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Abstract: Canonical correlation analysis (CCA) is a powerful tool for analyzing multi-dimensional paired data. How-
ever, CCA tends to perform poorly when the number of paired samples is limited, which is often the case in practice. To
cope with this problem, we propose a semi-supervised variant of CCA named SemiCCA that allows us to incorporate
additional unpaired samples for mitigating overfitting. Advantages of the proposed method over previously proposed
methods are its computational efficiency and intuitive operationality: it smoothly bridges the generalized eigenvalue
problems of CCA and principal component analysis (PCA), and thus its solution can be computed efficiently just by
solving a single eigenvalue problem as the original CCA.
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1. Introduction

The goal of dimensionality reduction is to obtain a low-
dimensional representation of high-dimensional data samples,
while preserving most of the intrinsic information contained in
the original data. If dimensionality reduction is carried out ap-
propriately, the compact representation of the data can be used
for various tasks, such as visualization, noise reduction and clas-
sification.

Analyzing high-dimensional co-occurring data (x, y) is an im-
portant challenge in machine learning and pattern recognition
communities, e.g., in the context of multi-view learning [1], au-
tomatic annotation of music, image and video [2], [3], [4], and
sensor data mining [5], [6], [7], [8]. Canonical correlation anal-
ysis (CCA) [9] is a classical but still powerful tool for analyzing
multivariate paired samples. CCA finds projection bases wx and
wy such that correlation between projected samples w�x x and w�y y
is maximized. However, the performance of CCA tends to be
degraded when the number of paired samples (x, y) is limited,
while a large number of additional unpaired samples (i.e., x-only
samples and y-only samples) are often a lot in real-world appli-
cations. For example, in the case of automatic image annotation,
collecting many labeled images (= paired samples (x, y)) is often
hard, while unlabeled images (= unpaired samples x) can be eas-
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ily obtained abundantly. In the case of sensor data mining, data
tends to be lost due to faulty devices and unstable transmissions,
which produces a lot of unpaired samples.

To utilize such additional unpaired samples, Blaschko et
al. [10] proposed a semi-supervised extension of kernelized
CCA [11], [12] by the use of Laplacian regularization. This
method enables us to find highly correlated directions that are
also located on high variance directions along the data manifold.
However, it is specialized to kernelized CCA, and deriving semi-
supervised variants of the standard (linear) CCA is not necessarily
straightforward.

This paper proposes quite a simple method to extend linear
CCA to semi-supervised one, that we call SemiCCA. The pro-
posed method SemiCCA utilizes additional unpaired samples
by smoothly bridging CCA and principal component analysis
(PCA). More specifically, the generalized eigenvalue problems
of CCA and PCA are combined using a trade-off parameter. Thus
the solution of SemiCCA can still be obtained just by solving the
combined eigenvalue problem, which is the same computational
complexity as the original CCA. We note that several publica-
tions discuss other types of semi-supervised variants of canoni-
cal correlation analysis (e.g., Refs. [13], [14]) that require fully
paired samples (x, y) and additional side information associated
with samples. Thus, their settings are different from the current
paper.

The rest of this paper is organized as follows: Section 2 re-
views the standard CCA briefly as an introduction of the proposed

* A prerilimary version of this work have been presented in Conference on
International Association for Pattern Recognition (ICPR2010).
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method SemiCCA. Section 3 describes the proposed method
SemiCCA in detail. This section also introduces several ex-
tensions of SemiCCA to more than two samples sets and non-
linear analysis with a kernel trick. Section 4 reports several ex-
perimental results with randomly generated data, and examines
several fundamental properties and the effectiveness of the pro-
posed method. Section 5 considers some applications of the pro-
posed method to automatic image/audio annotation, and reports
the quantitative evaluations. Section 6 concludes this paper and
discusses promising future work.

2. Reviewing Canonical Correlation Analysis
(CCA)

Consider a set of paired samples of size N,

XP = (x1, x2, . . . , xN),

YP = (y1, y2, . . . , yN),

where each sample is a real-valued vector with dimension Dx

and Dy, and a pair (xi, yi) of samples with the same suffix is co-
occurring. Without loss of generality, we assume that XP and YP

are both centered, that can always be achieved by subtracting the
sample means from each sample. CCA is a method of finding a
pair (wx,wy) ∈ RDx ×RDy of basis vectors for a given set (XP,YP)
of paired samples such that their normalized correlation is maxi-
mized as follows:

ρ(XP,YP) = max
(wx ,wy)∈RDx×RDy

〈
X�Pwx,Y�Pwy

〉
∥∥∥X�Pwx

∥∥∥
F
· ∥∥∥Y�Pwy

∥∥∥
F

= max
(wx ,wy)∈∈RDx×RDy

w�x SPxywy√
w�x SPxxwx

√
w�y SPyywy

,

where 〈x, y〉 is the inner product of vectors x and y, ‖X‖F is the
Frobenius norm of a matrix X, X� is a transpose of a matrix X,
SPxx, SPyy and SPxy are sample covariance matrices of paired sam-
ples

SPxx = XPX�P/N, SPyy = YPY�P/N,

SPxy = XPY�P/N.

The maximizers of the function ρ(XP,YP) with respect to wx and
wy are not affected by re-scaling wx and wy. Therefore, the maxi-
mization of ρ(XP,YP) is equivalent to maximizing the numerator
w�x SPxywy of ρ(XP,YP) subject to

w�x SPxxwx = w
�
y SPyywy = 1.

Taking derivatives of the corresponding Lagrangian with respect
to wx and wy, we obtain

SPxywy − λSPxxwx = 0,

S�Pxywx − λSPyywy = 0.

Therefore, the solution (wx, wy) is given as the solution of the
following generalized eigenvalue problem:⎛⎜⎜⎜⎜⎝ 0 SPxy

S�Pxy 0

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝wx

wy

⎞⎟⎟⎟⎟⎠ = λ
⎛⎜⎜⎜⎜⎝SPxx 0

0 SPyy

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝wx

wy

⎞⎟⎟⎟⎟⎠ . (1)

Picking up the top Dz(≤ min(Dx,Dy)) generalized eigenvectors
as row vectors, we can obtain Dz-dimensional mappings Wx and
Wy.

3. Proposed Method: SemiCCA

3.1 Semi-supervised Setup
As described in the previous section, CCA can handle paired

samples, any types of co-occurring real-valued sample pairs,
where several additional unpaired samples are available.

Let us explain the idea of SemiCCA using an illustrative two-
dimensional data set depicted in Fig. 1, where paired (resp. un-
paired) samples are plotted with white (resp. red and blue). When
only the paired samples (XP,YP) are used, poor projection bases
may be obtained by CCA due to overfitting, as shown by the black
arrows in Fig. 1. In contrast, unpaired samples

XU = (xN+1, xN+2, . . . , xN+Nx )

= (xU,1, xU,2, . . . , xU,Nx ),

YU = (yN+Nx+1, yN+Nx+2, . . . , yN+Nx+Ny )

= (yU,1, yU,2, . . . , yU,Ny )

can be used for revealing the global structure in each domain, as
shown by the colored arrows in Fig. 1. Note once rectification of a
basis in one sample space affects its counterpart in the other sam-
ple space because of the correlation maximizing nature of CCA
(cf. the dotted arrows in Fig. 1).

3.2 Algorithm
Motivated by the above illustration, we develop a novel method

for effectively incorporating unpaired samples into the original
CCA. The proposed method, SemiCCA, combines CCA for only
the paired samples and PCA, one of the major tools to capture
the global structure of samples in an unsupervised manner. More
specifically, we integrate the eigenvalue problems of CCA and
PCA since this allows us to compute the combined solution effi-
ciently. The solution of SemiCCA is given by the leading gener-
alized eigenvectors of the following generalized eigenvalue prob-
lem:

C

⎛⎜⎜⎜⎜⎝wx

wy

⎞⎟⎟⎟⎟⎠ = λC
⎛⎜⎜⎜⎜⎝wx

wy

⎞⎟⎟⎟⎟⎠ , (2)

Fig. 1 Effects of unpaired samples in SemiCCA.
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where

C = β

⎛⎜⎜⎜⎜⎝ 0 SPxy

S�Pxy 0

⎞⎟⎟⎟⎟⎠ + (1 − β)
⎛⎜⎜⎜⎜⎝Sxx 0

0 Syy

⎞⎟⎟⎟⎟⎠ ,
C = β

⎛⎜⎜⎜⎜⎝SPxx 0
0 SPyy

⎞⎟⎟⎟⎟⎠ + (1 − β)
⎛⎜⎜⎜⎜⎝IDx 0

0 IDy

⎞⎟⎟⎟⎟⎠ ,
S xx and S yy are sample covariance matrices of all the pairs

Sxx =
(
XPX�P + XU X�U )

/
Nx,

Syy =
(
YPY�P + YUY�U )

/
Ny,

and β is a constant named a trade-off parameter taking a value
in [0, 1]. The parameter β controls the trade-off between CCA
and PCA. Namely, when β = 1, Eq. (2) is reduced to the CCA
eigenvalue problem Eq. (1), while when β = 0 Eq. (2) is re-
duced to the PCA eigenvalue problem, under the assumption that
X = (XP, XU ) and Y = (YP,YU ) are uncorrelated. In general,
SemiCCA with a trade-off parameter 0 < β < 1 inherits the prop-
erties of both CCA and PCA so that the global structure in each
domain and the co-occurrence information of paired samples are
smoothly controlled.

One may use different trade-off parameters for C and C to in-
crease the flexibility. However, this makes the trade-off parame-
ter choice laborious. For this reason, we focus on using the single
shared trade-off parameter β for both C and C, as the first step.

3.3 Some Extensions
We have focused on the case where two sets of samples are

given so far. However, the proposed method SemiCCA can be
easily extended to multiple data sets by considering correlations
over all pairs of samples [15]. For example, we can formulate
SemiCCA for a triad (X,Y, Z) of sample sets, as follows:

C

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
wx

wy
wz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ = λC
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
wx

wy
wz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,
where

C = β

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 S(P)xy S(P)xz

S�(P)xy 0 S(P)yz

S�(P)xz S�(P)yz 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ + (1 − β)
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
Sxx 0 0
0 Syy 0
0 0 Szz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

C = β

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
S(P)xx 0 0

0 S(P)yy 0
0 0 S(P)zz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ + (1 − β)
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
IDx 0 0
0 IDy 0
0 0 IDz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
Of course, the above discussion can be applied to more than 3
sample set in the same way.

We can also obtain a kernelized variant of SemiCCA by us-
ing the standard kernel trick and the technique of pairwise ex-
pression [16]. A covariance matrix Sxy can be converted to the
following pairwise expression (see Ref. [16] for details):

Sxy = X(D −W)X� = XLX�,

where W is a matrix so that all the elements are 1, D is a diagonal
matrix so that the n-th diagonal element is Dn,n =

∑N
m=1 Wn,m, and

L is called a graph Laplacian matrix L = D−W. In the same way,

the identity matrix can be expressed with the following pairwise
form:

IDx = X(X�X)†X�,

where X† denotes the Moore-Penrose generalized inverse of a
matrix X. Therefore, we can express the eigenvalue problem
(Eq. (2)) solved in SemiCCA as⎛⎜⎜⎜⎜⎝X

Y

⎞⎟⎟⎟⎟⎠ L

⎛⎜⎜⎜⎜⎝X
Y

⎞⎟⎟⎟⎟⎠�
⎛⎜⎜⎜⎜⎝wx

wy

⎞⎟⎟⎟⎟⎠ = λ
⎛⎜⎜⎜⎜⎝X
Y

⎞⎟⎟⎟⎟⎠ L

⎛⎜⎜⎜⎜⎝X
Y

⎞⎟⎟⎟⎟⎠�
⎛⎜⎜⎜⎜⎝wx

wy

⎞⎟⎟⎟⎟⎠ , (3)

where

L = β

⎛⎜⎜⎜⎜⎝ 0 L(P)xy

L�(P)xy 0

⎞⎟⎟⎟⎟⎠ + (1 − β)
⎛⎜⎜⎜⎜⎝Lxx 0

0 Lyy

⎞⎟⎟⎟⎟⎠ ,
L =

⎛⎜⎜⎜⎜⎝L(P)xx 0
0 L(P)yy

⎞⎟⎟⎟⎟⎠ + (1 − β)
⎛⎜⎜⎜⎜⎝(X�X)† 0

0 (Y�Y)†

⎞⎟⎟⎟⎟⎠ .
Here, we introduce the following expressions with appropriate
vectors αX , αY ∈ RN as follows:⎛⎜⎜⎜⎜⎝X

Y

⎞⎟⎟⎟⎟⎠�
⎛⎜⎜⎜⎜⎝wx

wy

⎞⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎝X
Y

⎞⎟⎟⎟⎟⎠�
⎛⎜⎜⎜⎜⎝Xαx

Yαy

⎞⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎝Kxαx

Kyαy

⎞⎟⎟⎟⎟⎠
where Kx = {Kx(i, j)}Ni, j=1 and Ky = {Ky(i, j)}Ni, j=1 are N × N matrices
with

Kx(i, j) = x�i x j, Ky(i, j) = y
�
i y j.

Then, multiplying Eq. (3) by (X�,Y�) from the left-hand side
yields⎛⎜⎜⎜⎜⎝Kx

Ky

⎞⎟⎟⎟⎟⎠ L

⎛⎜⎜⎜⎜⎝Kx

Ky

⎞⎟⎟⎟⎟⎠�
⎛⎜⎜⎜⎜⎝αx

αy

⎞⎟⎟⎟⎟⎠ = λ
⎛⎜⎜⎜⎜⎝Kx

Ky

⎞⎟⎟⎟⎟⎠ L

⎛⎜⎜⎜⎜⎝Kx

Ky

⎞⎟⎟⎟⎟⎠�
⎛⎜⎜⎜⎜⎝αx

αy

⎞⎟⎟⎟⎟⎠ .
The above equation implies that the samples appear only via
their inner products, which means that Kx = {Kx(i, j)}Ni, j=1 and
Ky = {Ky(i, j)}Ni, j=1 can be replaced by Gram matrices, each of
whose component can be decomposed with a pair (φx, φy) of func-
tions as

Kx(i, j) = Kx(xi, x j) = φx(xi)
�φx(x j),

Ky(i, j) = Ky(yi, y j) = φy(yi)
�φy(y j).

The kernelized version of SemiCCA can be integrated into the
work by Blaschko et al. [10] with the introduction of Laplacian
regularization to inhibit overfitting.

4. Preliminary Investigation

We first investigated the fundamental characteristics of the pro-
posed method exhaustively using artificial data sets created as
follows: Consider a simple Gaussian latent model, where the la-
tent random variable (corresponding to a canonical variable in the
framework of CCA) is denoted by Z and the observable random
variables are X and Y . We drew samples {zi}Nz

i=1 from a standard
normal distribution independently, zi ∼ N(0, IDz ), where Dz = 10
is the dimension of the latent random variable Z. The number Nz

of samples was set to Nz = 10,000. Then complete paired sam-
ples {(xi, yi)}Nz

i=1 were created as

xi = Tx zi + x + δx,i, δx,i ∼ N(0,ΣX|Z),
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Fig. 2 How to generate artificial data.

yi = Ty zi + y + δy,i, δy,i ∼ N(0,ΣY |Z),

where each component of transformation matrices (Tx and Ty),
means (x and y), and covariance matrices (ΣX|Z and ΣY |Z) was
generated from the folded standard normal distribution. The di-
mensions of the samples were set to Dx = 15 and Dy = 20.

Then, we removed several samples from {yi}Nz

i=1 to artificially
generate unpaired samples, as depicted in Fig. 2. Here, we used
the following linear hyperplane f (·) to remove samples:

f (y) =
Dy∑

d=1

ad(yd − yd) − η, (4)

where a = (a1, . . . , aDy )
� is a coefficient vector satisfying ‖a‖ =

1, and η is a threshold value such that the larger η is, the more
samples are removed. A sample (xi, yi) was kept paired if f (yi) >
0, and yi was removed otherwise. The above scheme can simu-
late the situation where the distributions of paired and unpaired
samples are quite different with each other. Note that when their
distributions are almost the same, CCA with only the paired sam-
ples asymptotically yields the same output as that with complete
paired samples (before removing several samples).

We measured the performance of (Semi)CCA by the weighted
sum of cosine distances defined as follows:

r∑
i=1

λ∗i
w�x,iw

∗
x,i

‖wx,i‖ · ‖w∗x,i‖
,

where wx,i (i = 1, 2, . . . , r) are the eigenvectors derived by
(Semi)CCA from the paired and unpaired samples, and w∗x,i and
λ∗i are the eigenvectors and eigenvalues derived by the standard
CCA from the complete paired samples. We took an oracle set-
ting for selecting the trade-off parameter β. Namely, we adopted
the trade-off parameter β marking the highest score for each trial.
Note that our proposed method SemiCCA is directly formulated
as a generalized eigenproblem, which imples that it does not have
any explicit objective functions. Due to the lack of explicit objec-
tive functions, we cannot compare the performance of SemiCCA
for different trade-off paramters β. This is the main reason why
we took the oracle setting for this preliminary investigation.

Figure 3 shows the evaluation scores averaged over 10,000 in-
dependent trials for several discrimination thresholds θ, each of
which corresponds to the average number of paired samples. The
results indicate the potential of the proposed method SemiCCA: if

Fig. 3 Average evaluation score for artificial data.

Fig. 4 Average trade-off parameter taking the highest score.

Fig. 5 Histogram of trade-off parameters taking the highest score.

we can appropriately select the trade-off parameters β, SemiCCA
can outperform the standard CCA. It is noteworthy that even
when the number of unpaired samples is not so large, SemiCCA
has a potential to perform better than the original CCA.

Figure 4 shows the trade-off parameter taking the highest score
averaged over all the trials, and Fig. 5 depicts the histogram of the
best trade-off parameters. The results imply that the best trade-
off parameters have a concave profile with respect to the number
of paired samples. Since standard errors of the best trade-off pa-
rameters were relatively small, we expect to obtain similar results
not only for oracle settings but also for cross validation scenar-
ios. Namely, this result provides us a generic guideline to esti-
mate promising trade-off parameters from the ratio of paired and
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unpaired samples. The guideline can be useful for several ap-
plications, as shown in the next section. The experimental results
also indicate that the average of the best trade-off parameters were
usually close to 1. Namely, the PCA term scaled by (1 − β) took
a role of regularizing CCA with only paired samples.

5. Applications to Multi-label Prediction

5.1 Method
We applied the proposed method SemiCCA to multi-label pre-

diction, and evaluated its performance with automatic annotation
of images and audios. The baseline was proposed by Nakayama
et al. [17] and Harada et al. [18], which is based on a simple latent
model with the same structure as probabilistic Latent Semantic

Analysis (pLSA) [19], [20].
Feature vectors were extracted from images/audios G = {gn}Nx

n=1

and associated text labels W = {wn}Nn=1, where N is the number of
labeled samples and Nx is the total number of samples including
labeled and unlabeled samples (should be N ≤ Nx and in most
cases N � Nx). Each text label wn was composed of text words
selected from a word set given in advance. We utilized Bag of

Features (BoF) with dimension Dx = 1,024 as image/audio fea-
tures X = {xn}Nx

n=1. As a fundamental feature comprising a BoF,
the Speed Up Robust Features (SURF) algorithm [21] was used
for image local descriptors, and Mel-frequency Cepstral Coeffi-

cients (MFCCs), the first and second instantaneous derivatives
(Δ- and ΔΔ-MFCC) were used for audio frame features. We
adopted word existence vectors Y = {yn}Nn=1 as text features,
where each element represents an existence or absence of a spe-
cific word and thus the dimension Dy of text features was equal
to the number of classes (= 20).

Next, a latent model was estimated from feature vectors (X,Y)
with the help of (Semi)CCA. The first step was to generate latent
variables Z = {zn}Nx

n=1 with (Semi)CCA. More specifically, a func-
tion fx : RDx → RDz was derived from (X,Y) as training samples
with SemiCCA, and latent variables Z are generated from (X,Y)
with fx. The dimension Dz of latent variables was experimentally
determined as Dz = 20. Here, we set the function fx as

fx(x) = Λ1/2Wxx,

where Λ is a diagonal matrix that contains eigenvalues in diag-
onal components. The second step was to set up a latent model.
The latent model was described by the following equations:

p(x, y) =
1

Nx

Nx∑
n=1

p(x|zn)p(y|zn),

p(x|zn) ∝ exp

(
−‖ fx(x) − zn‖

2γ2

)
,

p(y|zn) =
dy∏

d=1

p(yd |zn),

p(yd = 1|zn) = μδ(1 − yn,d) + (1 − μ)Nd/N,

p(yd = 0|zn) = 1 − p(yd = 1|zn),

where yn,d is the d-th element of yn, Nd is the number of images
containing the d-th word in labeled samples, μ is a parameter rep-
resenting how reliable a given label is, δ is the Kronecker delta, an

operator ∝ stands for proportion, and γ is a positive constant. Ac-
cording to the preceding study [17], we set μ = 0.99 and γ = 1.0.

Once the model estimation has been finished, we can execute
image annotation within the same framework through maximum

a posteriori (MAP) estimation. More specifically, the text fea-
ture ŷ of the most probable text label ŵ can be derived by using a
feature x(g) extracted from a given image or audio, as follows:

ŷ = argmax
y∈[0,1]Dy

p(y|x(g))

= argmax
y∈[0,1]Dy

∑Nx

n=1 p(x(g)|zn)p(y|zn)∑Nx

n=1 p(x(g)|zn)
.

Since a conditional density p(y|zn) for a text feature y is modeled
as an element-wise independent distribution

p(y|zn) =
Dy∏

d=1

p(yd |zn),

the annotation problem can be rewritten to the following simple
form:

ŷd =

∑Nx

n=1 p(x(g)|zn)p(yd = 1|zn)∑Nx

n=1 p(x(g)|zn)
(d = 1, 2, . . . ,Dy)

When ŷd (d = 1, 2, . . . ,Dy) exceeds a pre-defined threshold θd,
the text word of index d is provided to the given image or audio.

5.2 Automatic Image Annotation
We use the dataset used in PASCAL Visual Object Challenge

(VOC) 2008 [22] and 2009 [23] for the experiments of automatic
image annotation, which consists of 20 binary classification tasks
of identifying the existence of a specific object in each image. Im-
age examples included in the VOC2008 training dataset is shown
in Fig. 6. We utilized all of the 5,096 images in the VOC2008
training dataset, and separated them into 1,000 labeled images for
training, 500 unlabeled images for evaluation and the rest as un-
labeled images for training. Also, 9,647 images in the VOC2009
training/test dataset *1 were added to unlabeled images for train-
ing. In total, 13,743 unlabeled images for training were utilized.
We removed all the bounding boxes and only utilized class la-
bels associated with bounding boxes to simulate weak labeling
settings [24], where images are weakly related to multiple words
without region information. We adopted the precision rate PR

and recall rate RE as the evaluation measures, defined as

Fig. 6 Example images in VOC2008 dataset.

*1 The VOC2009 training dataset contains all the images in VOC2008 train-
ing dataset, however, those duplicated images were removed in advance.
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Fig. 7 Precision-recall curve for automatic image annotation with PASCAL
VOC 2008/2009 dataset.

PR =

∑Ne

n=1 T Pn∑Ne

n=1(T Pn + FPn)
, (5)

RE =

∑Ne

n=1 T Pn∑Ne

n=1(T Pn + FNn)
, (6)

where Ne (= 500) is the number of images for evaluation, T Pn,
FPn and FNn is respectively true positives, false positives and
false negatives for the n-th image for evaluation. We mea-
sured the precision and recall rate for various threshold vectors
θ = (θ1, . . . , θDy )

� whose range was from 0.5θ̂ to 2.0θ̂, where θ̂
is the threshold vector that achieved the best balance of the preci-
sion and recall rates for the training dataset. In general the large
threshold would achieve high precision rate but low recall rate.

Figure 7 shows the experimental results, where the horizontal
axis stands for the recall rate, and the vertical axis represents the
precision rate. We compared the proposed method SemiCCA uti-
lizing both labeled and unlabeled samples with the standard CCA
utilizing only labeled samples. Figure 7 indicates that latent space
extraction based on SemiCCA with labeled and unlabeled images
was effective against the standard CCA with only labeled images.

5.3 Automatic Audio Annotation
For experiments of automatic audio annotation, we use the data

collected from a audio sharing service called Freesound *2, which
consists of various audio files annotated with word tags such as
“people”, “noisy”, and “restaurant.” The goal is to predict the ex-
istence of each tag for a new audio clip. We downloaded 2012
audio clips from among all files containing any of pre-defined
230 text labels, 3–60 seconds in length and with a sampling rate
44.1 kHz. We then randomly selected 1,000 clips as labeled train-
ing samples, 912 clips as unlabeled training samples and the rest
(= 100 samples) as samples for evaluation. In the same way as
image annotation, we adopted the precision rate and recall rate as
the evaluation measures.

Figure 8 shows the experimental results, where the threshold
vector θ varied from 0θ̂ to 5.0θ̂. The horizontal axis stands for the
recall rate, and the vertical axis represents the precision rate. We
compared the proposed method SemiCCA utilizing both labeled
and unlabeled samples (red line) with (1) the standard CCA utiliz-
ing only labeled samples (blue line) and (2) the standard CCA in
the case that all the unlabeled samples would have been labeled
(purple line). We note that the second opponent, the standard

*2 http://www.freesound.org

Fig. 8 Precision-recall curve for automatic audio annotation with Freesound
dataset.

CCA in the case that all the unlabeled samples would have been
labeled, would be the essential upper bound of the performance
of SemiCCA. All the audio clips in the Freesound dataset used in
this experiment have text labels, and a part of them were forced
to be considered as unlabeled to build a semi-supervised setup.
Thus, the experiments in this section can acquire the upper bound
of the semi-supervised performance. This is not the same case as
the PASCAL VOC dataset shown in the previous section, whose
test samples did not have any ground-truth text labels. Figure 8
indicates that latent space extraction based on SemiCCA was ef-
fective also for automatic audio annotation.

6. Concluding Remarks

In this paper, we proposed a semi-supervised extension of CCA
that we call SemiCCA. Our formulation is quite simple and also
intuitively understandable. Namely, SemiCCA smoothly bridges
CCA with paired samples and PCA with paired and unpaired
samples by a trade-off parameter. We evaluated its experimental
performance, and revealed the effectiveness of SemiCCA against
the original CCA.

In our future work, we will clarify some relationships be-
tween the proposed method SemiCCA and Bayesian model-
ing [25], [26], [27], and apply SemiCCA to other challenging
real-world problems such as multi-modal event correlation anal-
ysis for audio-video synchronization, audio-visual speech recog-
nition and sensor data mining.
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