Invited Paper

A 32-bit LISP Processor for the Al Workstation ELIS
with a Multiple Programming Paradigm
Language, TAO

YasusHt HiBiNO*, Kazurumi WATANABE* and Ikuo TAKEUCHI**

This paper describes a 32-bit LISP processor chip developed for the Al workstation ELIS with the multiple
programming paradigm language TAO. The objective of this microprocessor is to realize an S-expression
machine that can match the speed of conventional machines for compiled code execution. Architectural
features are a repetitive structure for VLSI implementation of the tagged architecture and a dedicated datapath
for list manipulation. All the processor functions are realized on a single VLSI chip that uses a 2-micron CMOS
process. ELIS supports not only LISP but also multiple programming paradigms. The ELIS interpreter has a
higher performance than that of any other dedicated machine on the market.

1. Introduction

LISP has been recognized as a highly productive pro-
gramming language, because of both its language
features and its language processor construction. In

- LISP the control structure is based on functional
language and both data and program are represented as
S-expressions (Symbolic expressions). The language pro-
cessor usually includes an interpreter. This interpreter-
centered language processor gives a substantial interac-
tive programming environment, which is suitable for
prototyping, especially in Al system programming. To
realize productive Al programming, we have developed
a dedicated LISP microprocessor named ELIS (Elec-
trical Communication Laboratories List processor).
This machine is intended to increase LISP’s already
high productivity.

Other microprocessor implementations of architec-
tures dedicated to LISP include the Explore chip and
the Ivory chip [1, 2]. The origin of both processor ar-
chitectures can be traced back to the CONS machine (de-
veloped at the Massachusetts Institute of Technology)
[3]. Both machine architectures should be categorized
as high-level-language machines with microprogramm-
ed control, where the instruction set, defined for execu-
tion of LISP primitive functions, is interpreted by the
microprogram. The interpreter for the LISP instruction
set is stored in the on-chip ROM. The LISP interpreters
of both processors are written in these instruction sets.
Therefore, the execution performance of these inter-

*Nippon Telegraph and Telephone Corporation Human Interface
Laboratories.

**Nippon Telegraph and Telephone Corporation Basic Research
Laboratories.

Journal of Information Processing, Vol. 13, No. 2, 1990

preters is not very high. In contrast, ELIS achieves
rapid interpretive execution of LISP by employing an in-
terpreter-oriented architecture. ELIS’s architecture
realizes a compact workstation with an ideal interactive
programming environment for Al software develop-
ment. This paper describes the ELIS processor architec-
ture as well as its microprpcessor implementation.

2. Design Concept and Objectives

2.1 S-expression Machine

The syntax of LISP is based on a general representa-
tion called S-expressions. These expressions can express
arbitrary tree structures, and realized in the computer

S-expression :

(foo (bar a b))

List structure :

b

Fig. 1 Examples of S-expression and list structure data.

A 32-bit LISP Processor for the Al Workstation ELIS with a Multiple Programming Paradigm Language, TAO 157

memory as list structures, that consist of chained
memory cells with address pointers (see Fig. 1). These
list structures that is, S-expressions, are the basis not
only of program representation but also of data
representation, and thus they may be applicable to wide
information processing areas.

The outstanding feature of LISP is that program and
data representations are the same; that is, S-expressions
are used for both the syntax and list structures in the
computer memory. This feature is identical with one of
the principles of the von Neumann Computer, that in-
structions and data are represented in the same form by
memory words.

In the same way as von Neumann constructed an ex-
ecution mechanism for a computer whose control sec-
tion could fetch instructions and data from memory, we
constructed our execution mechanism for the S-expres-
sion machine so that the control section could interpret
S-expression programs and manipulate list structure
data. The following two requirements are necessary to
accomplish this aim:

(1) An effective mechanism for continual access to
memory cells, which are elements of the list structure.

(2) An effective mechanism for discriminating be-
tween the different types of data memory cell.

The first mechanism is needed to strengthen the
memory access mechanism and to augment memory
throughput. The second is accomplished by tagging
each data memory cell and by providing tags with a
discrimination function that can indicate data types.

Another point to be considered is that a LISP pro-
gram consists of nested function calls. The execution
process of such a program needs a push-down stack.
Therefore, it is natural to adopt a stack architecture.
The control section that executes the S-expression pro-
gram must be able to handle complex state transitions
and control very long sequences in order to manipulate
list structures in the computer memory. It is advan-
tageous to introduce a microprogram control into the
control section to allow it to do so. Construction of an
S-expression machine means that the whole LISP inter-
preter is written in microcode. Therefore, this means
that a universal function EVAL, many special forms,
and fundamental LISP functions are written in
microcode, like this interpreter. An interpreter written
in this manner can execute S-expression programs rap-
idly [4].

The objective of the microprocessor described in this
paper is to realize an S-expression machine that can
match the speed of conventional machines for compiled
code execution [5, 6].

2.3 Multiple Paradigms in S-expression Language

Al programming has proved to be so complex and
multi-faced that no single programming paradigm
seems to be sufficient. Powerful Al languages have to in-
volve many programming paradigms. The represen-
tative power of S-expressions can fuse many programm-

ing paradigms into one language syntax. For example,
an S-expression is written in the form:

(§S...5)

where S’s are symbols. If this expression is a LISP
paradigm, the first item of the expression is interpreted
as a function symbol, so the expression is evaluated as a
function call. However, a different method of interpreta-
tion can be applied to the expression; it is described in
detail in Section 5.

2.4 Common Hardware for Repetitive Structure

The circuit structure should be repetitive for LSI im-
plementation of the circuit. Structural repetition affects
the logic design by repetitively defining the module or
the declaration copy, and helps shorten the design
period. It also affects the placement design, which in-
volves a simple pattern-copying method as well as reduc-
tion of the space and suppression of scattering of wire
lengths. For this reason, irregular circuits should be
avoided in the design of dedicated circuits for special-
processors. One of our design principles is that circuits
purpose that perform essentially the same operations,
regardless of their purpose, should be realized with the
same type of logic circuit. The concept of memory-
purpose general registers is based on this principle.

From the beginning of the ELIS project, we have
kept to this design principle. In fact, a prototype system
implemented with TTL IC’s in the early years had entire-
ly the same architecture as the microprocessor described
in this paper.

3. Architectural Features

3.1 Memory-General Registers

Memory-general registers, MGRs, are multi-purpose
registers. Each MGR can be utilized as an operand
register for ALU operation and also as memory address
and memory data registers for memory access opera-
tions. There are four MGRs, each eight bytes wide. The
MGR number and the byte position of an MGR is in-
directly specified by an index register called a Source
Destination Counter (SDC). These MGRs and SDCs
provide for effective performance of the following func-
tions:

(1) One memory cell with a 64-bit width can be
fetched in a single memory operation. We call an MGR
used for this function a CAR-CDR pair register.

(2) A pointer address is accessed immediately after
a list cell is fetched. Two MGRs dynamically change be-
tween address register and data register. This function
is effective for tracing list data, because it eliminates the
address data transfer necessary in conventional architec-
ture.

(3) A combination of MGRs and SDCs facilitates
the manipulation of variable-length bytes. Bytes or
half-word data in the MGRs can be extracted or in-

158

serted at any position specified by SDCs. Each SDC is a
S-bit-wide counter register and has an automatic count-
up capability. Of the fives bits, the upper two select one
of the four MCRs, and others specify the byte position
in the selected MGR. SDC increments are controlled so
that it operates as a modulo 8, 16 or 32 counter. By
iteratively executing a microinstruction that performs
an SDC increment operation and accesses the byte or
half-word data in MGRs specified by the SDC, the data
can be sequentially accessed, as if the MGRs were con-
nected and used as a byte-buffer register (see Fig. 2).

(4) Inthe case of compiled code execution, an MGR
serves as an instruction prefetch buffer for eight instruc-
tions. We used an instruction format called byte-code.
The combination of half of an MGR with an SDC
forms a program counter. The lower three bits of the
SDC specify the instruction position, and the half MGR
contains the upper bits of the program counter.

As mentioned above, the MGRs are used as multi-pur-
pose registers related to all the memory access opera-
tions such as CAR/CDR register, character buffer, in-
struction buffer, and program counter. The four MGRs
are constructed with the same circuit design.

3.2 Tagged Architecture and Address Space

High-level language machines mostly introduce tagg-
ed architecture in order to discriminate between data
types. LISP particularly needs some form of dynamic
data type discrimination, because LISP data types have
little declaration. Although in recent years there have
been efforts to improve compiled code execution by in-
troducing a type of declaration into the language
specification, as Common LISP, dynamic data type
discrimination is still necessary in an interpreter-
centered language processor intended for an S-expres-
sion machine. When introducing a tag system, the
word-length problem has to be considered. Word
length is the basis for the format of the data or address
that represents a word. In general, word length is a
multiple of 8, usually either 8, 16, 32, or 64. This for-
mat conforms to the customary standard for data
transfer and storage. Almost all the peripheral LSI
specifications adopt this format.

Y. HiBiNO, K. WATANABE and I. TAKEUCHI

8% . MEMORY DATA
24
2+ MEMORY
32 ADDRESS
SDC 3 [T 1T T —
[MGR 3s[¥]r]e[c[o]p]E
_ 1t

FRanannnn L
1)) ACBITFEE
[I 32

Fig. 2 Byte manipulation using MGR-SDC pair.

We decided to make the word length 32 bits wide and
to include an 8-bit tag field in each word. This decision
means that the maximum address space is 2**24 unit
words. This may seem rather small, but a unit word is
an 8-byte cell, so the address space has 2%%27 bytes (128
MB). Furthermore, a byte address access mode is pro-
vided. In this mode, all 32 bits are effective byte address
bits, so the maximum address space is 2%#%32 (4 GB) (see
Fig. 3).

3.3 TAG Bit Assignment and Memory Operation Con-
trolled by TAG

A list cell format is shown in Fig. 4. A cell consists of
two consecutive memory words. Both the CAR part
and the CDR part consist of an 8-bit tag field followed
by a 24-bit pointer field. Of these tag bits, the lower six
bits (tag5S-tag0) are used for data type encoding. These
bits stand for the type of data pointed to. The sixth one
(tag6) is for tag extension, and the seventh one (tag7) is
a marker bit for garbage collection.

The fifth tag bit (tag5) is a special one that can di-
rectly control a memory access operation. Tag5 in-
dicates whether the content of the following 24-bit field
means a pointer or not. The memory operation for
pointer access is initiated by using the special memory

(=
=3

BYTE ADDRESS

L
TTTT

o. - L_Jo

31 23
CAR/CDR DATA l TAG J POINTER DATA
(MGR)
/
/
/
26
MENORY ADDRESS : (

—

(27bytes)

(1) Cell Addressing Mode.

(2%%bytes)
(2) Byte Addressing Mode.

Fig. 3 Addressing Mode.

A 32-bit LISP Processor for the AI Workstation ELIS with a Multiple Programming Paradigm Language, TAO

Mark bit (tag?)

159

Mark bit (tag?)

Tag extention (tag$) Tag extention (tagh)
[Data type (1agh-0) [Data type (tagh5-0)
[T | [T |
63 47 32 31 23 0
Tag Pointer Tag Pointer
CAR-part CDR-part

Fig. 4 List cell format.

operation, READ-BOTH-WORDS-WITH-CANCEL,
if tag$ is set; otherwise, it is canceled. This tag5 bit func-
tion is very effective in tracing list structure. For
microcoding, it is possible to issue a memory operation
before type checking; that is, consecutive memory
operations can be performed without previously check-
ing the list tail marker by nil or atom. This saves
dynamic micro-steps for list tracing.

Data type decoding is achieved by a branch
microinstruction for tag bits in a single microcycle. Tag
bits are also used to speed up the interpretation of a
multiple paradigm language.

3.4 Hardware Stack

The LISP language is basically constructed as a func-
tion and LISP programs are defined as nested function
calls. When these programs are executed, function calls
are frequently issued, and an execution environment for
function invocation must be maintained. For nested
function calls, the execution environment is maintained
and saved in a push-down stack. The performance of
function invocation is an important factor in achieving
rapid list processing. Therefore, we employed a hard-
ware stack in our processor chip.

Usually, the execution environment is maintained in
the form of a stack frame that stores the control infor-
mation and the operand data. To allow this informa-
tion to be accessed, it is convenient to provide dedicated
hardware registers, such as a top frame register and a
bottom frame register, which keep the top and bottom
of a stack frame; a working pointer register, which
gives access to the information at an arbitrary position
in a stack frame; and a normal stack top register, which
has push and pop operation capability.

However, this hardware stack should be implemented
in such a way as to allow multi-programming and to pro-
vide flexibility in the stack frame design. For multi-pro-
gramming it is insufficient to simply consider the effec-
tiveness of the stack operation for a single process. For
flexibility of the stack frame design, it is necessary to
avoid falling into a situation in which the hardware
stack restricts the stack frame design to a set pattern.
This results in ineffective utilization of the hardware
resources.

In line with the above considerations, we designed
three pairs of a stack pointer register and a stack top
cache register on the processor chip. These registers,
with SRAM chips outside the chip, construct three sets
of push-down stacks. The three stack functions are the
same, and the way they are used is left up to the pro-
grammers. We assume that one will be used as a stack
top register and the others as working pointer registers.

The capacity of the stack is 32 Kwords (32 bits/word),
and it is divided into sixteen 2-Kword areas. Any con-
tinuous 2-Kword areas can be assigned to any of the
three stacks, and the overflow and underflow of each
stack are automatically checked.

This large stack plays an important role in multi-pro-
cess execution, and we designed it to support up to 128
processes. A stack area may be allocated for each pro-
cess that consists of several 2-Kword areas. If two pro-
cesses occupy their own stack areas, process switching
takes only 40 microseconds. Even if the stack area is in-
sufficient, it takes 1.6 milliseconds to swap a single stack
area. Since stack swapping does not occur very often,
process switching is sufficiently rapid.

A stack operation can normally be executed in a
single microcycle, except when specific stack access se-
quences are required. Stack pointer registers can ex-
ecute both the auto-decrement-indirect mode (push
operation) and the indirect-auto-increment mode (pop
operation) in a machine cycle. In the former, the stack
pointer is decreased in the current cycie and the new
stack top data is written into the stack memory array in
the next cycle. In the latter, the stack pointer is increas-
ed and the stack memory array is accessed by an increas-
ed address in the current cycle, at the end of which new
stack top data is latched to the stack top cache register.
If the push operation is followed by the pop operation
in two consecutive machine cycles, a conflict of access
to the stack memory is automatically detected and the
machine cycle is stretched.

3.5 Bus Structure

The whole datapath structure as summarized above is
shown in Fig. 5. It has three 32-bit buses: two for
operand sources and one for destination. The
arithmetic logic unit (ALU) with a one-bit shifter

160 Y. HiBiNo, K. WATANABE and I. TAKEUCHI

WRITE 64 [BYTE _ |STACK |STACK |STATUS | {ARITHMETIC|
DATA | POINTERS ITOP IPOINTER I AND : ILOGIC |
! .REGISTER#REGISTERS, CONTROL | lUNIT :
DATA 31 ! ! ! IREGISTERS | el ! !
ADDRESS === 32 ' | A-BUS | R33N B-BUS| REMIT
- ! ; ; ' + T DATA
T T : ! 1 1 L] !
T ! [1 -3 !
' [MGR3 | ! i ! ! P LE] !
| | i |
+ SDC3| | [STR3|IISPR3| 1 I KW 1
MGR2 || | ! ! ! ALU ! [32wx32b
t I lsbc2| 1 [STR2lISPR2| | [
[[MGR1 || - ! ! ! ines
I t 1 [sbc1f | [STR|ISPRI| | { t|FILE
MGRQ || E ! i ll SHIFTER]!
. | I
[I IR A Z| | I
1 T t o T t
I — d e 4 =L |
READ 3"}“) J | sTack 32 [g1 L -
DATAI ! pata Bk
I | Sp—
IMEMORY i
IGENERAL | JS\TAEL
\REGISTERS___|

MICRO-INSTRUCTION DATA

CONTROL | SEQUENCER
[—>MICRO-INSTRUCTION ADDRESS

Fig. 5 Datapath structure.

Type—<I> Memory Reference type

63 61 60 53 52 50 49 44 43 38 37 3231 22 21 0
ALU Path Y-Bus A-Bus |B-Bus | Memory I
' IOU Operation | Control | Destination | Source | Source | Control Seauence Control
Debug
Type-<II> SDC Control type
63 61 60 53 52 50 49 44 43 38 37 32 31 302221 0
01 | Path ¥-Bus A-Bus | B-Bus l | Sequence Control '
Operation | Control | Destination | Source | Source 9
Debug Source Destination Counter Control
ALU Carry Control
Type—<li1> Immediate type
63 81 60 53 52 50 49 44 43 38 37 31 30 0
I o] A Path Y-Bus A-Bus [amediate Data J
Operation | Control j Destination | Source Hnedt
= Debus I

L |
L~ ALU Carry Control
MSB of lamediate Data
Return Subroutine
Auxiliary Control

Fig. 6 Microinstruction format.

(SHIFTER) has two operating modes: one for 24-bit
data and the other for 32-bit data. The path control ex-
tracts or inserts byte or half-word data. The register file
is a 32 x 32-bit two-port RAM. The status and control
registers contain a processor status word (PSW), a stack
boundary register (SBR), an ALU result register (YBR),
and an 1/0 register (ACR). The stack pointer registers
(SPRs) are capable of automatic up/down counting.
The SPRs and the stack top cache registers (STRs) are
used to construct three sets of push-down stacks attach-
ed to high-speed SRAM chips outside the processor
chip. The memory-general registers (MGRs) are 64 bits
wide and are connected to the three types of datapaths.

Each MGR is physically connected to a 64-bit memory
data bus, a 32-bit address bus, a 32-bit ALU-source bus
(A-BUS), and a 32-bit ALU-destination bus (Y-BUS).
The byte pointer registers (SDCs) are used to specify a
byte location in the MGRs. The 64-bit memory data
bus, which is twice as wide as a conventional 32-bit pro-
cessor, allows access to a list cell in a single memory
operation and reduces the memory access frequency.

3.6 Microinstruction Format

The microinstruction formats are shown in Fig. 6. An
ALU operation can be executed concurrently with a
memory operation by Type-{I)>, or with an SDC incre-

A 32-bit LISP Processor for the AI Workstation ELIS with a Multiple Programming Paradigm Language, TAO 161

ment operation by type-{II>. The ALU operates in a
three-address mode: two addresses for operand sources,
and one for the destination. All the ELIS-CPU’s
registers, described in Section 3.5, can be A-Bus sources
and Y-Bus destinations. The B-Bus source field is
used to specify the register file, or small integer data
(—16to 15). The Type-<III) microinstruction generates
32-bit immediate data. A stack pop or push operation is
executed when the stack is specified as a source or a
destination. The memory control field has two sub-
fields: one for read/write-control, and one for specify-
ing the address register and data register. The Source
Destination Counter Control field is used to control the
increment of each SDC.

Both Type-<I) and Type-<II) have a 14-bit wide ad-
dress field in the sequence control field, which is used
for generating the next microinstruction address. Dur-
ing branching, the next address is formed from the ad-
dress field with some lower bits modified according to
the status flag bits. These flag bits are ALU results, tag
bits, the content of YBR, and so on. Since Type-{III»
does not have an address field, the next address is
generated by adding ‘‘1’’ to its address.

The clock control needed for executing microinstruc-
tions sequentially is supported entirely by hardware, so
microprogrammers are not concerned with timing con-
straints. Futhermore, the function of microinstructions
is close to that of machine instructions. Because of
these two features, microprogrammers can write in the
same way as for assembly-language programs.

4. Chip Design

4.1 Processor Cycle Time and Memory Access Time

The relationship between processor cycle time and
memory access time is an important consideration in
the design of processors. In list processing, since
memory is frequently accessed in following or creating
pointer-chaining list data, not only the processor cycle
time but also the memory access time dominates the per-
formance. To obtain a short processor cycle time, Emit-
ter Coupled Logic (ECL) devices are desirable.
However, they have problems as regards cooling and
hardware size in the typical workstation environment.
Use of a TTL or CMOS device provides the normal cy-
cle time of 150 to 250 nanoseconds, and the memory ac-
cess time with MOS DRAM chips is two to three times
that of the processor cycle time. For faster access, cache
memory is required. If data is not found in cache,
however, significant overhead delays occur. To avoid
memory access limitations on performance, a special
function allows the processor to execute microinstruc-
tions while accessing memory.

When this function is used for microprograms the
memory access time does not significantly influence the
performance. The processor cycle time is 180
nanoseconds. While the processor is waiting for comple-

tion of a memory access, three microinstructions that
are unrelated to the last memory operation can be ex-
ecuted.

In this way, memory access can proceed simultaneous-
ly with the execution of necessary microinstructions. In
the implementation of the LISP interpreter, microin-
struction sequences utilize this procedure as much as
possible.

4.2 Pin Multiplexing

Because of the adoption of interpreter-oriented ar-
chitecture, it is difficult to integrate all the microcode of
the LISP interpreter onto a single processor chip with
the current technology. The LISP interpreter requires a
total microcode of 64 Kwords. To store this microcode,
a writable control store (WSC), constructed with a
SRAM chip array, is attached outside the processor
chip, as well as an SRAM chip array for the stack.

Consequently, the chip requires a large memory data
transfer throughput. The throughput from the writable
control store to the chip is 44 megabytes/second, be-
tween the stack memory and the chip it is 22
megabytes/second, and between the main memory and
the chip it is 14 megabytes/second. The total
throughput is 80 megabytes/second. This figure is
equivalent to that between the CPU and the cache
memory of mainframe computers with a speed of
several MIPS.

To allow such a large data transfer throughput to the
chip with 208 1/0O pins, 112 of the pins are highly
multiplexed. Of these, 64 are used for three individual
data lines—one for 64 WCS-data input lines, one for 64
main-memory-data input/output lines, and the other
for 32 main-memory address lines—32 are for stack-
data input/output lines, and 16 are for 16-bit in-
put/output port lines.

4.3 Design Method for Repetitive Structure

The layout design reflects the architectural design of
this chip. Our goal for the layout design was to shorten
the design period as much as possible and obtain the
target machine cycle time by using 2-micron CMOS
standard cell technology and an automatic layout
system. One controversial result of applying the
automatic layout system to standard cell design is that
the line delay time varies widely, because cell placement
cannot be easily controlled.

With our architectural principles, since almost all
parts of the datapath have regular structures with
repeated circuit patterns, cell placement is easily done
by making copies of the original placement, which can
be done by hand. These regular, repetitive structured
portions occupy more than 50 percent of the total chip
area, including four MGRs, three SPRs, and three
STRs.

In addition, the ALU is constructed by copying the
four-bit slice units eight times.

This placement method controls variances in line

162

Table 1 Chip characteristics.

Double-metal-layer CMOs

Process

Design Rule 2 um

Transistors 79,438

Chip Size 15.0 mm % 15.0 mm
Clock Rate 16.67 MHz
Microcycle 180 nsec (variable)
Power Dissipation 1.0W

Power Supply +5V

Package 208-pin PGA

delay time so that the delay time simulation is sufficient,
on the assumption that the delay time is proportional to
the number of fanouts.

4.4 Chip Design Summary

Chip characteristics are summarized in Table 1. The
chip, implemented with a 2-micron CMOS double-
metal-layer process, operates at a 16.67-MHz clock
speed and has a cycle time of 180 nanoseconds [7]. This
chip contains about 80,000 transistors in a 15.0
mm X 15.0 mm die and is assembled in a 208-pin pin-
grid-array package. A photo of the chip is shown in Fig.
7. The chip contains a clock generator, a microprogram
sequencer, and control logic circuits for the datapath
mentioned in Section 3.5.

A complete LISP processor function can be realized
on a single CPU board using this chip. The actual CPU
board is shown in Fig. 8. It includes a 64 K X 64-bit
WCS, a 32K x32-bit stack memory, a 64 K X 20-bit
memory for dynamic address translation (DAT), and
supplemental logic on a 30 cm X 42 cm printed circuit
board.

5. Multiple Paradigm Language TAO

Powerful Al languages involve many programming
paradigms, because Al programming is so complicated
that no single programming paradigm is sufficient. For
a productive Al programming environment, a combina-
tion of multiple programming paradigms is effective,
and the difference in the execution speeds of paradigms
should be small. TAO, the language implemented on
ELIS, is a new multiple programming paradigm
language. TAO assimilates the essence of object-
oriented programming and logic programming into the
LISP world. The user can write programs mixing these
three paradigms at the expression level, not at the pro-
gram module level [8,9]. The basic idea of fusing the ob-
ject-oriented programming paradigm and the logic pro-
gramming paradigm to the LISP S-expression is as
follows. In general, an S-expression is written in the
form

(SS...S) 1)

where S’s are symbols.
The expression is interpreted as shown in Fig. 9. If

Y. HiBINO, K. WATANABE and 1. TAKEUCHI

Fig. 7 Microphotograph of chip.

Fig. 8 ELIS CPU board.

the first item of expression (1) is a function symbol, the
expression is interpreted as the customary form of a
function call. If the first item of expression (1) is not a
function symbol but a predicate symbol of logic pro-
gramming, the expression is interpreted as a logic opera-
tion in TAO. In the following example, &append is a
predicate symbol and means that the two list items L1
and L2 are appended to L3.

(&append L1 L2 L3)

If the first item of expression (1) is neither a function
symbol nor a predicate symbol, the expression is inter-
preted as a message-passing form of object-oriented pro-
gramming and the first item is treated as a receiver ob-
ject. In the following example, a-window is a receiver
object of the subsequent message pattern move.

(a-window move x y)

As shown in the example mentioned above, an S-expres-
sion can be extended to convey more meanings than is
possible in conventional LISP.

The execution speed of either object-oriented pro-
gramming or logic programming is one-half that of

A 32-bit LISP Processor for the AI Workstation ELIS with a Multiple

Function Call

Is a
a function symbol ? B and v are evaluated, and
then the results are passed
to function @ as
arguments.

Resolution

Is a
a predicate symbol from
logic programming 2,

Unification and backtracking
are performed.

Message Passing

Is the evaluation
result of @ an object
to accept

message f8 7

Error

Fig. 9

Message B is passed to
the receiver object which is
the evaluation result of a.

Interpretation flow of the S-expression (a 8 y).

LISP. The reason for this relatively small difference is
that microcoding speeds up the interpretation of
message forms for object-oriented programming, and
unification and backtracking for logic programming.

6. Performance Evaluation

Performance measurements based on the LISP ben-
chmark programs are show in Table. 2. The TARAI
benchmarks measure stack performance for function
calls. The SREV benchmarks measure the performance
of list manipulation. The TPU benchmarks (Theorem
Prover by Unit binary resolution—a 400-line LISP pro-

Table 2 CPU-times in sec

Programming Paradigm Language, TAO 163

gram; see reference [10] for details) are typical examples
of practical programs. The compiled programs were ex-
ecuted three to five times faster than the LISP source
programs.

The TAO interpretation speed is extremely high in
comparison with the compiled code execution on a
DEC-2060 for the TPU program. In particular, for the
larger programs shown in the bottom three rows of
Table 2, the TAO interpreter reveals its real power. This
confirms the advantages of the ELIS architecture.

7. Summary

We have achieved a high-performance LISP pro-
cessor chip by choosing an appropriate architecture.
This means that we have realized an S-expression
machine by an interpreter-oriented architecture ap-
proach, which has a higher level of performance than
any other machine achieved for compiled code execu-
tion.

This processor features a tagged architecture, a hard-
ware stack, and multi-purpose memory registers
(MGRs). These features facilitate the primitive opera-
tions essential to list manipulation, especially in the in-
terpreter execution mode. With these features as a
basis, we have designed and fabricated a 32-bit pro-
cessor chip with a VLSI-oriented structure that fully
utilizes 2-micron CMOS standard cell technology. A
180-nanosecond machine cycle time led to a perfor-
mance of about one million LISP operations per second
performance in the interpreter mode.

Using this chip, complete processor functions are im-
plemented on a single CPU board. The Al workstation
ELIS is based on this CPU board, and supports a multi-
ple-paradigm language that fuses an object-oriented
programming paradigm and a logic programming
paradigm into a single S-expression syntax.

Acknowledgments

These are the results of the last decade of our
research and development activities. There have been

onds for Lisp benchmarks.

ELIS

Commercial-1 Commercial-11 Dec-2060

Bench k b -

Pﬁggrax' I(TAO) (Zete;Llsp) (lnterlhsp-D) (I}’lacLisp)
Tarai-5 17.1 4.18 608 3.24 1856 26.9 126 4.39
Tarai-6 628 153 22366 119 67357 988 5241 157
Srev-5 0.028 0.010 1.07 0.025 3.98 0.084 0.236 0.008 -
Srev-6 0.140 0.041 4.34 0.055 16.10 0.335 0.951 0.032
TPU-3 0.878 0.041 17.8 2.77 75.7 9.05 6.10 1.22
TPU-6 4.48 2.26 98.9 11.7 421 53.8 31.5 4.89
TPU-9 0.550 0.232 12.2 1.43 53.9 4.62 3.60 0.549

I: Interpreter

C: Compiled code execution

164

many contributors to this project. Mr. Atsushi
Ishikawa worked as a member of the ELIS chip design
group. Mr. Hiroshi Okuno and Mr. Nobuyasu Osato
implemented the TAO interpreter. Mr. Minoru Kamio
implenented the TAO compiler. All their efforts are
greatly appreciated. We would also like to express our
thanks to Mr. Atsushi Kawai and Mr. Masami Mori of
OKI Electric Industry Ltd. for their contribution to the
design and fabrication of the ELIS chip. We also wish
to thank Dr. Ryoichi Matsuda, Mr. Shinichi Yamazaki,
Mr. Kazuaki Komori, Mr. Takashi Sakai and Mr.
Yasuhiro Yamada for their helpful suggestions and en-
couragement.

References

1. BosSHART, P. W., HEwes, C. R. et al. A 553K-Transistor LISP
Chip, IEEE ISSCC ’87 DIGEST (February 1987), 202-203.

2. BAKER, C., CHAN, D. et al. The Symbolics Ivory
Microprocessor,. A 40-Bit Tagged Architecture Lisp Microprocessor,
ICCD (1987), 512-515.

3. KniGHT, T. CONS, MIT Al lab. Working Paper, 80, 1974.

Y. HiBiNO, K. WATANABE and 1. TAKEUCHI

4. Okuno, H. G., OHsaTo, N. and TAKEUCHI, . Firmware Ap-
proach to Fast LISP Interpreter, Proc. of the Twentieth Annual
Workshop on Microprogramming (Micro-20), ACM (December
1987).

5. WATANABE, K., ISHIKAWA, A., YAMADA, Y. and HiBINO, Y. The
ELIS Interpreter-Oriented LISP-Based Workstation, Proc. of the
2nd IEEE Conference on Computer Workstations (March 1988), 70-
79.

6. WATANABE, K., ISHIKAWA, A., YAMADA Y. and HiBinO, Y.
Design and Implementation of the ELIS Al Workstation, Review of
the E.C.L., 37, 1 (1989), 71-76.

7. WATANABE, K., ISHIKAWA, A., YAMADA, Y. and HiBiNnO, Y. A
32b LISP Processor, IEEFE ISSCC 87 DIGEST (February 1987), 200-
201.

8. TAKEUCHI, I., OkuNO, H. G. and OHAsATA, N. A LISP Process-
ing Language, TAO with Multiple Programming Paradigms, New
Generation Computing, 4 (1986), 401-444.

9. SuGIMURA, T., SuGiyaMA, H., AMAGAL, Y., MURAKAMI, K. and
TAKEUCHI, 1. TAO/ELIS, An Al Software Development Environ-
ment Based on a Multiple Programming Paradigm Language, Review
of the E.C.L., 37, 1 (1987), 77-78.

10. CHaNG, L. and LEeg, R. Symbolic Logic and Mechanical
Theorem Proving, Academic Press (1973).

(Received August 26, 1989)

