
An Implementation of a Generic Unpacking Method on Bochs

Emulator

Hyung Chan Kim Daisuke Inoue Masashi Eto Jungsuk Song

Koji Nakao

National Institute of Information and Communications Technology
4-2-1 Nukui-Kitamachi, Koganei, Tokyo 184-8795 Japan

{hckim, dai, eto, song, ko-nakao}@nict.go.jp

Abstract In these days, it is very prevalent to discover many packed malwares caught in
any malware collecting systems including honeypots. Thus, the initial step for usual malware
analysis involves unpacking binary samples. In this paper, we present a yet another method
of generic binary unpacking. A typical packed binary includes stub code that takes charge
of unrolling packed data at the early stage of program execution thereby realizing original
execution context. Our approach is basically to measure code revelation/concealment based on
byte state model that reflects the behavior of such stub code. We also describe a proof-of-concept
implementation based on Bochs x86 system emulator.

1 Introduction

One of the most pressing security concerns in
recent years is to cope with malicious soft-
wares (malwares). Those malwares, usually
collected by honeypot systems, should be an-
alyzed to establish any security countermea-
sures. However, large portions of such mal-
wares we encounter these days are resistant
to reverse engineering efforts: i.e., they are
packed with any transformation methods such
as compression, encrytion, and/or obfuscation
to deter security analysis. Applying packing
in malwares also hinders the detectability of
anti-virus (AV) softwares [5] because a single
known – thus its signature is alreay in our
hands – malware sample can gain polymorh-
pism by being transformed by several types of
packers.
An automatable generic unpacking method is
required in two respects: (1) to perform the
primary analysis of a large volume of malware
samples; (2) to alleviate the burden of manual
analysis.
Our research group has a collection of sample
malwares size of 643,409 (as of May, 2009).
Among them, at around 50% are identified as
packed binaries with PEiD tool [3] based on a

community supported signatures database [6].
As signature based identification often shows
false negative results, we also conducted an
entropy based identification [11], näıvely set-
ting thresholds (6.7 for entire file and 7.2 for
highest section), and it resulted in that the
90% of samples outnumbered the thresholds.
This tendency comes from the publicly avail-
able packing tools, sometimes even including
source codes; thus, a large number of malwares
are deemed to be packed to avoid being ana-
lyzed. Therefore, manually dealing with nu-
merous samples, security analysts cannot bear
the whole load of analysis.
In this paper, we propose a yet another generic
unpacking approach. Our approach is basi-
cally to measure code revelation/concealment,
shadowing the behaviors of typical stub code,
during execution of packed binary. To achieve
the measurement, we extend a general unpack-
ing heuristic with a simple finite state model
(byte state model). Our architecture includes
shadow memory to maintain states of memory
access activities.
We also describe a proof-of-concept implemen-
tation based on Bochs x86 system emulator
[1]. Executing a packed binary sample inside
the emulator, our module tracks memory ac-

Figure 1: Byte state model

cess activities including instruction pointers to
appropriately update shadow states by which
code revelation is measured and candidate orig-
inal entry points (OEP) are spotted. Our test
results show that the proposed method has ef-
ficacy for many typical packers.

2 Design and Implementation

This section presents a design and proof-of-
concept implementation of a generic unpack-
ing approach.

2.1 Design

In many cases, packed binaries include stub
code that unrolls packed portion on the fly.
When a typical packed binary is executed, the
attached stub takes the very first control1, thus
it starts to unfold (decrypt or decompress) the
packed portion into memory. After complet-
ing the unfolding, the stub then hands over
program control to the newly unfolded area
thereby realizing original program execution.
The first branch target, located by the stub,
in the area could be a possible OEP.
The proposed method is basically to leverage
the above general behaviors of stub code. To
reflect the behaviors, we introduce a simple
finite state model [Fig. 1] for every bytes of
native memory that is used by target process.
Our heuristic is to perform quantification of
the code revelation according with the state
model: let r be the measure of code revela-
tion, if there is a newly discovered byte, r

is increased. In accordance with the general

1Usually, in a packed executable, entry point in the
program header points to stub code area.

heuristic [9, 4, 8], if a byte is previously writ-
ten and then executed at the same byte, it
amounts to revealing a new code. To achieve
this quantification each state represents mem-
ory access activities: other than the initial
state [I], [W] (write), and [W → E] (written
byte is executed). State transitions can be oc-
cured with memory write instruction (W) and
every instruction execution (E). Managing
memory access states during a packed binary
execution, the count of [W → E] states over
process memory range represents the newly
unrolled code area. Meanwhile, if a process
writes something to the address range asso-
ciated with [W → E] states, it means code
concealment: the once executed code are elim-
inated from memory. The possible scenario of
occuring this transition might be shifting de-
code frame [12]. With this technique, a stub
may perform possible repacking that results
in overwriting some bytes on the already exe-
cuted area.
The original execution context is started after
unrolling, in where many writing operations
are involved, packed portion. Thus, we might
be able to observe abrupt change of the mea-
sure r at around the OEP. Our conjecture is
that r would begin to sharply increase at the
plausible OEPs as many state transitions from
[W] to [W → E] would occur after the turning
points. We try to find such turning points to
spot candidate OEPs during execution. How-
ever, because packed binaries basically involve
code-modifying characteristic, there may be
some noises (false OEPs) posing similar phe-
nomenon. More sophisicated binaries would
result in many such points. Therefore, we col-
lect all the such points and try to generate a
candidate OEP set of feasible size.

2.2 Implementation

Figure 2 depicts our implementation architec-
ture. We use Bochs x86 whole system emula-
tor (Ver. 2.4.1) [1] to instrument the behaviors
of packed binaries. We choose Bochs as it pro-
vides an easy way to instrument fine-grained
memory accesses, control flows, as well as in-
struction executions; those are requirements of
our design approach.

Figure 2: Architecture

On top of the system emulator, a guest OS
(Windows XP SP2) is installed. Compared
with process-based instrumentation approaches,
such as deploying dynamic binary instrumen-
tation (DBI) or using debugging APIs, it is
necessary to parse internal data structures of
Windows OS [13] to only keep track of con-
cerned processes (e.g., memory area and in-
struction executions associated with a specific
CR3 register value). If a target process is
started, initialization status and instruction
pointer of the entry point of the process are
checked. Validating those, fine-grained mem-
ory tracking, to quantify code revelation and
concealment, begins.
Our implementation includes shadow memory
to populate byte states of every native bytes of
a monitored process: 1 byte in process mem-
ory is associated with 2-bit unit thereby hold-
ing up to 4 states. The shadow memory is
implemented based on a page-table-like struc-
ture, allowing us to scale memory requirments
with the actual process address space in use.
Because we adopt 1 byte precision, the mea-
surment of code revelation depends on the size
of instructions.
During instrumentation, our module generates
a candidate OEP set according to the heuris-
tic described in Sect. 2.1. Currently, we use
a window-based method: setting an instruc-
tion window, it is checked that whether past
instructions within the window increase code
measure r over some threshold. If exceeded
are branch instrunctions within the boundary
of binary image area, those instruction point-

ers are emitted to the OEP set.
To make image dump files of the monitored
process (e.g., sections including PE layout) at
the appropriate candidate OEPs, we exploit
frame page faults for the target memory area.
Sometimes, especially at the early stage of pro-
gram execution, some parts are missing within
the physical memory as the underlying OS does
not load some page frames until those are re-
ally necessary; thus, we need to load corre-
sponding page frames into memory.

3 Experiments

We conducted tests to validate efficacy of our
unpacking approach with the calculator appli-
cation (calc.exe, 112KB) included in Win-
dows XP. The sample binaries were generated
by packing the calculator with various packers
available in the Internet.

3.1 Test Results

Figure 3 shows the quantification results of
original binary and binaries packed with some
widely known packers: UPX, PECompact, Yoda
Crypter, ASPack, and PESpin. The graphs
show the variation of revealed/concealed code
measurement with instruction precision (ex-
cept the PESpin, it is plotted with branch
precision), and the OEP of calculater program
(0x1012475) is superimposed on the surfaces.
As shown in the Figure 3(a), there was no vari-
ation in the execution of the original binary as
it dose not accompany any code-modifying be-
havior. Meanwhile, the other packed binaries
exposed their own specific unrolling behaviors.
Observing these graph results, and the results
of some other packed binaries which are not in-
cluded here, executions of test samples exhib-
ited staircase behaviors in regards to memory
accesses. Flat phases may involve heavy read
and write accesses and bump increase phases
indicate heavy executions of newly exposed in-
structions (i.e., state transitions from [W] to
[W → E]). Most sample runs resulted in non-
decreasing behaviors as new code rolled out by
the attached stub code of each binary. From
the observation, we conjecture that the initial

-1

-0.5

 0

 0.5

 1

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06 4e+06 4.5e+06 5e+06

r

Instruction Ticks

Original calc.exe

calc.exe

(a) Original Calc.exe

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06

r

Instruction Ticks

UPX 3.03w

UPX
OEP

(b) UPX

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 2e+06 4e+06 6e+06 8e+06 1e+07 1.2e+07 1.4e+07

r

Instruction Ticks

PECompact 2.79

PECompact
OEP

(c) PECompact

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 2e+06 4e+06 6e+06 8e+06 1e+07 1.2e+07

r

Instruction Ticks

Yoda Crypter

YodaC
OEP

(d) Yoda Crypter

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06 9e+06

r

Instruction Ticks

ASPack 2.12

ASPack
OEP

(e) ASPack

 0

 5000

 10000

 15000

 20000

 25000

 0 2e+06 4e+06 6e+06 8e+06 1e+07 1.2e+07

r

Branch Ticks

PESpin

PESpin
OEP + 0x1C

(f) PESpin

Figure 3: Experimental results: measuring code based on byte state model

behavior of packed binaries are well accorded
with the general heurstic. Moreover, we also
observed that the OEPs were located in turn-
ing points: i.e., the points in where a sudden
phase shift occur.
However, there were some exceptional cases.
Yoda Crypter exhibited code concealment be-
havior just before landing at the OEP [Fig. 3(d)].
To verify the concealment, we generated an in-
struction execution trace annotating write ac-
cesses, which contribute to decrease code mea-
sure, and then compared with a debugging re-
sult. The concealed area, which is based on
our model and actually the area was filled with
zeros, was proved to be coincided with the
newly written area at the very early of the
execution (even before the unrolling main ex-
ecutable code). This explains that the stub is
generated dynamically and removed later.
With the PESpin case [Fig. 3(f)], the exact
address of the OEP was failed to be located.
Instead, the address 28 bytes apart from the
OEP was spotted. This is because an ob-
fuscation technique, stolen bytes [14], is ap-
plied to obstruct analysis: initial bytes around
the OEP were moved to another area, where
also appears to be obfuscated, and the original
place was filled with zeros.
Table 1 shows the unpacking test results of
packers easily obtainable from the Internet. In
the table, the first column is the size of gen-
erated OEP set; whether the generated OEP
set includes real OEP is marked in the second
column; the third column is the obtainability
of apporpriate image dump files.
In most cases, our system generated feasible
size of candidate OEP sets with an optimiza-
tion: if a candidate OEP is spotted, we reset
continuous area of same state to initial state in
shadow memory. The resulted sets mostly in-
clude the exact OEP. Cases involved with ob-
fuscation such as stolen bytes, the exact OEP
was not included in the generated sets. In our
test, the nearst locations spotted were apart
by 7 bytes in Obsidium and PELock cases, and
by 28 bytes in PESpin.
Our system failed to spot OEP and to obtain
valid dump file from executables packed with
Telock and VMProtect. Telock performed mem-

Table 1: Unpacking results

Packer Set Size OEP Dump

ASPack 3 O O

ASProtect 21 O O

eXPressor 3 O O

FSG 3 O O

MEW 5 O O

MoleBox 5 O O

Morphine 5 O O

npack 3 O O

Obsidium 65 X O

PACKMAN 4 O O

PECompact 5 O O

PELock 16 X O

PEPack 3 O O

PESpin 11 X O

petite 6 O O

RLPack 3 O O

telock 3 X X

UPX 3 O O

VMProtect 0 X X

WINUPack 7 O O

yC 4 O O

yP 5 O O

ory integrity (CRC) check and our system was
detected. The further analysis was halted by
the detection with a warning message. The bi-
nary packed with VMProtect, which deploys
virtual machine techniques, even did not gen-
erated any candidate OEP.

3.2 Discussion and Future Work

As shown in the test results, our system, im-
plemented with a general approach, works for
many typical packers. Moreover, it is possi-
ble to understand the behavior of packed bi-
naries with the generated graphs based on byte
state model. As the resulted OEP set sizes are
not too large, dumped images at those OEPs
might be feasibly considered to be input for
further static analysis.
However, we also identified limitations. First
is related with the transparency issue of un-
derlying instrumentation framework. In our

experiment, we could not execute the binary
packed with Telock for analysis. This might
be because Bochs does not perfectly emulate
execution contexts compared with native en-
vironments. For further investigation, actu-
ally, we also have implemented our method
in a Xen based instrumentation framework,
Ether [7], which also supports fine-granined
memory access traces and is known to be more
transparent as guest OSs are executed near
natively under Intel VT [2] support. For Te-
lock case, we could successfully generate can-
didate OEPs and obtain valid dump files on
that framework.
Second, binaries protected with virtual ma-
chine techniques do not exhibit code-modifying
feature (as VMProtect case in our test); thus,
the general heuristic of detecting executed bytes
of previously written may not work. Instead
of unrolling native code by stub, virtual ma-
chines are included in those binaries. Pro-
tected code (p-code), different with native x86
instructions, are interpreted and executed by
the attached virtual machines.
Our work is currently in its preliminary sta-
tus. For functional enhancement, we will in-
clude modules (1) to make dump not only im-
age area but also dynamically allocated area,
and (2) to reconstruct import address table.
We also will continously deal with several in-
strumentation frameworks or try with meth-
ods to cover emulation bugs [10].

4 Conclusion

In this paper, we have presented our work-in-
progress efforts to build toward a generic and
automatable unpacking system thus perform-
ing the primary analysis of a large volume of
malwares. Our method is basically to quantify
newly revealed/concealed code with byte state
model. We also presented a proof-of-concept
implementation based on Bochs whole system
emulator as well as test results thereby con-
firming the efficacy of our approach.

References

[1] Bochs ia-32 emulator project. http://

bochs.sourceforge.net/.
[2] Intel virtualization technology. http://www.

intel.com/technology/virtualization/.
[3] Peid. http://www.peid.info/.
[4] L. Böhne. Pandora’s bochs: Automatic un-

packing of malware. Master’s thesis, RWTH
Aachen University, 2008.

[5] T. Brosch and M. Morgenstern. Runtime
packers, the hidden problem. Black Hat Con-
ference, 2006.

[6] J. Clausing. A packer signature for peid.
http://handlers.sans.org/jclausing/

userdb.txt.
[7] A. Dinaburg, P. Royal, M. Sharif, and W. Lee.

Ether: malware analysis via hardware virtu-
alization extensions. In CCS ’08: Proceedings
of the 15th ACM conference on Computer and
communications security, pages 51–62, New
York, NY, USA, 2008. ACM.

[8] F. Guo, P. Ferrie, and T.-C. Chiueh. A study
of the packer problem and its solutions. In
RAID ’08: Proceedings of the 11th interna-
tional symposium on Recent Advances in In-
trusion Detection, pages 98–115, Berlin, Hei-
delberg, 2008. Springer-Verlag.

[9] M. G. Kang, P. Poosankam, and H. Yin. Ren-
ovo: a hidden code extractor for packed ex-
ecutables. In WORM ’07: Proceedings of
the 2007 ACM workshop on Recurring mal-
code, pages 46–53, New York, NY, USA, 2007.
ACM.

[10] M. G. Kang, H. Yin, S. Hanna, S. McCamant,
and D. Song. Emulating emulation-resistant
malware. Technical Report UCB/EECS-
2009-58, EECS Department, University of
California, Berkeley, May 2009.

[11] R. Lyda and J. Hamrock. Using entropy anal-
ysis to find encrypted and packed malware.
IEEE Security and Privacy, 5(2):40–45, 2007.

[12] D. Quist and Valsmith. Covert debugging:
Circumventing software armoring. Black Hat
Conference, 2007.

[13] M. E. Russinovich and D. A. Solomon. Win-
dows internals (5th edition), 2009.

[14] M. V. Yason. The art of unpacking. Black
Hat Conference, 2007.

