
IPSJ SIG Technical Report

A Fast Algorithm for
(σ + 1)-Edge-Connectivity Augmentation
of a σ-Edge-Connected Graph
with Multipartition Constraints

Tadachika Oki,†1 Satoshi Taoka†1 and ToshimasaWatanabe †1

The k-edge-connectivity augmentation problem with multipartition constraints (kECAM
for short) is defined by “Given an undirected graph G = (V, E) and a multipartition π =
{V1, . . . ,Vr} of V with Vi ∩ V j = ∅ for ∀i, j ∈ {1, . . . , r} (i , j), find an edge set E′ of
minimum cardinality, consisting of edges that connect distinct members of π, such that
G′ = (V, E ∪E′) is k-edge-connected.” In this paper, we propose a fast algorithm for finding
a solution to (σ+1)ECAM when G is σ-edge-connected (σ > 0), and show that the problem
can be solved in linear time if σ ∈ {1, 2}. The main idea is to reduce (σ + 1)ECAM to the
bipartition case, that is, (σ+1)ECAM with r = 2. Moreover, we propose a parallel algorithm
for finding a solution to (σ + 1)ECAM, when a structural graph F(G) which represents all
minimum cuts of G is given and σ is odd.

1. Introduction

The k-edge-connectivity augmentation problem (kECA for short) is defined by “Given
an undirected graph G = (V, E) find an edge set E′ of minimum cardinality, such that
G′ = (V, E ∪ E′) is k-edge-connected.” We often denote G′ as G + E′, and E′ is called a
solution to the problem. There are several applications for construction of a fault-tolerant
network, and so on. It is called the k-edge-connectivity augmentation problem with
multipartition constraints (kECAM, for short) when a multipartition π = {V1, . . . ,Vr}
(r ≥ 2) of V with Vi ∩ V j = ∅, ∀i, j ∈ {1, . . . , r} (i , j), is additionally given and we
require that E′ consists of edges connecting between Vi and V j (i, j ∈ {1, . . . , r}, i , j)
(see Fig. 1). A multipartite graph is a graph (V, E) such that V is partitioned into r sets
V1 . . .Vr, and any edge (u, v) ∈ E satisfies (u ∈ V i and v ∈ V j) or (u ∈ V j and v ∈ V i)
(i, j ∈ {1, . . . , r}, i , j). A multipartite graph is denoted by G = (V1 ∪ . . .Vr, E). If G
is multipartite and we set Vi = V i (∀i ∈ {1, . . . , r}) in kECAM then G′ is multipartite.

†1 Graduate School of Engineering, Hiroshima University

This problem, denoted as M-kECAM, is a typical subproblem of kECAM, and there are
several applications for security of statistic data of a cross tabulated table8), and so on.

Many algorithms for kECA have been proposed. 4) proposed a linear time algorithm
for 2ECA, and 19) and 11) proposed polynomial time algorithms for kECA.

Now, we introduce the k-vertex-connectivity augmentation problem (kVCA for short)
to describe existing results. The problem is defined by “Given an undirected graph
G = (V, E) find an edge set E′ of minimum cardinality, such that G′ = (V, E ∪ E′) is
k-vertex-connected.” We often denote G′ as G + E′, and E′ is called a solution to the
problem. It is called the k-vertex-connectivity augmentation problem with multipartition
constraints (kVCAM, for short) when kVCA has same partition constraints in kECAM.

Moreover, graph connectivity augmentation problems with partition constraints have
been studied. In kECAM, 8) proposed a linear time algorithm for B-2ECAB (M-kECAM
when G is bipartite and π is bipartition) , and a parallel algorithm on EREW PRAM. 1)
proposed an O(|V |(|E| + |V | log |V |) log |V |) time algorithm for kECAM. 14) proposed an
O(|V ||E| + |V |2 log |V |) time algorithm for B-(σ + 1)ECAB. 2) proposed an linear time
algorithm for 2ECAM, and a parallel algorithm on EREW PRAM.

Furthermore, in kVCAM, 6) proposed a linear time algorithm for B-2VCAB (M-
kVCAM when G is bipartite and π is bipartition). 7) proposed a linear time algorithm
for 2VCAM.

The main result of the paper is to propose a fast algorithm for obtaining an optimum
solution to (σ+1)ECAM when G isσ-edge-connected and a structural graph F(G) which
represents all minimum cuts of G is given. The time complexity of the proposed algo-
rithm is O(|V ||E|+ |V |2 log |V |) because F(G) can be constructed in O(|V ||E|+ |V |2 log |V |)
time12). Moreover, when σ ∈ {1, 2}, this is a linear time because F(G) can be constructed
in O(|V | + |E|) time. Note that the proposed algorithm is faster than the algorithm pro-
posed in 1) for (σ+1)ECAM G isσ-edge-connected. Furthermore, we propose a parallel
algorithm for finding a solution to (σ+ 1)ECAM, when a structural graph F(G) is given
and σ is odd in O(log |V |) parallel time on an EREW PRAM using a linear number of
processors.

The paper is organized as follows. Section 2 provides some definitions and notations.
Section 3 shows a lower bound on solutions to this problem. Section 4 presents an
algorithm for finding a solution to this problem. Its correctness and time complexity in
Sects. 4.2 and 4.3. In Sect. 5, we propose a parallel algorithm for (σ + 1)ECAM when
σ is odd. The concluding remarks are given in Sect. 6.

1 c© 2010 Information Processing Society of Japan

Vol.2010-AL-131 No.10
2010/9/22

IPSJ SIG Technical Report

2. Definitions

An undirected graph is denoted as G = (V(G), E(G)), where V(G) and E(G) are
often denoted as V and E, respectively. In this paper, only graphs without loops are
considered, and the term “a graph” means an undirected multigraph unless otherwise
stated. An edge that is incident to two vertices u, v in G is denoted by (u, v). For two
disjoint sets X, X′ ⊂ V , we denote (X, X′; G) = {(u, v) ∈ E|u ∈ X and v ∈ X′}, where it is
often written (X, X′) if G is clear from context. We denote dG(X) = |(X,V −X; G)| which
is called degree of X (in G). For a vertex v, the total number of edges incident to v is
called degree of v and denote dG(v) (in G). A cut in a pair of sets {X,V − X} of G and,
for simplicity, (X,V − X; G) is also called a cut. It is called k-cut when |(X,V − X)| = k.
For a set E′ of edges, let G + E′ denote the graph by adding all edges of E′.

A trail is a sequence of edges (v0, v1), (v1, v2), . . ., (vr−1, vr) in which there may appear
the same endvertices. It is called a closed trail when v0 = vr. A closed trail is called
an Eulerian closed trail of G if all edges of G are included. A path is a trail such that
all vertices v0, v1, . . . , vr are distinct. A cycle consists of a path with r ≥ 2 and an edge
(vr, v0).

We say that G is connected if there is a path for any pair of vertices. For two vertices
u, v ∈ V , let λ(u, v; G) denote the maximum number of edge-disjoint paths between u
and v in G. Edge-connectivity λ(G) of G is defined by λ(G) = min{λ(u, v; G) | u, v ∈ V},
and we say that G is k-edge-connected if λ(G) ≥ k, for a nonnegative integer k. If G is k-
edge-connected then a graph constructed by deleting any set of k−1 edges is connected.
Any set Z ⊆ V that is a maximal vertex set such that λ(u, v; G) ≥ k holds for any pair of
vertices u, v ∈ Z. Z is called a k-edge-connected component (k-component, for short) of
G. In addition, we call Z a block when k = 2. Z is also called a leaf k-component if and
only if dG(Z) = λ(G). Note that distinct k-components are disjoint.

A cactus is an undirected connected graph in which any pair of cycles shares at most
one vertex. A structural graph F(G) = (V(F(G)), E(F(G)))9) of G with λ(G) = σ (see
Fig. 2) is a representation for all minimum cuts of G. F(G) is an edge-weighted cactus of
O(|V |) vertices and edges such that each tree edge (is a bridge in F(G)) has weight λ(G)
and each cycle edge (an edge included in any cycle) has weight λ(G)/2. Particularly if
λ(G) is odd then F(G) is a weighted tree. Each vertex in G maps to exactly one vertex
in F(G). Note that any minimum cut of G is represented as either a tree edge or a pair
of two cycle edges in the same cycle of F(G), and vice versa. Let ρ: V(G) → V(F(G))

1

2a

17

16

15

14

18
4

5

3

6
8

7

9

13f

2b
2c

2d

2e
2f

13d
13a
13b
13c

13e

19

10

11

12

20
21

Fig. 1 A graph G with λ(G) = 2, where a closed circle (an open circle, a close triangle and a open trian-
gle, respectively) represents a vertex which belongs to V1 (V2, V3 and V4). The set of dashed lines
represents a solution E f = {(1, 8), (3, 6), (5, 11), (9, 13), (10, 15), (14, 18), (16, 19), (17, 20), (21, 20)}

1

2

17

16

15

14

18
4

5

3

6
8

7

9
13

19

10

11

12

20
21

Fig. 2 The set of dashed lines represents a solution E′ = {(1, 8), (3, 6), (5, 11), (9, 13c), (10, 15), (14, 18),
(16, 19), (17, 20), (21, 20)} on a structural graph F(G) for G in Fig. 1

2 c© 2010 Information Processing Society of Japan

Vol.2010-AL-131 No.10
2010/9/22

IPSJ SIG Technical Report

denote this mapping. We use the following notations: ρ(X) = {ρ(v) | v ∈ X} for X ⊆ V ,
ρ(Y)−1 = {v ∈ V | ρ(v) ∈ Y} for Y ⊆ V(F(G)). A vertex y ∈ V(F(G)) with ρ(y)−1 = ∅ is
called empty vertex. Let ε(G) ⊆ V(F(G)) denote the set of all empty vertices of F(G).

For any cut (X,V(F(G)) − X; F(G)), if summation of weights of all edges in the cut is
equal to σ then (ρ−1(X),V − ρ−1(X); G) is a σ-cut (a minimum cut) of G. Conversely,
for any σ-cut (X,V − X; G), F(G) has at least one cut (Y,V(F(G)) − Y; F(G)) in which
summation of weight of all edges in the cut is equal to σ, where Y is a vertex set such
that ρ(X) = Y − ε(G). Each (σ + 1)-component S of G is represented as a vertex
ρ(S) ∈ V(F(G)) − ε(G), and for any vertex v ∈ V(F(G)) − ε(G), ρ−1(v) is (σ + 1)-
component of G. For any v ∈ V(F(G)) − ε(G), if summation of weights of all edges that
are incident to v in F(G) equals to σ, then v is called a leaf of F(G) and ρ−1(v) is a leaf
(σ + 1)-component. Conversely, for any leaf (σ + 1)-component L of G, ρ(L) is a leaf
of F(G). Let LF(G) denote the set of all leaves of F(G). It is shown that F(G) can be
constructed in O(|V ||E| + |V |2 log |V |)12).

If F(G) has any bridge of weight λ(G) then we replace such a bridge by a pair of
multiple edges, each having weight λ(G)/2. We consider such a pair of multiple edges
to be a cycle of length two. We call this graph a modified cactus, and we assume F(G) is
a modified one in this paper unless otherwise stated. Note that a modified cactus F(G)
is also a structural graph of G and λ(F(G)) = 2.

Given a structural graph F(G) of a graph G = (V, E) with multipartition constraints
π = {V1,V2, . . .Vr}, we classify vertices v into (r+1) types of vertices in F(G) as follows:
(i) ρ−1(v) ⊆ Vi, (i ∈ {1, . . . , r}), (v is called a Ci vertex of F(G)), (ii) ρ−1(v) ∩ Vi ,
∅, ρ−1(v) ∩ V j , ∅, i , j, i, j ∈ {1, . . . , r} (v is called a hybrid one of F(G)). The
set of Ci leaves, hybrid leaves, respectively, is denoted by LiF(G) or HF(G). In this
paper, without loss of generality, we assume that, for any i, j ∈ {1, . . . , r}, if i < j then
|LiF(G)| ≥ |L jF(G)| (that is LiF(G) is stored is non decreasing order of |LiF(G)|). If
|L1F(G)| > ∑r

j=2 |LiF(G)| + |HF(G)| holds then F(G) is called C1-dominated8).
In figures of this paper, a hybrid vertex is represented by a square, and any C1 one,

a C2 one, C3 one and C4 one are represented by a closed circle, an open one, an open
triangle and a closed one, respectively.

3. A Lower Bound of a Solution to (σ + 1)ECAM

In the rest of the paper, we set λ(G) = σ.
In this section, a lower bound of on any solution to (σ + 1)ECAM is given since

(σ + 1)ECAM is a subproblem of kECAM, we obtain the following proposition by
setting k = σ + 1 for a lower bound shown in 1) to kECAM.

Proposition 3.1 Let Gc be a graph obtained from F(G) by shrinking all multiple
edges in F(G) (with all resulting self-loops removed). The number L of edges required
to (σ + 1)-edge-connect a σ-edge-connected graph G is given as follows. (1) If a graph
Gc is a simple cycle of length four such that (i) two C1 leaves and two C2 ones appear
alternately or (ii) A C1 leaf, a C2 one , a C1 one and a C3 one appear in order without
loss of generality (see Fig. 5) then L = 3. (2) If a graph Gc is a simple cycle of length
six such that two C1 leaves, two C2 ones and two C3 ones appear alternately (see Fig. 6)
then L = 4. (3) Otherwise, L = maxr

i=1{|LiF(G)|, d|LF(G)|/2e}.
The algorithm to be proposed in the next section finds a set of edges whose number is

equal to the lower bound of Proposition 3.1, showing that the algorithm finds an optimal
solution.

4. A Proposed Algorithm for (σ + 1)ECAM

In this section, we propose an algorithm for (σ + 1)ECAM when λ(G) = σ.
4.1 An Outline of the Proposed Algorithm
Clearly it is enough to consider F(G) instead of G for (σ + 1)ECAM. In order to

efficiently augment the connectivity of G by one, we require each edge (u, v) in a solution
for F(G) to connect at least one leaf. Although connecting two leaves is desirable, it is
not always the case. Furthermore, in order to keep multipartition constraints, u and v
should include in different partitions.

Our proposed algorithm solves (σ+1)ECAM by reducing it to (σ+1)ECAB as follows.
First, if HF(G) , ∅ then we make the gap between the number of C1 leaves and that of
C2 ones as narrow as possible by regarding each hybrid leaf as a C1 leaf or a C2 one.
This is because any hybrid leaf can be treated as a Ci one. Note that, after this operation,
the facts |L1F(G)| = maxr

j=1 |L jF(G)| and |L2F(G)| = maxr
j=2 |L jF(G)| are kept.

If F(G) is C1-dominated then we solve (σ + 1)ECAB for a bipartition {B,W}, where
we set B← L1F(G) and W ← LF(G) − B. Note that any hybrid leaf is regarded as a C2

one in this case. If F(G) is not C1-dominated then it is reduced to (σ + 1)ECAB in the
following two phases.

(The first phase) In order to reduce (σ + 1)ECAM to (σ + 1)ECAB, we find an edge
set E′f such that LF(G + E′f) has exact LF(G) − 2|E′f | leaves and can be partitioned into
B2 and W2 such that |W2| ≤ |B2| ≤ |W2| + 1 and i , j for any i, j ∈ {1, . . . , r} with

3 c© 2010 Information Processing Society of Japan

Vol.2010-AL-131 No.10
2010/9/22

IPSJ SIG Technical Report

LiF(G) ∩ B2 , ∅ and LiF(G) ∩ W2 , ∅ (see Fig. 3). In order to find such E′f , we
determine the minimum integer jh with

∑ jh
i=1 |LiF(G)| ≥ d|LF(G)|/2e, and if a > 0 then

we find a vertex set B1 ⊂ L jh F(G) with |B1| = a + 1 and a vertex set W1 ⊂ L1F(G)
with |W1| = a + 1 arbitrarily, where a =

∑ jh
i=1 |LiF(G)| − d|LF(G)|/2e. Note that 1 , jh,

|L jh F(G)| ≥ a + 1 and |L1F(G)| ≥ a + 1 hold because of the fact that F(G) is not C1-
dominated, the way to determine jh and |L1F(G)| = maxi∈{1,...,r} |LiF(G)|, respectively.
Then we can find the edge set E′f by adapting an algorithm Sol (σ+ 1)ECAB for B1 and
W1, where an algorithm solving (σ + 1)ECAB is denoted by Sol (σ + 1)ECAB.

(The second phase) We obtain an edge set E′2 which is a solution found by Sol (σ +
1)ECAB under the situation that a structural graph is F(G) and a black (white, respec-
tively) leaf set in F(G) is regarded to B2 (W2).

Finally, we find a solution to G from an edge set found by the above reduction.
In the proposed algorithm, we use a special type of preorder (denoted as β(v)) of a

modified cactus F(G), as used in 13), that is useful in efficiency finding a solution to
F(G). It can be found in linear time by searching which is based on a depth-first search
and which is assigned to each vertex v from 1 to |V(F(G))|. Note that traversing vertices
in the order of β(v) from 1 to |V(F(G))| makes an Eulerian closed trail.

The algorithm is described in in Algorithm Sol (σ + 1)ECAM and the subroutine is
detailed in Subroutine FIND EDGES.
Algorithm Sol (σ + 1)ECAM
Input: A connected graph G = (V, E), with multipartition constraints π = {V1, . . . ,Vr}.
Output: An edge set E f with minimum cardinality such that E f consists of edges
connecting between Vi and V j (i , j) and such that (V, E ∪ E f) is (σ + 1)-edge-
connected.

1: Compute a structural graph F(G) = (V(F(G)), E(F(G))).
2: H ← HF(G), and Li ← LiF(G) (∀i ∈ {1, . . . , r}) (see the definition of LiF(G)

in Section 2), where, an ordered family of sets of leaves L1, L2, . . . , Lr (descend-
ing order) by BUCKETSORT (PARALLEL BUCKETSORT5) in parallelization (see
Section 5)). (All we have to do is to compute the first largest cardinality of a sets of
leaves and second largest cardinality of one.)

3: if |L1| = |L2| = |L3| = 2 and
∑r

i=4 |Li| = 0 then
4: Obtain an edge set E′ by Lemma 4.2.

5: else
6: if H , ∅ then

7: if |H| ≤ |L1| − |L2| then
8: Add all hybrid leaves to L2.
9: else {|H| > |L1| − |L2|}
10: Add d(|H| − |L1| + |L2|)/2e hybrid leaves to L1, and add the other hybrid

leaves to L2. /* After this, |L1| = |L2| + 1 or |L1| = |L2| holds. */
11: end if
12: end if
13: if |L1| > d|LF(G)/2|e then
14: B ← L1 and W ← ∪r

j=2 L j, and find a set E′ of edges which is a solution
found by Sol (σ + 1)ECAB under the situation that a structural graph is F(G)
and a black (white, respectively) leaf set in F(G) is regarded as B (W).

15: else {|L1| ≤ d|LF(G)/2|e}
16: Obtain an edge set E′ by FIND EDGES;
17: end if

18: end if
19: Output E f = {(nu, nv) | (u, v) ∈ E′}, where u (v, respectively) is a type Ck (Cl) leaves

or hybrid leaves of F(G) (k , l), and nu and nv are vertices with different types of
vertices in ρ−1(u) and ρ−1(v), respectively.

Subroutine FIND EDGES
Input: Leaf sets L1, . . . , Lr

Output: An edge set E′

1: Set pi ← |Li| for any i ∈ {1, . . . , r}, jh ← 1, s← p1.
2: for i← 1; i < r; i + + do

3: if s ≥ d|LF(G)|/2e then
4: jh ← i, break;
5: else {s < d|LF(G)|/2e}
6: s← s + pi+1;
7: end if

8: end for
9: a← s − d|LF(G)|/2e; /* s =

∑ jh
i=1 pi */

10: if a > 0 then
11: Find a vertex set B1 ⊂ Lih with |B1| = a + 1 and a vertex set W1 ⊂ L1 with
|W1| = a + 1 arbitrarily; /* See Fig. 3. */

12: Obtain an edge set E′1 with |E′1| = a + 1 which is a solution found by Sol (σ +

4 c© 2010 Information Processing Society of Japan

Vol.2010-AL-131 No.10
2010/9/22

IPSJ SIG Technical Report

|B2| (= |LF(G)|/2 -a) |W2| (=|B2| or |B2|-1)

}

|B1|=a+1|W1|=a+1

a

|L1| |L2| |Ljh-1| |Lr||Ljh+1||Ljh
|

|LF(G)|/2

}} }}} }

Fig. 3 Schematic explanation of reduction to (σ + 1)ECAB

1)ECAB14) under the situation that a structural graph is F(G) and a black (white,
respectively) leaf set in F(G) is regarded as B1 (W1).

13: Delete an arbitrary edge (x, y) from E′1 (we suppose that x ∈ B1 and y ∈ W1

without loss of generality), and set B1 ← B1 − {x} and W1 ← W1 − {y};
14: else

15: E′1 ← ∅;
16: end if
17: Set B2 ←

∪ jh
i=1 Li − (B1 ∪W1) and W2 ← LF(G) − (B1 ∪W1 ∪ B2); /* |B2| = |W2| or

|B2| = |W2| + 1 */
18: Find an edge set E′2 which is a solution found by Sol (σ + 1)ECAB14) under the

situation that a structural graph is F(G) and a black (white, respectively) leaf set in
F(G) is regarded as B2 (W2).

19: Output E′1 ∪ E′2;
4.2 Correctness of the Algorithm
We prove correctness of the algorithm using several lemmas and a theorem.
First, we show the next lemma for a structural graph F(G) of a graph G which may be

not with multipartition
Lemma 4.1 (14)) Suppose that |LF(G)| ≥ 4 for a structural graph F(G). Now, if

there are distinct four leaves v, w, x, y with β(v) < β(x) < β(w) < β(y) then it can
be chosen four vertex nv, nw, nx, ny ∈ V(G) such that the number of leaves of F(G +
{(nv, nw)}) and F(G + {(nx, ny)}) are two less than that of leaves of F(G), where for a ∈
{v, w, x, y} na is any vertex in ρ−1(a).

In Lemma 4.1 a pair of v and w (or a pair of x and y) is called an augmenting pair with

v x w y
P1 P2 P3

P4

S

Fig. 4 Schematic explanation of Lemma 4.1

2,1

1,1

2,2

1,2

Fig. 5 Schematic explanation of Proposition 3.1 (1), where dash lines represent a solution, `i, j: i is the
number of color Ci, j is the number of vertices in same color vertices.

1,1

1

2,1 3,1

1,2

2,2

3,2

Fig. 6 Schematic explanation of Proposition 3.1 (2), where dash lines represent a solution, `i, j: i is the
number of color Ci, j is the number of vertices in same color vertices.

respect to v, w, x and y.
In the next lemma, we show a special case of finding an edge set which is considered

Proposition 3.1 (2) and (3).
Lemma 4.2 (i) (1)) If |L1(G)| = 2 then we consider a graph Gc defined in Proposi-

5 c© 2010 Information Processing Society of Japan

Vol.2010-AL-131 No.10
2010/9/22

IPSJ SIG Technical Report

tion 3.1 (2). Gc is a simple cycle whose length is six and in which two C1 vertices, two
C2 ones and two C3 ones appear alternately (see Fig. 6) then there is a solution E f with
|E f | = 4 to F(G); (ii) (14)) Otherwise, C3 vertices are treated as one C1 vertex and one
C2 vertex, and we obtain a solution E f with |E f | = 3 by resulting to (σ + 1)ECAB.

We consider Steps 12 and 18 of FIND EDGES in order to reduce (σ + 1)ECAM to
(σ + 1)ECAB.

Lemma 4.3 (14)) For any connected graph G with λ(G) = σ and any bipartition
{V1,V2} of V with V1 ∩ V2 = ∅. Suppose that ∀i ∈ {1, 2, 3}, |L1F(G) ∪ L2F(G)| = 2i
and |L1F(G)| = |L2F(G)|, then we obtainan edge set E′′1 such that |LF(G + E′′1)| =
|LF(G)| − 2|E′′1 | (1 ≤ |E′′1 | ≤ |L1F(G)|)

Lemma 4.4 (14)) For any connected graph G with λ(G) = σ and any bipartition
{V1,V2} of V with V1 ∩ V2 = ∅. Suppose that |L1F(G) ∪ L2F(G)| ≥ 5 and L2F(G) , ∅,
then we can choice a C1 leaf `1 and a C2 leaf `2 of F(G) such that the number of leaves
of F(G + {(n`1 , n`2)} is two less than that of F(G), where n`1 (n`2 , respectively) is a C1

vertex (a C2 vertex) in ρ−1(`1) (ρ−1(`2)).
From Lemmas 4.3 and 4.4, we obtain the next corollary.
Corollary 4.1 For any connected graph G with λ(G) = σ and any bipartition {V1,V2}

of V with V1 ∩V2 = ∅. Suppose that |L1F(G)| = |L2F(G)|, then we obtain an edge set E′1
such that |LF(G + E′1)| = |LF(G)| − 2|E′1| (1 ≤ |E′1| ≤ |L1F(G)|) by adapting Lemma 4.4
iteratively, or Lemma 4.3.

From Lemmas 4.1–Corollary 4.1, we obtain the next theorem.
Theorem 4.1 For any connected graph G with λ(G) = σ, Sol (σ+ 1)ECAM finds an

edge set E f with |E f | = maxr
i=1{|LiF(G)|, d|LF(G)|/2e} and λ(G + E f) = σ + 1.

(Proof) We consider an edge set found in Steps 12, 18 of FIND EDGES and Step 14 of
Sol (σ + 1)ECAM.

We discuss the following cases whether F(G) is C1-dominated or not. Case (i): F(G) is
C1-dominated. Step 15 of Sol (σ+ 1)ECAM finds |L1F(G)| edges, thus |E f | = |L1F(G)|.
Case (ii): F(G) is not C1-dominated.

We classify Case (ii) into two cases as follows: Case (ii-i) |L1| = |L2| = |L3| = 2
and
∑r

i=4 |Li| = 0 then we obtain |E f | = 4 (|E f | = 3) edges by Lemma 4.2 (1)((2),
respectively).

Case (ii-ii) otherwise Since |L jh F(G)| ≥ a + 1 and |L1F(G)| ≥ a + 1 hold, we can find
two sets W1 and B1. Step 14 of Sol (σ + 1)ECAM is not executed.

Let E′1 (with |E′1| = a + 1) be an edge set found in Step 12 of FIND EDGES(The

first phase). Since an edge e is deleted in Step 13 of FIND EDGES, |E′1| = a holds and
F(G) + E′1 has LF(G) − 2|E′1| leaves.

Moreover, it is not generated a new leaf in F(G)+ E′1 by adding an edge set because a
pair of endvertices u and v of a deleted edge e = (u, v) can be considered as an augment-
ing pair in Lemma 4.1.

Let E′2 (with |E′2| = |B2|) be an edge set found in Step 18 of FIND EDGES. Moreover,
|E′2| = d|LF(G)|/2e − |E′1|, |E′| = |E′1 ∪ E′2| = d|LF(G)|/2e hold and it is not generated a
new leaf in F(G) + E′1 + E′2 (deleting all σ-cuts in F(G)).

Thus, |E f | = max{|L1F(G)|, . . . , |LrF(G)|, d|LF(G)|/2e}. Since E′2 is a solution to (σ +
1)ECAB for a graph F(G) + E′1, E f is a edge set with λ(G + E f) = σ + 1. ut

4.3 Time Complexity
In this section, we discuss time complexity of the proposed algorithm.
The above operation is done in O(|V |) time and can find all augmenting pairs by

Sol (σ + 1)ECAB14), Lemma 4.2. A structural graph is constructed in O(|V ||E| +
|V |2 log |V |) time12). Moreover, in the case of λ(G) ∈ {1, 2}, a structural graph is
constructed in linear time because all (σ + 1)-components are computed in linear
time10),15),16),18). From the above discussion, Proposition 3.1 and Theorem 4.1, We ob-
tain the next theorem.

Theorem 4.2 Algorithm Sol (σ + 1)ECAM computes a solution for (σ + 1)ECAM
when σ = λ(G) in O(|V ||E| + |V |2 log |V |) time. Moreover, it does in O(|V | + |E|) time
when σ ∈ {1, 2}.

5. Parallelization

In this section, we propose a parallel algorithm for (σ + 1)ECAM with r ≥ 2 , when a
structural graph F(G) is given and σ is odd by reducing to 2ECAB.

2) proposed also an linear time algorithm for 2ECAM, and a parallel algorithm on
an EREW PRAM. However, our approach is different from 2). Moreover, we augment
edge-connectivity by one in tje same approach even if σ > 1 and σ is odd. Thus, our
approach is more general.

FIND EDGES is done in O(log |V |) parallel time with O(|V |) processors by two mod-
ifications.

First, Steps 1–8 of FIND EDGES replacing into the Steps 1–22 of the following pro-
cedure. Note that each of merging partitions and decomposing partitions is done in
O(log |V |) parallel time with r processors.

6 c© 2010 Information Processing Society of Japan

Vol.2010-AL-131 No.10
2010/9/22

IPSJ SIG Technical Report

1: Set pi ← |Li| for any i ∈ {1, . . . , r}. /* pi is stored in a shared memory on PRAM. */
/* See Fig. 7. */

2: exp i = 2; /* exp i is used for calculating 2i. */
3: for i← 1; i ≤ log r; i + + do

4: for j← 1; j ≤ r/exp i; j + + do
5: n← (2 j − 1) · (exp i/2), m← j · exp i, pm ← pn + pm.
6: /* This step is executed on each processor m in parallel */
7: end for
8: if this processor’s number is exp i (= 2i) and pexp i ≥ d|LF(G)|/2e then
9: ih ← i, sh ← pexp i, break;
10: end if
11: exp i← 2 · exp i; /* exp i = 2i+1 */

12: end for
13: /* Executing on processor 1 */
14: jh ← 1; /* exp i = 2ih */;
15: for i← ih; i ≥ 1; i − − do

16: n← (2 jh−1) ·(exp i/2), m← jh ·exp i, exp i← exp i/2; /* n = (2 jh−1) ·2i−1,
m = jh · 2i */
pm ← pm − pn, s′h ← sh − pm;

17: if s′h < d|LF(G)|/2e then
18: jh ← 2 jh, sh ← sh;
19: else
20: jh ← 2 jh − 1, sh ← s′h;
21: end if

22: end for
Next, we replace (σ+ 1)ECAB of FIND EDGES into 2ECAB, and, in 2ECAB, using

a cactus as a structural graph (not a modified cactus). Because a cactus is a tree when σ
is odd, we can use the existing parallel algorithm for 2ECAB to eliminate all σ-cuts by
the algorithm. We show a theorem and a corollary to describe reduction to 2ECAB.

Theorem 5.1 (8)) We can obtain an optimum solution to B-2ECAB in sequential
linear time and O(log |V |) parallel time on an EREW PRAM using a linear number of
processors.

The algorithm proposed in 8) can be kept not only bipartiteness of a bipartite-graph
but also bipartition constraints of a graph for adding edges. Thus we obtain the following

corollary from Theorem 5.1.
Corollary 5.1 We can obtain an optimum solution to 2ECAB in sequential linear

time and O(log |V |) parallel time on an EREW PRAM using a linear number of proces-
sors.

From the above discussion, Proposition 3.1 and Theorem 4.1 we obtain the next theo-
rem.

Theorem 5.2 Algorithm Sol (σ + 1)ECAM Parallel computes a solution to (σ +
1)ECAM for any σ-edge-connected graph, when a structural graph F(G) is given, in
O(log |V |) parallel time on an EREW PRAM using a linear number of processors.

Moreover, we consider a parallel algorithm for 2ECAM with r ≥ 2 for any graphs
by reducing to 2ECAB. In 2ECAM, Step 3 of Sol (σ + 1)ECAM does not execute. We
add an edge set to a shirinked 2-compoenent graph instead of a structural graph. The
set of Ci isolated vertices or hybrid isolated vertices, respectively, is denoted by L∗i F(G)
or H∗F(G). A lower bound of on any solution to 2ECAM for any graphs is given the
following proposition.

Proposition 5.1 (2)) The number of edges required to 2-edge-connect a graph G is
given max{maxr

i=1{|LiF(G)| + 2|L∗i F(G)|}, d(2∑r
i=1 |L∗i F(G)| +∑r

i=1 |LiF(G)|)/2e}
A structural graph is constructed in O(log |V |) parallel time on an EREW PRAM with

linear number processors3),17).
From the above discussion and Theorem 5.2, we obtain the next corollary.
Corollary 5.2 Algorithm Sol 2ECAM Parallel computes a solution to 2ECAM for

any graphs in O(log |V |) parallel time on an EREW PRAM using a linear number of
processors.

6. Concluding Remarks

In this paper, we propose a fast algorithm for finding a solution to (σ+1)ECAM when
σ = λ(G) in O(|V ||E| + |V |2 log |V |) and show that the problem can be solved in linear
time if σ ∈ {1, 2}. Moreover, we propose a parallel algorithm for finding a solution
to (σ + 1)ECAM, when a structural graph F(G) is given and σ is odd in O(log |V |)
parallel time on an EREW PRAM using a linear number of processors, and also show
that 2ECAM for any graphs can be solved in linear time.

As future research, proposing an efficient algorithm for (σ+δ)ECAM when σ = λ(G)
and δ > 1 is left.

7 c© 2010 Information Processing Society of Japan

Vol.2010-AL-131 No.10
2010/9/22

IPSJ SIG Technical Report

jh=5

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

|LF(G)|/2 = 20

sh=34

s’h=27

sh=27

s’h=19

sh=34

s’h=23

sh=23

jh=1

jh=2

jh=3

6 5 4 4 4 4 4 3 3 2

6 11 4 8 4 8 4 7 3 5

6 11 4 19 4 8 4 15 3 5

6 11 4 19 4 8 4 34 3 5

6 11 4 19 4 8 4 15 3 5

6 11 4 19 4 8 4 7 3 5

6 11 4 19 4 4 4 7 3 5

Fig. 7 Schematic explanation of Steps 1–8 in FIND EDGES

Acknowledgements

The research is partly supported by the Grant-in-Aid for Scientific Research (C)
(No. 20500015 and 22500029) of the Ministry of Education, Culture, Sports, Science
and Technology of Japan.

References

1) J.Bang-Jensen, H.N. Gabow, T.Jordán, and Z.Szigeti. Edge-connectivity augmentation with
partition constraints. SIAM J. Discrete Mathematics, 12(2):160–207, 1999.

2) Y.Chen, H.Wei, P.Huang, W.Shih, and T.Hsu. The bridge-connectivity augmentation prob-
lem with a partition constraint. Theor. Comput. Sci., 411(31-33):2878–2889, 2010.

3) K.W. Chong, Y.Han, and T.W. Lam. Concurrent threads and optimal parallel minimum
spanning trees algorithm. J. ACM, 48(2):297–323, 2001.

4) K.P. Eswaran and R.E. Tarjan. Augmentation problems. SIAM J. Comput., 5:653–655,
1976.

5) D.S. Hirschberg. Fast parallel sorting algorithms. Commun. ACM, 21(8):657–661, 1978.
6) T.Hsu and M.Kao. Optimal augmentation for bipartite componentwise biconnectivity in

linear time. SIAM J. Comput, 32(6):1493–1515, 2005.

7) P.Huang, H.Wei, Y.Chen, M.Kao, W.Shih, and T.Hsu. Two-vertex connectivity augmenta-
tions for graphs with a partition constraint (extended abstract). In Y.Dong, D.Du, and O.H.
Ibarra, editors, ISAAC, volume 5878 of Lecture Notes in Computer Science, pages 1195–
1204. Springer, 2009.

8) P.Huang, H.Wei, W.Lu, W.Shih, and T.Hsu. Smallest bipartite bridge-connectivity augmen-
tation. Algorithmica, 54(3):353–378, 2009.

9) A.V. Karzanov and E.A. Timofeev. Efficient algorithm for finding all minimal edge cuts
of a nonoriented graph. Cybernetics, pages 156–162, March-April 1986. Translated from
Kibernetika, 2 (1986), 8–12.

10) H.Nagamochi and T.Ibaraki. A linear time algorithm for computing 3-edge-connected com-
ponents in a multigraph. Japan J. Industrial and Applied Math., 9(7):163–180, 1992.

11) H.Nagamochi, S.Nakamura, and T.Ibaraki. A simplified Õ(nm) time edge-splitting algo-
rithm in undirected graphs. Algorithmica, 26:50–57, 2000.

12) H.Nagamochi, S.Nakamura, and T.Ishii. Constructing a cactus for minimum cuts of a graph
in O(mn + n2 log n) time and O(m) space. IEICE Trans. Fundamentals, E86-D(2):179–185,
2003.

13) D. Naor, D. Gusfield, and C. Martel. A fast algorithm for optimally increasing the edge
connectivity. SIAM J. Comput., 26(4):1139–1165, August 1997.

14) T.Oki, S.Taoka, T.Mashima, and T.Watanabe. A fast algorithm for (σ+1)-edge-connectivity
augmentation of a σ-edge connected bipartite graph. In Proceeding of the 23th Karuizawa
Workshop on Circuits and Systems, pages 404–409, 2010.

15) S.Taoka, T.Watanabe, and K.Onaga. A linear-time algorithm for computing all 3-edge-
connected components of an multigraph. IEICE Trans. Fundamentals, E75–A(3):410–424,
1992.

16) R.E. Tarjan. A note on finding the bridges of a graph. Information Processing Letters,
2:160–161, 1974.

17) R.E. Tarjan and U.Vishkin. An efficient parallel biconnectivity algorithm. SIAM J. Comput,
14(4):862–874, 1985.

18) Y.H. Tsin. Yet another optimal algorithm for 3-edge-connectivity. J. Discrete Algorithms,
7(1):130–146, 2009.

19) T.Watanabe and A.Nakamura. Edge-connectivity augmentation problems. Journal of Com-
puter and System Sciences, 35(1):96–144, 1987.

8 c© 2010 Information Processing Society of Japan

Vol.2010-AL-131 No.10
2010/9/22

