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Undecidability of a Simple Origami Problem

RyUHEI UEHARAT!

Origami has recently attracted much attention as “computational origami”.
In a sense, origami can be seen as a platform of computation. Both of tractable
and intractable results have been obtained on the platform. For a computation
model like Turing machine, undecidable problems are a kind of paradoxical evi-
dence of the computational power of the model. Then, is there any undecidable
problem on computational origami model? In this paper, we give an affirma-
tive answer. We show that a natural and simple decision problem in an origami
computation model is undecidable.

1. Introduction

The idea “computational origami” has recently attracted much attention as theoreti-

cal computer science? . Since NP-hardness result by Bern and Hayes”, there are several
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intractable results from the viewpoint of computational complexity. On the other hand,
some origami related software are developed. Among them, TreeMaker, developed by
Lang, is well known software for origami design®. In this software, it solves several
combinatorial optimization problems in a practical time. In this area, origami can be
seen as a platform of computation in a sense. We can “compute” some points by folding
it using some basic operations on it.

In theoretical computer science, it is known that a computation by a Turing machine
is essentially equivalent to recursive function. These natural models are strong enough,
and in a sense, this is why their computational power has their limit. For example,
consider the following problem, that is well known as the halting problem:

Input: A program code P and an input x to P.

Output: Determine whether P will halt with the input x in a finite number of steps.
The halting problem is a simple undecidable problem. That is, there is no program
Q solving the halting problem. Since Godel’s incompleteness theorems, such a limit of
computation is a paradoxical evidence of the power of a computation system.

Then, how about origami? Is the idea “computational origami” strong enough so that
it derives such a paradoxical limit? In this paper, we give an affirmative answer. In a
reasonable model of computational origami, we give a natural and simple undecidable
problem, that is named foldability problem.

Input: An origami with four points p, q,r, and s on it.

Output: Determine whether we can fold two lines ¢; and ¢2 such that (1) they are
folded by a finite number of operations starting from p, ¢, r, and (2) they cross at
s.

Roughly speaking, the foldability problem asks if we can fold a given point s from just

other given three points p,q,r in a finite steps. This is a quite natural problem as

origami, but it is, surprisingly, undecidable. We can prove a simpler version of the

foldability problem in 1D. That is, the following simpler foldability problem in 1D is

still undecidable.

Input: A line segment and four points p, q,r, and s on it.

Output: Determine whether we can fold the point s from the other points p, ¢, and r

in a finite number of operations.
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The foldability problem in 2D contains the foldability problem in 1D as a special case.
Thus we will show the undecidability for the 1D version in this paper.

2. Computation Model and Undecidability

A 1D origami P is a finite line segment of 0 thickness. Without loss of generality, we
assume that P has length 1 and put on the interval [0,1] at first. One real number in
[0,1] is used to represent a point. That is, a point p on a 1D origami is specified by a
coordinate. We denote the coordinate of p on P by P(p). We also abuse P to denote
each folded state of the origami, and P(p) to denote the coordinate of the point p on
the folded origami. We note that each coordinate is a real number, that is crucial.

On a 2D origami, we use seven basic operations that consist of Hujita’s six axioms
and Hatori’s additional axiom (see? [Chapter 19] for further details). That is, one step
in an origami is applying one of seven basic operations, and obtain a new line segment
that derives some points by crossing other lines. On a 1D origami, possible operations
can be simplified as follows; (1) fix a point P(p) for some point p that already exists on
P, and fold some paper layers at once at the point P(p), and (2) unfold some folded
paper layers at some point P(p). A folding operation puts some point p onto the other
part of the paper, and then we can make a new point ¢ such that P(p) = P(q) on the
folded state. This is the only way to increase the number of distinguishable points.

Here we discuss the rule of an operation more precisely. In the problem, we are given
four real points p, g, r, and s explicitly on a 1D origami. Without loss of generality, we
assume that P(p) =0, P(¢q) =1,0 < P(r) < 1, and 0 < P(s) < 1. We call s the goal
point and p, q,r start points. We can apply the operations only on the start points and
derived points from them. That is, we cannot use s as a handhold of an operation. The
goal of the foldability problem is to construct one point ' and a folded state P such
that P(r') = P(s) on P. Note that once we have a new real point 7', we can check
whether P(r') = P(s) with accuracy. (Otherwise, we can also check P(r') < P(s) or
P(r") > P(s).) That is, we assume that we can determine if two real points are coincide
in general. The real points that can be derived from the start points are said to be
foldable from the start points.

We first state a theorem for the number of foldable points:
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Theorem1 Fix the start points p, ¢, 7 such that P(p) =0, P(q) = 1and 0 < P(r) <

1 on a 1D paper P. Then the number of foldable points is countable.
Proof. Let So = {p,q,r} and S; with ¢ > 0 be defined as follows: S; contains a point
t if and only if (1) ¢ is foldable after ¢ folding operations from the start points, (2)
t & Up<j<iSj. That is, S; consists of the points that are folded by exactly ¢ folding
operations. Then we can observe that each |S;| is countable since the number of folded
states of the paper P after ¢ folding operations is also countable. Hence each S; contains
countable number of points that implies that the foldable points are countable. 1

It is well known that a set of real numbers is not countable. Thus, by Theorem 1, we
can observe that there exists unfoldable points from given start points. This fact leads
us to undecidability:

Theorem2 The foldability problem is undecidable even in the 1D origami model.
Proof. To derive a contradiction, we assume that we have an algorithm A that solves the
foldability problem. That is, A always outputs “Yes” or “No” for any points p, ¢, and s
in a finite time. Since A is an algorithm that can be represented by a programming lan-
guage on a Turing machine, we can define a function t4(p, ¢, 7, s) by the number of steps
required to output “Yes” or “No” for the input p, q,r,s. By assumption, ta(p,q,r,s) is
finite for any input.

We now fix the start points p,q, and r by p = 0, ¢ = 1 and, say, r = 1/v/2. Let T;
be the set of points s such that T; = {s | ta(p,q,7,s) = i}. We here prove that |T;]
is countable. Here T; contains two kinds of points; let Y; be the set of points s such
that A outputs “Yes” for the p, ¢, and s, and let N; be the set of points s such that A
outputs “No” for the p,q,r and s. By the definition of the operation, Y; is countable.
That is, A outputs “Yes” because it puts another point s’ onto s for some s’ and i’ < 4
with s’ € Ty,. However, N; might contain infinitely many points with some reason. We
prove that such a case cannot occur. If N; contain infinitely many points, there is an
open interval (a,b) with 0 < a < b < 1 such that all points in (a,b) are in N;. Then
a’ = 0 and b’ = 1 are the folded points on the paper with 0 = a’ <a <b <V = 1.
We put a’ on b’ and make a folded point ¢(= 1/2) with |a’c| = |V'c|. If ¢ is in (a,b), we
have a contradiction since c is “Yes” instance. Thus we have either ' <c <a <b < b

ora <a<b<ec<Ub. If ¢ <a, we replace a’ by ¢; otherwise, replace b’ by c. Re-
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peating this process finitely many times, we can put the center point ¢ between a’ and
b in (a,b). This is a contradiction. Thus N; can contain finitely many points. Thus
|T;| is countable. Hence Up<;<;T}; is countable for any fixed integer j. This implies
that the size of a set of decidable points by A in a finite time is countable. We let
s1 < 83 < 83 < ... are the points decidable by A.

Now, by a diagonalization, we can construct a real point s which is not decidable.
More precisely, we let (remind that an origami has a unit length)

s1 =0.51,151,251,3...

S2 = 0.8271827282’3 .

S; = 0.87;7181',282‘,3 e

Then we define s = 0.s15253 ..., where s; = s;,; + 1 (mod 10). Then s is a point on the
1D origami, but it does not appear in any T;.

Hence ta(p,q,r,s) is not finite for the s. Consequently, the algorithm A does not
halt for the input p, q,r, and this s. This is a contradiction that A solves the foldabil-
ity problem in a finite time. Thus, the foldability problem is undecidable even in 1D

origami model. [ |
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