特集:日本を元気にする【【二】

子供の頃描いた夢の再考

日本を元気にするストリーミング配信

■ 日本を元気にするために

日本を元気にするためには、日本で社会活動を行 っている人を元気にする必要があり、 つまりは本誌 の読者のような研究者や学生自身が元気に研究活動 に取り組めなければならない. そこで、筆者自身が 何に元気づけられて研究活動に取り組めているのか を具体的に考え、整理してまとめた. はじめに、子 供の頃描いた夢を再考することで日本を元気にでき ることを語る. まずは夢というありふれていてあま り語られない内容ではあるが、日本を元気にするた めには必要であり、より元気にするきっかけになれ ばと思い、筆者の考えをエッセイ風に述べる、さら に、自身の再考に基づき、日本を元気にするために は筆者が専門としているストリーミング配信が重要 であることを語る.

子供の頃描いた夢

筆者は、夢を持つことが、研究活動に元気に取り 組むために非常に重要と考えている。本やテレビで 夢を持つことが美徳として扱われており、研究者と しての性から、通説を疑って、夢を持つことが本当 に重要なのかと考えたこともある. しかし, 筆者は 「今」に感動を与えるために新しい映像配信を実現し たいという夢を持って研究活動に取り組んでいると いう事実から、本当に重要であると確信している¹⁾. 夢を持ち続けることで、元気を維持できる. ワクワ クする夢を持ち続けられればよいが、 さまざまな研 究活動を経験していると, 新しい夢を考えても実現 性や実現に伴うリスクが気になってしまい、途中で 思考を止めてしまうことが多いだろう. そこで, 子 供の頃描いた夢を手掛かりにして夢を持つ方法が考

えられる.

夢の再考

子供の頃描いた夢は、ほとんどの場合、論理的に 考えたものではなく、気の向くままに描かれていて ワクワクする空想が広がっている. しかし, 実現性 やリスクを気にしていないため、実現の見通しを立 てられない. たとえば、私が子供の頃描いた夢のよ うに、駆けっこで一等になった感動そのものを引っ 越しした複数の友だちに伝えたり、ゲームの世界に 実際に入り込んでバトルしたり、などは実現できそ うにない. 実現の見通しを立てられないからといっ て夢を持つことをあきらめてしまうと元気にならな い、しかし、描いた夢を実現できなくても、さまざ まな研究活動を経験した今なら、この程度までなら 実現の見通しを立てられるところが見え、それを夢 として持てる. 先ほどの例だと, 駆けっこの映像を 遠隔地の友だちに即座に配信したり、ゲームの世界 にいるような没入感のあるコンテンツを配信したり, などであれば実現できそうである.

そのままだと実現の見通しを立てられない子供の 頃描いた夢は、実現の見通しを立てられそうな夢へ と再考できる. 子供の頃描いた夢を再考することで, 人は社会活動に元気に取り組むことができ、日本の 元気につながる.

具体的な事例

実際に再考した結果、どのような夢を持って元気 に社会活動できるかは、子供の頃描いた夢の内容 と、その人の経験に依存し、無数の結果がある.筆 者の場合、上記のように、駆けっこで一等になった

感動を引っ越しした複数の友だちに伝えたり、ゲー ムの世界に入り込んでバトルしたり、を夢描いてい た. 大学に入って研究室に所属するようになってか ら、放送型データベースの応用で映像や音声のスト リーミング配信に関する研究に携わった. この研究 活動の経験から、映像配信でどこまで実現できるか 見通しを立てることができるようになり、子供の頃 描いた夢を、映像を遠隔地の友だちに即座に配信し たり、没入感のあるコンテンツを配信したり、とい った実現の見通しを立てられる夢へと再考した. こ の夢を持って、研究活動に取り組んでいる.

■ 日本を元気にするストリーミング配信

筆者の再考の方向性を決めることとなったストリ ーミング配信とは、データを連続的に流しながら配 信する方法であり、映像データであればダウンロー ド完了を待つことなく, 受信しながら再生できる. 映像データ以外に、センサデータや株価情報の配信 もストリーミング配信に含めることがあるが、ここ では主に映像データの配信を考える. 駆けっこの映 像を遠隔地の友だちに即座に配信して一等になった 感動を伝え、気持ちを共有することでお互いに元気 になったり、ゲームの世界にいるような没入感のあ る映像にプレーヤが感動して元気になったり、とい ったようにストリーミング配信で映像を配信するこ と自体でも元気を与えられる. ほかにも以下の例が あげられる.

- サッカーワールドカップの詳細な映像を多数の視 聴者にストリーミング配信して選手の様子を詳し く伝えて多くの視聴者が選手から元気をもらう.
- 遠距離恋愛の恋人と互いに臨場感のあるコンテン ツをストリーミング配信して近くにいる気がして 元気になる.
- 映像に映っている活躍している人物の年齢をイン ターネットから取得して、同い年が活躍している ことを知ってライバル心を抱いて元気になる.

これらの例のように, ストリーミング配信は日本 を元気にするための重要な技術の1つである. しか

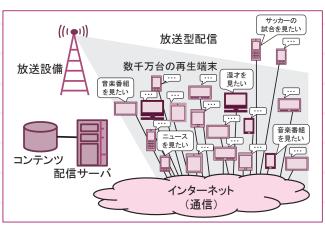
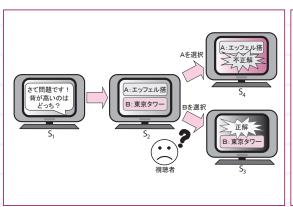



図-1 放送通信融合環境の例

し、ライブ放送されているサッカーの試合でも会場 に観戦しに行く人がいるように、現状のストリーミ ング配信は元気を与える上では不十分である. 視聴 者に、より元気を与えるストリーミング配信を実現 するためにはいくつかの課題がある。主な3項目を 以下に紹介する.

放送通信融合環境におけるストリーミング配信

サッカーワールドカップの例のように選手の様子 を詳しく伝えて視聴者を元気にするためには, 現状 よりもビットレートの大きい映像データのストリー ミング配信が求められる. ビットレートの大きい映 像の例として、階調数と画素数の多い高精細な映像 や、いくつかの視点から視聴できるマルチアングル の映像があげられる. ビットレートが大きい映像を 多数の視聴者に配信すると、現状のストリーミング 配信環境では再生に途切れが頻繁に発生する. そこ で、2011年7月のテレビ放送完全ディジタル化を 経て放送と通信との親和性が高くなり, 放送通信融 合環境が注目を集めている²⁾. 法的, 経済的, 社会 的、さまざまな観点で放送通信融合という言葉が使 われるが、ここではシステム構成の観点からの放送 通信融合環境を意味している. 図-1 に示すように, 放送と通信両方を用いることで互いの利点を活用し, 途切れ時間の少ないストリーミング配信が可能にな $3^{3)}$.



図-2 選択型コンテンツの例

図-3 ストリーミング配信システム「Brossom」

没入型・選択型コンテンツのストリーミング配信

配信されるがままに視聴する平面の映像コンテン ツではなく、新しいコンテンツを配信することでよ り視聴者を元気にできると考えられる.

遠距離恋愛の例のように臨場感を与えて恋人同士 を元気にするためには、平面ディスプレイで再生す るといった従来のコンテンツではなく、没入型コン テンツのような新しいコンテンツが求められる. 没 入型コンテンツとは、視聴者が映像の空間に没入し て楽しめるコンテンツであり、仮想現実体感システ ムCAVEや立体視ディスプレイに表示される. 没入 型コンテンツは、平面の映像に比べてデータサイズ が非常に大きいが、変化の少ない背景データを蓄積 することで,配信に必要な通信量を抑えられること が報告されている.

また, 新しいコンテンツとして, 視聴者の選択に 応じて再生される映像が変化する選択型コンテンツ がある. 選択型コンテンツの例として, 図-2のよ うに視聴者が選択した回答に応じて映像が再生され るクイズ番組や, サウンドノベルのような主人公の 行動を選択できるドラマがあげられる. 選択型コン テンツにおいても、配信されるがままに視聴する映 像に比べてデータサイズが大きいが、視聴順序グラ フを用いて選択肢が視聴される順番を考慮すること で再生が途切れる時間を短くできる4).

興味を持つ関連情報の表示

ライバル心を抱く例のように、映像に映っている 人や物の関連情報を表示して視聴者を元気にできる ことがある、従来のテレビ放送では、データ放送で 関連情報を表示できるものの、表示される情報が固 定で、視聴者が興味を持つ情報であるとは限らなか った. 視聴者が元気になるような興味を持つ関連情 報を表示できるストリーミング配信システムが求め られる. たとえば、視聴者の興味の特徴ベクトルに 基づいて情報取得する研究が行われている. また, 筆者らは、視聴者が興味を持つシーンを何度も再生 できるストリーミング配信システムを開発している (図-3).

■ まとめ

本稿では、日本をより元気にするために、夢を持 つこととストリーミング配信の重要性を述べた. 日 本を元気にするICTにはこれらが必要であり、本稿 をきっかけに日本をさらに元気にできることを願っ ている.

参考文献

- 1) 義久智樹,後藤佑介:ストリーミング配信で「今」に感動を与える-放送コンピューティングによる未来型コンテンツ配信サービス―, 特集「未来社会をプロデュースするICT」, 情報処理, Vol.52, No.1, pp.62-63 (Jan. 2011).
- 2) 総務省:情報通信白書,平成23年版,pp.15-16(2011).
- 3) Yoshihisa, T. and Nishio, S.: An Interruption Time Reduction Scheme with Prefetch for Hybrid Video Broadcasting Environments, Proc. of IEEE Wireless Communications & Networking Conference (WCNC 2011), in CD-ROM (Mar. 2011).
- 4) Gotoh, Y., Yoshihisa, T., Kanazawa, M. and Takahashi, Y.: A Broadcasting Protocol for Selective Contents Considering Available Bandwidth, IEEE Trans. on Broadcasting, Vol.55, Issue2, pp.460-467 (2012年1月1日受付) (June 2009).

■ 義久 智樹(正会員) yoshihisa@cmc.osaka-u.ac.jp

2005年大阪大学博士(情報科学). 京都大学助教, カリフォルニア大 学客員研究員を経て 2009 年より大阪大学准教授. 2010 年度本会山 下記念研究賞受賞.ストリーミング配信,センサネットワークに関す る研究に従事