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The CPU of the Al processor (AIP) called IP704 was developed for Prolog and Lisp, based on RISC architec-
ture with hardware supports. It has been proved that IP704 architecture is effective for both Al languages and

general-purpose languages.

An Al processor chip (IP1704) is being developed as a direct successor of the IP704. The architecture has been
modified and refined to fit onto a single chip and to improve the execution speed.

Features newly developed for the IP1704 include Overlapping of the decode and register-read stages using a
combination of the hardware decoder and micro-programs, and a delayed cache hit check with delayed writing.

It is shown that a RISC-based processor with suitable hardware support is applicable to VLSI and also gives

high performance Al languages.

1. Introduction

A number of Al processors that give fast execution
and a good programming environment have been devel-
oped in the past decade [1, 2]. RISC architecture, on the
other hand, was proposed, to improve the execution
speed for general-purpose languages [3]. Some attempts
at porting Lisp or Prolog to RISC architecture have
been reported. Lisp on MIPS-X is one software ap-
proach [4]. SPUR is a typical approach to making the
RISC architecture suitable for Lisp [5]. We developed
an Al processor (AIP), consisting of discrete parts [10],
based on a new architecture concept. The IP704 is the
CPU of the AIP, and is based on RISC architecture
with some modifications and extensions to suport
simplified WAM (Warren Abstract Machine) instruc-
tions [6] and instructions for Lisp. In contrast to
SPUR, the IP704 is designed for Prolog and employs
micro-program control. Micro-programs and addi-
tional special hardware for tag handling and exception
handling have been implemented to speed up Prolog
and Lisp programs and to improve the program safety
without sacrificing the essential advantages of RISC ar-
chitecture, such as simple hardware architecture, simple
instruction format, large register file, delayed bran-
ching, and single-cycle execution for simple instruc-
tions.

Prolog, Lisp, and C compilers were designed to
generate the IP704’s primitive instructions, which are
executed directly by the hardware. Optimizers manage
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IP704 pipeline restriction and register allocation.

An Al processor chip (IP1704) is being developed as
a direct successor of the IP704. The architecture has
been modified and refined to fit onto a single chip and
to improve the execution speed [11]. Features newly de-
veloped for the IP704 include overlapping of the decode
and register-read stages using a combination of the hard-
ware decoder and micro-programs, and a delayed cache
hit check with delayed writing.

The main issues of this paper are the design concept
and hardware architecture of the IP1704. The design
concept is introduced first, and its implementation is de-
scribed in detail. Then, sone simple performance evalua-
tion results are given.

2. Design Concept

It has recently been discovered that reduced instruc-
tion set computers (RISC) with a faster cycle time are
more cost-effective than traditional computers, especial-
ly for VLSI. Though these computers have a larger
semantic gap, they can handle this by using compiler
techniques, including optimization.

The semantic gap of Al languages is larger than that
of conventional languages. Compiler techniques can be
extended to Al languages. If this is done, a register
machine will provide better performance than a stack
machine, even for Al languages.

In practice, however, the cache miss problem results
from the large code size, especially in Prolog, owing to
the flexibility of unification. Hardware supports are
also effective for run-time checking and automatic
memory management. The following strategies have
therefore been established:

(1) RISC architecture is employed as a basis for sim-
ple hardware.
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Fig. 1 Architecture of the IP1704.

(2) RISC architecture will be extended and modified
for Al languages.

(3) The extended hardware for Al languages should
not affect the cycle time, and should be sufficiently small
to be integrated onto a chip.

In line with the above strategies, it has been decided
to add the following functions to pure RISC architec-~
ture to support both Prolog and LISP efficiently.

(1) Combination of hardware decoding and micro-
program control

(2) Instruction-modifying mechanism

(3) Two-independent write bus

(4) Tag handling hardware and trap mechanism

(5) Expanded memory system.

To design these additional functions, we estimated
the effects of the individual functions on the overall per-
formance, considering the frequency of each WAM in-
struction [7] for Prolog. We counted and compared the
number of clock cycles for each WAM instruction ex-
ecuted on the IP1704 and on a pure RISC machine. By
considering the frequency of each instruction, we esti-
mated that the functions would increase the speed ap-
proximately three times on the average. An example of
the clock count for one inference in the case of the Pro-
log program ‘‘append”’ is given below. The source lists
of pure RISC and the IP1704 are given in Appendix 1.

Pure RISC 55 clk.
Micro-program 36 clk.
All except (2) 19 clk.
All except (3) 25 clk.
All except (4) 33 clk.
All except (5) 24 clk.
All 14 clk.
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31 2423 1918 141312 817 0
Opcode Rd Rsl E‘ Rs2 l Imm8
Opcode Rd Rsl El [mm13
Opcode Rd Imm19
Opcode cc Displ9
Opcode Disp24

Rd : Register destination
Rs : Register source
Imm : Immediate data
Disp : Displacement

E : Extention bit

Fig. 2 Instruction Format.

The additional functions are described in detail in the
next section.

3. 1P1704 Architecture

Figure 1 shows a CPU block diagram of the IP1704.
It has a simple architecture. A micro-program con-
troller, two register buses, a tag jump controlier, and an
instruction modifier are added to the ordinary RISC
CPU’s.

The IP1704 is basically a 32-bit machine with a 32-bit
fixed-length instruction set. As shown in Fig. 2, the in-
struction format is very simple. It has a fixed length 8-
bit Opcode field, and a maximum of three register fields
with 5-bit length or immediate and displacement field.

A five-stage pipeline is employed for all instructions,
namely fetch, decode/register-read, execute, memory-
access, and write, whereas a three-stage pipeline was
used for the IP704. The memory-access stage is idle
except for memory access instructions (see Fig. 3).

The register file is a plain four-port 48-word-by-32-bit
register. Sixteen words are used for special instructions
and micro-programs. A register window system is not
used, because both Prolog and Lisp often include deep
recursion. In such cases, the recursion may easily ex-
haust the register window stack, which imposes a large
overhead on the hardware trap.

The functions employed for faster execution of Al
programs are given in the following sections.

3.1 Combination of Hardware Decoding and Micro-
program

The major benefits of micro-program control over
pure RISC architecture, especially for Al programs, are
as follows:

(1) Control flexibility
Word width is not restricted, and no decoder is needed
for the horizontal micro-program approach. This is
therefor an easier and faster way of controlling addi-
tional hardware for Al languages than the ‘macro-in-
structions in ROM” approach.

(2) No conditional or multiway jump as penalty
Wide micro-program words and a small address space
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Fig. 3 Pipeline Stages of the IP1704.

make it possible to include conditional or multiway
jump fields and ALU functions in one word. Thus, con-
ditional or multiway jumps are executed in parallel with
ALU operations, which are frequently used in Al pro-
grams for run-time data type checking. The multiway
jump is especially effective for the unification and fail
process in Prolog.

(3) Small macro-code size
Since Prolog has little user-definable control structure,
a flexible and complex control mechanism is required
for the Prolog machine. If a Prolog program is compil-
ed for a RISC machine, the code size becomes large, the
cache miss rate increases, and the performance is
degraded.

The IP1704 has 96 bits x 1 K words of ROM for a
micro-program. Al programs take advantage of the
parallelism of micro-program control. The following is
an example of a micro-instruction used in the get - list in-
struction:

XXX X, X, 8, h, XXXXXXXXXXXXXXX(previous micro-instruc-
tion)
prsb nl, s, x, x, alls, gltrl, ww, s, hep, wm at sx

This micro-instruction performs the following opera-
tions:

(a) Set the memory address register to the data of the
‘s’ register, and set the access mode to the heap area, (b)
Write the data of the register ‘4’ merging the list tag to
the memory address specified by (a), and also set the
register ‘s’, (c) Compare register ‘s’ with ‘4’ and set the
condition code, (d) Set the CPU mode to the ‘write
mode’ and jump to the label ‘gltrl’, in one cycle.

These functions correspond to several instructions
for a RISC processor.

As mentioned above, micro-program control is quite
suitable for supporting Al languages. However, micro-
program decoding is slower than that of the hardware
decoder. It takes one pipeline stage to decode for a
micro-program. This is claimed to be one of the major
benefits of RISC over CISC.

It was not a significant problem for the IP704,
because the access speed of the register file was fast

enough in relation to its cycle time. However, it is a
serious problem for the IP1074, because the access
speed of the register file is comparable to its cycle time,
so a full pipeline stage is required. One extra pipeline
stage before the execution stage causes a large overhead
for branch instructions. In this case, it needs two
delayed slots, which are very difficult for the compiler
to fill.

To circumvent this disadvantage, the hardware
decoder and micro-program have been combined in the
IP1704. The registers to be read or the immediate data
needed in the first cycle of the macro-instruction are
hardware decoded, and the registers are read in parallel
with micro-program ROM. Then, the registers to be
read in the next clock cycle are specified by the present
microinstruction (see Fig. 3) Because the decode and
register read are overlapped, the micro-program does
not affect the cycle time or pipeline stage. Micro-pro-
gram control can be efficiently employed without
sacrificing the advantages of RISC.

3.2 Instruction Modifying Function

In Prolog, the arguments of predicates are not de-
fined as either input or output until the execution stage.
To support this capability, the processor mode corre-
sponding to input or output is defined in WAM, and
some instructions behave differently according to the
processor mode. The IP1704 has the capability to
modify instruction behavior according to the processor
mode, without additional cycle time. This function is
also useful for Lisp garbage collection.

3.3 Two-independent Write Bus Architecture

Two-independent write bus architecture consists of
two destination buses and two write ports register file.
It makes it possible to define instructions that modify
two registers, or modify one register and access memory
in one cycle. The stack operation, frequently used in Al
languages, is executed in one cycle. The architecture is
also effective for automatic memory management.

3.4 Tag Handling and Trap Mechanism

Data tag checks and data tag merges are managed by
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Fig. 4 Data Format.
Ist Read Ist Write 2nd Write | No Memory | 2nd Read
Instruction | Instruction | Instruction | Instruction | Instruction
Tag Check | Tag Check | Tag Check Tag Check
Ist Read 1st Write 2nd Write 2nd Read
Data Mem. Data Mem. | Data Mem. | Data Mem.
1st Read 1st Write 2nd Write 2nd Read
Fig. 5 Memory Access Timing.
special hardware. The data format is shown in Fig. 4.
e .. data
The tag size is limited to four bits in order to keep the —| ba VME
wide virtual address space in conventional 32-bit words. addr. TA VF
Therefore, only 16 different data types are distinguish- t+—| CACHE
ed. The trap mechanism for exception handling has T data
been extended to detect data tag mismatches, avoiding IP1704
extra check cycles. It also detects data types that are not
data MEM.
supported by the hardware. le—— phys.
INSTR. M addr.
3.5 Cache Memory Support |29 | cacHE MMU
The cache memory support function has been in- :‘;’i‘:'

tegrated in the IP1704. When the access speeds of data
memory and tag memory are comparable, the addi-
tional time needed to determine whether a hit or miss
has occurred can be avoided by pipelining the hit check.
This is called ‘‘delayed hit check,”” and is employed to
give a faster cycle time.

Generally, the delayed hit check needs two cycles to
write. As shown in Fig. 5, both data memory read and
tag memory read are performed in the same cycle, and
it is sufficient to cancel the read data if the tag data are
different. However, the data cannot be written until the
tag has been checked, or else data in the cache will be
lost. To circumvent this disadvantage, the IP1704 has
the capability to check the tag for the second address
while the first data are being written. By using this
pipeline technique, both ‘Read’ and ‘Write’ to cache
memory are completed in one cycle, unless ‘Read’ is di-
rectly followed by ‘Write.” This restriction can easily be
handled by the compiler optimizer.

3.6 Memory Interface

The IP1704 employs the so-called Harvard Architec-
ture. The typical system configuration is shown in Fig.
6.

Fig. 6 System Configuration.

This architecture makes the IP1704 run without data
and instruction bus collision for memory accesses. The
disadvantage of the Harvard Architecture is cache in-
consistency between the data and the instruction cache
memories. Since self-modifying programs and meta-pro-
gramming are allowed in Al languages, these may cause
problems. For this reason, the IP1704 supports special
instructions to flush the instruction cache memory and
data cache memory, and the access type check
mechanism.

Each memory access instruction has an access type
(code, static-data, stack, heap, etc.) to check whether it
is a legal memory access. General instructions are not al-
lowed to modify the code area. An instruction that
modifies the code area should be followed by cache
flush instructions to maintain consistency.

The access type bits are also useful for detecting il-
legal access to different memory areas. When the heap
area is exhausted, an access to the non-existent heap
area is recognized as an illegal memory access. It trig-
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gers garbage collection, and is notified to the trap
handler, in the same way as the page fault signal. In this
way, the software need not check the region boundary.

3.7 Instruction Set

The instruction set of the IP1704 has been established
with a view to the possibility of the optimization, the
efficiency of each primitive function, trap handling
capability, and the ROM size. For the C language, the
optimization possibility is important, because essential-
ly no checking is done during execution. The combina-
tion of simple instructions with the minimum number
of cycles gives the best performance. The instruction set
is therefore restricted to single-cycle instructions, except
for multiplication and division.

In contrast, rather complex instructions (basically
WAM instruction) have been adopted for Prolog.
However, these instructions are still restricted to simple
functions, so as not to sacrifice the possibility of op-
timization and the consistency when a trap occurs.
These instructions make Prolog programs run with lit-
tle overhead for data type checking and memory
management, particularly for the unification function.

The tag checking instructions and generic arithmetic
instructions have been implemented for Lisp. They nor-
mally take the minimum number of cycles. They also
handle exceptional cases such as big-num, using trap
routines.

3.8 Specifications of the IP1704
Table 1 summarizes the specifications of the IP1704.

4. Implementation

Since the IP1704 is a direct successor of the IP704,
most of its functions are the same as those of the IP704.
Because of the restriction of chip size and the speed fac-
tor difference, the hardware architecture has been chang-
ed a lot. However, the impact on the software of this
difference in architecture has been minimized. The ma-
jor modifications are as follows:

(1) Opcode has been changed to simplify the hard-
ware decoder.

(2) Complex instructions have been divided into
combinations of simpler instructions become of the
ROM size restriction and trap consistency.

(3) Delayed branching is adopted for better perfor-
mance.

The IP1704 has approximately 113,000 transistors.
Nearly half of them are used for ROM, but this
occupies less than 10% of the total space, as shown in
Fig. 7. This means that the micro-programs are still
cost-effective for VLSI implementation.

5. Benchmarks

Some benchmark tests have been done to evaluate the
IP1704’s performance. The compilers for the IP1704

Table 1 IP1704 Processor Specifications.

Functional specifications

Registers 32 bit«32

Data format 32 bit or 4-bit tag+28-bit data

Address space 256 M Bytes for Lisp and Prolog,
4 G Bytes for C

Instructions 157

Cache memory 4 K ~256 K Bytes direct mapping
support

Physical specifications

Clock 16.7 MHz (60 ns) expected

Design rule 1.2 ym CMOS
Chip size 14.5 mm=*14.5 mm

Transistor

113K

=TT b
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Fig. 7 Layout of the IP1704 Processor Chip.

have not yer been completed. A translator has been de-
veloped to convert the IP704’s assembly code to that of
the IP1704. Benchmarks are obtained by using the
translator and the IP1704 hardware simulator. The tests
assume that the cache memory hit rate and clock speed
are 100% and 60 ns (16.7 MHz), respectively.

Table 2 shows the simulation results for Prolog.
These results show that the IP1704 has a better
performance clock ratio than the IP704. This is mainly
because of the delayed branching and refinement of the
micro-code.

Table 3 shows a part of the results of the LISP
Gabriel benchmark test [9]. They were obtained by a
simulator, and manual optimization was done only for
major loops. The results show that the IP1704 is more
than 10 times as fast as the Symbolics 3600. It has about
1.3 times the performance of MIPS-X simulated results
(50 ns), even without optimization, and about 1.6 times
with optimization, in spite of its slower cycle time
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Table 2 Performance of Prolog (first prototype).

Benchmark

IP1704 1P704
Append 1.2 M lips 667 K lips
- (deterministic) 14 clk/Inf. 15 clk/Inf.
Nrev 30 1.1 M lips 534K lips

Total 497 Inf. 7140 clk

9307 clk

Table 3 Performance of Lisp.
Gabriel Benchmark times in msec/ratio

IP1704 1P1704 1P704 3600  MIPS-X

Benchmark
non. opt.
tak 75 61/0.81 114/1.52 430/5.73 72/0.96
destructive 201 146/0.73 304/1.51 2180/10.8 361/1.79
- derivative 320 281/0.88 520/1.62 3790/11.8 381/1.19
average ratio 1 0.81 1.55(1.91)9.46(11.7) 1.31(1.62)
Table 4 Performance of C language.
benchmarks/ratio

Benchmark 1P1704 IP704 SUN3/260 SUN4/260

Dhrystone 1.1
No Optimized

14700  8400/1.75 5800/2.54 10500/ 1.4

22000 10500/2.1 6350/3.46 19000/1.16

Dhrystone 1.1
Optimized

- (60 ns).

The performance for the C language (Dhrystone) is
presented in Table 4. Library functions (strcopy,
strcmp) have been optimized manually as much as possi-
ble for both results, and the optimization of the
Dhrystone program has been done manually in order to
achieve the same optimization level as that of SUN4.
The benchmark test shows that it has a better perfor-
mance than that of SUN4 with the same cycle time.

6. Conclusion
We designed the architecture of the Al chip IP1704 to

h fit onto a VLSI by modifying the IP704 of the board ver-
sion. We attained a higher clock performance ratio than
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with the [P704, in spite of the restriction on the tran-
sistor count of the VLSI. In achieving this goal, we
greatly changed the architecture, while minimizing the
impact on the software.

The delayed cache write and the combination of
micro-program decoding and hardware decoding have
proved to be very effective in obtaining a high perfor-
mance for Al languages.

The chip’s predecessor, the IP704, obtained a very
high performance in comparison with other Al
machines. All benchmarks show that the IP1704 has a
better performance clock ratio than the IP704. Though
the evaluation is still incomplete, the newly developed
IP1704 has inherited the characteristics of the IP704.
Therefore, we believe that the average performance of
the IP1704 is about twice that of the IP704.

The [P1704 is currently in the evaluation phase. We
believe that this low-cost and high-performance VLSI
will be extremely useful in practical Al applications.
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