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近年，計算幾何学の一部で「計算折紙」とよばれる分野が注目を集めている．その
分野では，ある意味で折紙を計算のプラットフォームとみなしている．こうしたプラッ
トフォーム上で，計算量理論的に手におえない困難な問題や，多項式時間で解ける問
題がいくつか知られている．さてチューリング機械といった標準的な計算モデルにとっ
て，決定不能な問題の存在は，その計算モデルの計算能力の高さを逆説的に示してい
るといえよう．それならば，計算折紙モデルでは決定不能な問題が存在するだろうか？
本稿では，この疑問に対する解答を与える．具体的には，計算折紙モデルのごく自然
な決定問題が決定不能であることを示す．

Undecidability of a Simple Origami Problem

Ryuhei Uehara†1

Origami has recently attracted much attention as “computational origami”.
In a sense, origami can be seen as a platform of computation. Both of tractable
and intractable results have been obtained on the platform. For a computation
model like Turing machine, undecidable problems are a kind of paradoxical evi-
dence of the computational power of the model. Then, is there any undecidable
problem on computational origami model? In this paper, we give an affirma-
tive answer. We show that a natural and simple decision problem in an origami
computation model is undecidable.

1. Introduction

The idea “computational origami” has recently attracted much attention as theoreti-

cal computer science2). Since NP-hardness result by Bern and Hayes1), there are several
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intractable results from the viewpoint of computational complexity. On the other hand,

some origami related software are developed. Among them, TreeMaker, developed by

Lang, is well known software for origami design3). In this software, it solves several

combinatorial optimization problems in a practical time. In this area, origami can be

seen as a platform of computation in a sense. We can “compute” some points by folding

it using some basic operations on it.

In theoretical computer science, it is known that a computation by a Turing machine

is essentially equivalent to recursive function. These natural models are strong enough,

and in a sense, this is why their computational power has their limit. For example,

consider the following problem, that is well known as the halting problem:

Input: A program code P and an input x to P .

Output: Determine whether P will halt with the input x in a finite number of steps.

The halting problem is a simple undecidable problem. That is, there is no program

Q solving the halting problem. Since Gödel’s incompleteness theorems, such a limit of

computation is a paradoxical evidence of the power of a computation system.

Then, how about origami? Is the idea “computational origami” strong enough so that

it derives such a paradoxical limit? In this paper, we give an affirmative answer. In a

reasonable model of computational origami, we give a natural and simple undecidable

problem, that is named foldability problem.

Input: An origami with four points p, q, r, and s on it.

Output: Determine whether we can fold two lines `1 and `2 such that (1) they are

folded by a finite number of operations starting from p, q, r, and (2) they cross at

s.

Roughly speaking, the foldability problem asks if we can fold a given point s from just

other given three points p, q, r in a finite steps. This is a quite natural problem as

origami, but it is, surprisingly, undecidable. We can prove a simpler version of the

foldability problem in 1D. That is, the following simpler foldability problem in 1D is

still undecidable.

Input: A line segment and four points p, q, r, and s on it.

Output: Determine whether we can fold the point s from the other points p, q, and r

in a finite number of operations.
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The foldability problem in 2D contains the foldability problem in 1D as a special case.

Thus we will show the undecidability for the 1D version in this paper.

2. Computation Model and Undecidability

A 1D origami P is a finite line segment of 0 thickness. Without loss of generality, we

assume that P has length 1 and put on the interval [0, 1] at first. One real number in

[0, 1] is used to represent a point. That is, a point p on a 1D origami is specified by a

coordinate. We denote the coordinate of p on P by P (p). We also abuse P to denote

each folded state of the origami, and P (p) to denote the coordinate of the point p on

the folded origami. We note that each coordinate is a real number, that is crucial.

On a 2D origami, we use seven basic operations that consist of Hujita’s six axioms

and Hatori’s additional axiom (see2) [Chapter 19] for further details). That is, one step

in an origami is applying one of seven basic operations, and obtain a new line segment

that derives some points by crossing other lines. On a 1D origami, possible operations

can be simplified as follows; (1) fix a point P (p) for some point p that already exists on

P , and fold some paper layers at once at the point P (p), and (2) unfold some folded

paper layers at some point P (p). A folding operation puts some point p onto the other

part of the paper, and then we can make a new point q such that P (p) = P (q) on the

folded state. This is the only way to increase the number of distinguishable points.

Here we discuss the rule of an operation more precisely. In the problem, we are given

four real points p, q, r, and s explicitly on a 1D origami. Without loss of generality, we

assume that P (p) = 0, P (q) = 1, 0 < P (r) < 1, and 0 < P (s) < 1. We call s the goal

point and p, q, r start points. We can apply the operations only on the start points and

derived points from them. That is, we cannot use s as a handhold of an operation. The

goal of the foldability problem is to construct one point r′ and a folded state P such

that P (r′) = P (s) on P . Note that once we have a new real point r′, we can check

whether P (r′) = P (s) with accuracy. (Otherwise, we can also check P (r′) < P (s) or

P (r′) > P (s).) That is, we assume that we can determine if two real points are coincide

in general. The real points that can be derived from the start points are said to be

foldable from the start points.

We first state a theorem for the number of foldable points:

Theorem1 Fix the start points p, q, r such that P (p) = 0, P (q) = 1 and 0 < P (r) <

1 on a 1D paper P . Then the number of foldable points is countable.

Proof. Let S0 = {p, q, r} and Si with i > 0 be defined as follows: Si contains a point

t if and only if (1) t is foldable after i folding operations from the start points, (2)

t 6∈ ∪0≤j<iSj . That is, Si consists of the points that are folded by exactly i folding

operations. Then we can observe that each |Si| is countable since the number of folded

states of the paper P after i folding operations is also countable. Hence each Si contains

countable number of points that implies that the foldable points are countable.

It is well known that a set of real numbers is not countable. Thus, by Theorem 1, we

can observe that there exists unfoldable points from given start points. This fact leads

us to undecidability:

Theorem2 The foldability problem is undecidable even in the 1D origami model.

Proof. To derive a contradiction, we assume that we have an algorithm A that solves the

foldability problem. That is, A always outputs “Yes” or “No” for any points p, q, r and s

in a finite time. Since A is an algorithm that can be represented by a programming lan-

guage on a Turing machine, we can define a function tA(p, q, r, s) by the number of steps

required to output “Yes” or “No” for the input p, q, r, s. By assumption, tA(p, q, r, s) is

finite for any input.

We now fix the start points p, q, and r by p = 0, q = 1 and, say, r = 1/
√

2. Let Ti

be the set of points s such that Ti = {s | tA(p, q, r, s) = i}. We here prove that |Ti|
is countable. Here Ti contains two kinds of points; let Yi be the set of points s such

that A outputs “Yes” for the p, q, r and s, and let Ni be the set of points s such that A

outputs “No” for the p, q, r and s. By the definition of the operation, Yi is countable.

That is, A outputs “Yes” because it puts another point s′ onto s for some s′ and i′ < i

with s′ ∈ Ti′ . However, Ni might contain infinitely many points with some reason. We

prove that such a case cannot occur. If Ni contain infinitely many points, there is an

open interval (a, b) with 0 < a < b < 1 such that all points in (a, b) are in Ni. Then

a′ = 0 and b′ = 1 are the folded points on the paper with 0 = a′ < a < b < b′ = 1.

We put a′ on b′ and make a folded point c(= 1/2) with |a′c| = |b′c|. If c is in (a, b), we

have a contradiction since c is “Yes” instance. Thus we have either a′ < c < a < b < b′

or a′ < a < b < c < b′. If c < a, we replace a′ by c; otherwise, replace b′ by c. Re-
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peating this process finitely many times, we can put the center point c between a′ and

b′ in (a, b). This is a contradiction. Thus Ni can contain finitely many points. Thus

|Ti| is countable. Hence ∪0≤j≤iTj is countable for any fixed integer j. This implies

that the size of a set of decidable points by A in a finite time is countable. We let

s1 < s2 < s3 < . . . are the points decidable by A.

Now, by a diagonalization, we can construct a real point s which is not decidable.

More precisely, we let (remind that an origami has a unit length)

s1 = 0.s1,1s1,2s1,3 . . .

s2 = 0.s2,1s2,2s2,3 . . .

. . .

si = 0.si,1si,2si,3 . . .

. . .

Then we define s = 0.s1s2s3 . . ., where si = si,i + 1 (mod 10). Then s is a point on the

1D origami, but it does not appear in any Ti.

Hence tA(p, q, r, s) is not finite for the s. Consequently, the algorithm A does not

halt for the input p, q, r, and this s. This is a contradiction that A solves the foldabil-

ity problem in a finite time. Thus, the foldability problem is undecidable even in 1D

origami model.
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