
start looking into system-level approaches to GPU comput-
ing. What is required to this end is the in-depth understand-
ing of GPU architectures and runtime mechanisms. Un-
fortunately there are very limited documentations of GPU
architecture and open-source software for runtime systems.
This is due to proprietary production of GPUs in the market.
In this paper, we present an open-source implementa-

tion of CUDA runtime as well as a documentation of “how
GPUs work”. We restrict our attention to Linux, CUDA,
and NVIDIA GPUs, because they are the most recognized
environments for systems researchers and developers. Our
documentation is based on the reverse engineering work
conduced by the Linux open-source community, while our
implementation is made from scratch. We believe that this
paper contains many pieces of useful information to address
open problems of GPU computing.
The rest of this paper is organized as follows. Section 2

describes the current GPU computing model with the sys-
tem details. Section 3 presents our open-source implemen-
tation of CUDA runtime. Section 4 provides a summary of
this paper.

2 GPU Computing Model

The GPU is a compute device designed to accelerate
a particular function of the program often referred to as
a compute kernel. This kernel may contain a number of
threads that execute in parallel on the GPU using a massive
set of compute cores. The mapping of threads and cores is
typically managed by hardware, while it is programmer’s
responsibility to parallelize the kernel allocating a suitable
set of threads. In case that the program launches a kernel
multiple times, performance of the program is governed by
the programmer, because the system has to pay some over-
head to offload a kernel to the GPU and each kernel likely
requires the data set to be copied between the device and the
host memory, which can be an expensive operation. These
programming issues have been extensively studied in the
literature.
We focus on system issues of GPU computing. Currently

hardware vendors enclose implementations of the device
driver and the runtime library in proprietary binary software
whereas the compiler source code has been open-released

to a limited extent. Systems research on GPU computing
therefore is forced to build a solution on top of black box
software. This limits the scope of systems research and pre-
vents us from tacking fundamental problems of operating
systems and system software.
Recently the Linux kernel community has developed

Nouveau [2], an open-source device driver for NVIDIA
GPUs. This is part of the unified GPU computing frame-
work of the Linux kernel called the direct rendering module
(DRM) [8]. The development of Nouveau is encouraged by
reverse engineering of black box hardware engines. Albeit
partly limited functionality, Nouveau is now reliable enough
to underlie high-quality research on operating systems and
system software [13, 14, 15, 16].
In the reminder of this section, we explain howGPUs ac-

tually work based on the reverse-engineered information of
NVIDIA GPUs. Understanding that leads to being able to
develop the device driver and the runtime library. For sim-
plicity of description, we assume the Fermi architecture [4],
but the following documentation is also useful and even ap-
plicable to different architectures such as Kepler [6].

2.1 PCI BARs

The current form of the GPU is a PCI device. Although
on-chip GPUs are emerging, we focus on off-chip GPUs as
graphics cards and assume that all communications between
the GPU and the CPU are via the PCI bus. The NVIDIA
GPU exposes the following base address registers (BARs)
to the system through PCI in addition to the PCI configura-
tion space and VGA-compatible I/O ports.

BAR0 Memory-mapped I/O (MMIO) registers.

BAR1 Device memory aperture (windows).

BAR2/3 I/O port or complementary space of BAR1.

BAR5 I/O port.

BAR6 PCI ROM.

The most significant area is the BAR0 presentingMMIO
registers. This is the main control space of the GPU,
through which all hardware engines are controlled. Its
space is sparsely populated with areas representing indi-
vidual hardware engines, which in turn are sparsely pop-
ulated with control registers. The list of hardware engines
is architecture-dependent.

2.2 MMIO

The MMIO registers are 32 bits long. They are of course
accessible to both the GPU and the CPU. From the en-
gineering point of view, a particularly important subarea
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Table 1. Fermi’s MMIO regions.
000000:001000 master control
001000:002000 bus control
002000:004000 channel control
007000:008000 access to BAR0 from real mode
009000:00a000 time measurement and timers
00e000:00e800 GPIOs, I2C buses, PWM fan control
020000:021000 thermal sensor
022400:022800 control over enabled units
040000:060000 subchannel control
060000:061000 indirect virtual memory access
070000:071000 to flush BAR writes
084000:085000 VP3 BSP
085000:086000 VP3 video decoding
086000:087000 VP3 video postprocessing
088000:089000 PCI configuration space access
104000:105000 memory copy control #1
105000:106000 memory copy control #2
106000:107000 memory copy control #3
108000:108800 HDA codec (HDMI audio)
109000:10a000 efuses storing secret key stuff
10a000:10b000 background daemon process
10f000:120000 memory controller backends
137000:138000 clock setting
139000:13b000 peer to peer memory access
13b000:13f000 crossbar b/w memory and GPCs
140000:180000 compression and L2 cache
180000:1c0000 performance monitoring counters
1c2000:1c3000 H.264 video encoding
200000:201000 mediaport
300000:380000 ROM access window
400000:600000 2-D/3-D drawing and compute
610000:6c0000 display
700000:800000 indirect device/host memory access
800000:810000 channel table

of the MMIO registers is the master control engine. This
subarea is present on all NVIDIA GPUs at particular ad-
dresses. It contains the chipset information, the registers to
activate/deactivate each hardware engine, and the controller
of top-level interrupt routing.

The most relevant subareas to resource management of
compute applications include the channel engine and the
compute engine. The channel engine maintains the states of
GPU contexts including FIFO queues of GPU commands,
while the compute engine executes parallel threads. They
are controlled through the particular regions of MMIO. For
reference, Table 1 shows representative subareas of MMIO
and their role. The details of MMIO are outside the scope
of this paper.

2.3 GPU Context

Resource management of the GPU is context-based. To
use the GPU for computation, the program must create a
context. The context information is constructed through the
MMIO registers. The first thing to do is to allocate memory
space for the page directory, the page tables, and the channel
descriptor of the context. They are referenced by physical
device memory addresses. The page directory address must
be written to a particular entry of the channel descriptor,
while the channel descriptor address must be written to a
particular MMIO register. There is an upper bound on the
number of allocatable channels. For example, the Fermi
architecture supports 128 channels at most. This means that
there are 128 fixed entries of the channel descriptor in the
MMIO channel control region shown in Table 1.
Now we can allocate virtual memory space within the

context. Note that recent NVIDIA GPUs support unified
memory addressing (UMA). All memory objects allocated
to the device and the host memory can be referenced by
the same address space. This is due to the graphics address
remapping table (GART) employed by the GPU. We can
specify physical host memory addresses directly in the GPU
page table as far as they are associated with PCI-mapped
pages. The virtual memory space is used by both the user
program and the system. For example, the user program
references the code and data by virtual memory addresses,
while the system maintains GPU command buffers in the
same virtual memory address space.
Typically the GPU is controlled by the CPU using some

commands. There are hundreds of commands defined by
the architecture. For example, when we copy data from the
host to the device memory, we send a set of commands to
the GPU, specifying the source and the destination virtual
addresses together with the mode of direct memory access
(DMA). Similarly when we launch a kernel, we compose
another set of commands to the GPU, specifying the code
and stack information. Each command is 32 bits long with
a specific format. As aforementioned, the system maintains
GPU command buffers. The CPU writes the commands to
them, while the GPU reads the commands from them. To
do so, the system must allocate them so as to be accessible
to both the CPU and the GPU. This can be done by one of
the following two methods.

1. Allocate device memory space, and map this space to
the PCI BARs so that the CPU can access it.

2. Allocate host memory space, and have the GPU access
it through UMA.

Figure 2 illustrates a block diagram of the GPU con-
text management model. Assuming that the code and data
is already placed on the virtual memory address space of
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Figure 2. The GPU context management
model.

the corresponding context, this model explains how to op-
erate the GPU. First, the CPU writes GPU commands to
the command buffer allocated by the system a priori. Al-
though old GPU architectures were designed to use this
command buffer directly, recent GPU architectures provide
another ring buffer called the index buffer to simplify the
mechanism of command dispatching. When the commands
are written to the command buffer, the system writes pack-
ets, each of which is a (size and address) tuple to locate
the corresponding GPU commands, into the index buffer.
The GPU reads this index buffer instead of the command
buffer and dispatches the GPU commands pointed to by the
packets. The index buffer is controlled by GET and PUT
pointers. The pointers start from the same place. Every
time packets are written to the buffer, the system moves the
PUT pointer to the tail of the packets via a particular MMIO
register. The GPU always dispatches the GPU commands
pointed to by the packets between the GET and PUT point-
ers. The GET pointer is then automatically updated to the
same place as the PUT pointer.

3 Open-Source CUDA Runtime

We now present an open-source implementation of
CUDA runtime. There are two types of API in CUDA.
The CUDA Driver API provides a low-level set of func-

tions while the CUDA Runtime API is very high-level with
compiler support. We consider the CUDA Driver API in
this section, and the CUDA Runtime API must be able to
build on it. The main functions of the CUDA Driver API
are that (i) create and destroy a context, (ii) load and unload
the binary image (module), (iii) allocate and free memory,
(iv) copy data between the device and the host memory, (v)
set parameters (kernel arguments), (vi) launch a kernel, and
(vii) synchronize with the GPU. There are many other func-
tions as well, but we exclude them for simplicity of descrip-
tion.

3.1 Frontend

In this section, we provide a high-level idea of how to
implement the main functions of the CUDA Driver API.

Create Context This function creates a GPU context by
configuring the MMIO registers as mentioned in Sec-
tion 2.3. The list of heap memory is also initialized
in this function. Another important thing to do is
to enable compute engines and memory copy engines
within this context. This is done by sending a specific
set of commands to the GPU.

Destroy Context This function kills the specified context
by clearing the MMIO registers. We also have to make
sure that the allocated memory space is all freed from
the heap.

Load Module This function reads an CUDA binary object
file (*.cubin) to parse the code and stack information
of the composed functions. We assume that the pro-
gram is compiled using the NVIDIA CUDA Compiler
(NVCC) [5], and the object file is an ELF format. Be-
cause this function is called only once for the program,
we allocate device memory space to all the code and
static data sections at once, and upload them to the de-
vice memory by sending a specific set of commands to
the GPU.

Unload Module All we have to do for this function is to
free the allocated device memory space.

Allocate Memory This function allocates virtual memory
space. The memory management nodes must be man-
aged to track the remaining region of virtual memory
space. The page table must also be managed in this
function. We can use the PCI BARs to directly access
the page table on the device memory.

Free Memory This function frees the specified virtual
memory space by deleting the corresponding entry of
the page table. The memory management nodes must
also be updated accordingly.
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Copy Data There are synchronous and asynchronous copy
functions. We use the same, but different instances of,
memory copy engines for both of the functions. They
can be managed by a pretty simple set of commands
specifying the source and the destination addresses of
the copy operation together with the mode of DMA
such as linear and split transactions. It is important
to note that multiple copy operations cannot be over-
lapped within the same channel. If needed, this func-
tion internally creates another channel associated with
the same context to perform different copy operations
concurrently.

Set Parameter This function just stores the parameter data
in some buffer maintained by the runtime library. All
the data stored in this buffer are sent to the device
memory together when the corresponding kernel is
launched.

Launch Kernel This function sends the longest sequence
of commands to the GPU. It sets local/shared/global
memory space, and the parameters are sent to con-
stant memory space. The rest of the context informa-
tion including grids, blocks, barriers, and registers are
also set in this function followed by some preliminary
setup for the kernel. Finally the kernel is launched on
the GPU. All these procedures are included in the se-
quence of commands.

Synchronize GPU This function coordinates with the
“Launch Kernel” function. Every time a kernel is
launched, we generate another sequence of commands
that write a sequential number to a specific virtual ad-
dress. When the synchronization function is called, the
program polls on this address. If the value at this ad-
dress changes, it means that the preceding kernel ex-
ecution completes. Thus the program is synchronized
with the GPU. This technique is often called a fence.

3.2 Backend

The backend implementation of CUDA runtime could
take several approaches. This is because the MMIO space
can be accessed by both the user space and the kernel space.
In other words, the resource manager could exist in both the
runtime library and the device driver. However, there are
pros and cons. Having the CUDA runtime in the kernel
space makes the system more secure. This approach also
allows kernel modules to access the GPU. For example, file
systems could use CUDA to accelerate file encryption or
RAID parity checking. The shortcoming of this approach is
that the program could be blocked for a long time in the ker-
nel space, because a blocking copy operation is performed
by the device driver.
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Figure 3. Our approach to open-source CUDA
runtime implementation.

We implement the CUDA runtime software so that the
system designer can choose the kernel space or the user
space. Figure 3 illustrates an overview of our approach
to open-source CUDA runtime implementation. We use
Gdev [16] as the underlying software. There are the same
set of “Language Runtime”, “Gdev Common Runtime”,
and “Driver Backend” in both the user space and the ker-
nel space. We implement them using almost the same
piece of code. Some obvious differences between them in-
clude malloc()/kalloc(), printf()/printk(),
and yield()/sched yield(). Albeit different func-
tion names, they are very similar formats and it is quite
easy to unify them by preprocessor macros. By provid-
ing the MALLOC(), PRINTF(), and YIELD() macros
that are preprocessed to appropriate functions at compile
time, we can use exactly the same piece of code for the
both kernel-space and user-space runtimes. This solution
reduces the maintenance overhead. We also extract the
driver-dependent code from our CUDA runtime implemen-
tation. This modularity makes our implementation portable
to different device drivers. Currently we support Nouveau,
PSCNV (another open-source driver from PathScale) and
NVIDIA’s proprietary driver. Our contribution is useful to
compare the advantages and disadvantages of these device
drivers under the same runtime mechanism.
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4 Summary

We have presented a detailed documentation of “how
GPUs work” and an open-source implementation of CUDA
runtime. Our documentation is a useful contribution
to facilitate further systems research on GPU comput-
ing. Our open-source implementation of CUDA runtime
opens up several approaches to GPU resource manage-
ment. It may be downloaded from http://github.
com/shinpei0208/gdev. We are currently working
on virtualization and dynamic power management of GPUs
to broaden applications of our project. We also plan to com-
plement the implementation of missing CUDA API func-
tions to make it more practical.
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