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Abstract A statistical parametric speech synthesis approach based on hidden Markov models (HMMs) has grown in popu-
larity over the last few years. In this approach, spectrum, excitation, and duration of speech are simultaneously modeled by
context-dependent HMMs, and speech waveforms are generated from the HMMs themselves. Since December 2002, we have
publicly released an open-source software toolkit named “HMM-based speech synthesis system (HTS)" to provide a research
and development toolkit of statistical parametric speech synthesis. This paper describes recent developments of HTS in detail,
as well as future release plans.
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1 Overview of HMM-based speech synthesis.

1. Introduction

A statistical parametric speech synthesis approach based on hid-
den Markov models (HMMs) has grown in popularity over the last
few years [1]. In this approach, context-dependent HMMs are esti-
mated from databases of natural speech, and speech waveforms are
generated from the HMMs themselves. This framework makes it
possible to model different speaking-styles without recording large
speech databases. For example, adaptation [2], interpolation [3],
and eigenvoice techniques [4] were applied to this system, and it
was found that voice characteristics could be modified.

Since December 2002, we have publicly released an open-
source software toolkit named “HMM-based speech synthesis sys-
tem (HTS)” [S] to provide a research and development platform of
statistical parametric speech synthesis. Currently various organiza-
tions use it to conduct their own research projects, and we believe
that it has contributed significantly to the success of HMM-based
speech synthesis today. This report describes the recent develop-
ments of this system as well as the future release plans.

The rest of this report is organized as follows: Section 2 reviews
statistical parametric speech synthesis. In Section 3, details of HTS
are described. Other applications of HTS are presented in Section 4.
Concluding remarks and future release plans are presented in the fi-
nal section.

2. Statistical parametric speech synthesis

Text-to-speech synthesis can be viewed as an inverse procedure
of speech recognition. The goal of any text-to-speech synthesizer is
to take a word sequence w = {wy,...,wy} as its input and produce
an acoustic speech waveform ¢ = {0y,..., 0r}. In a typical system,
contextual factors such as accent, lexical stress, part-of-speech, and
phrase boundary are assigned to a given word sequence w by a nat-
ural language processing engine, and then w is mapped into the cor-
responding context-dependent sub-word sequence u# = {uy, ..., up}.
Finally, a speech waveform o is synthesized for u.

Most of state-of-the-art speech synthesis systems are based on
large amount of speech data. This type of approach is generally
called as corpus-based speech synthesis. This approach makes

it possible to dramatically improve the naturalness of synthesized
speech compared with the early speech synthesis systems.

One of the major approaches in corpus-based speech synthesis
is sample-based one, such as unit-selection [6]. In this approach,
speech data are segmented into small units, i.e. HMM state, half-
phone, phone, diphone, or syllable, and stored. Then a unit se-
quence corresponding to a given context-dependent sub-word se-
quence is selected by minimizing its total cost consisted of target
and concatenation costs [6]. These cost functions have been formed
from a variety of heuristic or ad hoc quality measures based on fea-
tures of the acoustic signal and given texts. Recently, target and
concatenation cost functions based on statistical models have been
proposed and investigated [7-11].

Another major approach is statistical parametric one, such as
HMM-based speech synthesis {1]. It generates a speech parame-
ter vector sequence o = {0;,02, . .., 07} with maximum a posteriori
(MAP) probability given the context-dependent sub-word sequence
u as follows:

é:argmfxl’(olu). (1

Although any kind of generative models can be applied to represent
P (0| u), currently HMMs are widely used.

Figure 1 overviews HMM-based speech synthesis. It consists of
training and synthesis parts. The training part is similar to that used
in speech recognition. The main difference is that both spectrum
(e.g., mel-cepstral coefficients and their dynamic features) and ex-
citation (e.g., log Fy and its dynamic features) parameters are ex-
tracted from a speech database and modeled by context-dependent
HMMs (phonetic, linguistic, and prosodic contexts are taken into
account). To model variable dimensional parameter sequences such
as log Fy with unvoiced regions, multi-space probability distribu-
tions (MSD) [12] are used for state output probability density func-
tions (PDFs). Each HMM has its state duration PDFs to capture
the temporal structure of speech. As a result, spectrum, excita-
tion, and durations are modeled simultaneously in a unified HMM
framework [1]. The synthesis part does the inverse operation of
speech recognition. First, an arbitrarily given text to be synthesized
is converted to a context-dependent label sequence, and then a sen-
tence HMM is constructed by concatenating the context-dependent
HMMs according to the label sequence. Second, state durations
of the sentence HMM are determined based on the state duration
PDFs. Third, the speech parameter generation algorithm gener-
ates sequences of spectral and excitation parameters that maximize
their output probabilities under the constraints between static and
dynamic features [13]. Finally, a speech waveform is synthesized
directly from the generated spectral and excitation parameters using
a speech synthesis filter. The most attractive part of this system is
that its voice characteristics, speaking styles, or emotions can easily
be modified by transforming HMM parameters using various tech-
niques, such as adaptation [2], interpolation [14}, or eigenvoice [4].

3. HTS: A software toolkit for HMM-based
speech synthesis

3.1 Outline
The HMM-based speech synthesis system (HTS) has been being
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developed by the HTS working group as an extension of the HMM
toolkit (HTK) [15]. The history of the main modifications which we
have made are listed below:

s Version 1.0 (December 2002)
—~ Tree-based clustering based on the MDL criterion [16].
— Stream-dependent tree-based clustering [1].
~ Multi-space probability distributions (MSD) [12].
— State duration modeling and clustering [17].
— Speech parameter generation algorithm [13].
— Demo using the CMU Communicator database.
¢ Version 1.1 (May 2003)
~ Small run-time synthesis engine.
— Demo using the CSTR TIMIT database.
— HTS voices for the Festival speech synthesis system [18].
® Version 1.1.1 (December 2003)
— Variance flooring for MSD-HMMs.
— Post-filtering [19].
— Demo using the CMU ARCTIC database.
— Demo using the Nitech Japanese database.
— HTS voice for the Galatea toolkit [20].

The source code of HTS is released as a patch for HTK. Although
the patch is released under a free software license similar to the MIT
license, once the patch is applied users must obey the license of
HTK. aEl

3.2 HTS version 2.0/2.0.1

After an interval of three years, HTS version 2.0 was released in
December 2006. This was a major update and included a number of
new features and fixes:

¢ Terms about redistributions in binary form were added to the
HTS license.

® HCompV (global mean and variance calculation tool) accumu-
lates statistics in double precision. For large databases the pre-
vious versions often suffered from numerical errors.

* HRest (Baum-Welch re-estimation tool for a single HMM) can
generate state duration PDFs [17] with the -g option.

* Phoneme boundaries can be given to HERest (embedded
Baum-Welch re-estimation tool) using the -e option. This can
reduce computational cost and improve phoneme segmentation
accuracy [21]. We may also specify subset of boundaries (e.g,
pause positions).

* Reduced-memory implementation of tree-based clustering in
HHEA (a tool for manipulating HMM definitions) with the ~-r
option. For large databases the previous versions sometimes
consumed huge memory.

® Each decision tree can have a name with regular expressions
(HHEQ with the -p option). As a result, two different trees can
be constructed for consonants and vowels respectively.

® Flexible model structures in HMGenS (speech parameter gen-
eration tool). In the previous versions, we assumed that the
first HMM stream is mel-cepstral coefficients and the others
are for log Fj. Now we can specify model structures using the
configuration variables PDFSTRSIZE and PDFSTRORDER. Non-
left-to-right model topologies (e.g., ergodic HMM), Gaussian

(i£1) : The HTK license prohibits redistribution and commercial use.

mixtures, and full covariance matrices are also supported.

®  Speech parameter generation algorithm based on the expectation-
maximization (EM) algorithm (the Case 3 algorithm in [13]) in
HMGenS. Users can select generation algorithms using the -c
option.

* Random generation algorithm [22] in HMGenS. Users can
tum on this function by setting a configuration variable
RNDPG=TRUE.

¢ State or phoneme-level alignments can be given to HMGenS.

® The interface of HMGenS has been switched from HHEd-style to
HERest-style.

® Various kinds of linear transformations for MSD-HMMs are
supported in HERest.

— Constrained and unconstrained maximum likelihood lin-
ear regression (MLLR) based adaptation [23).

— Adaptive training based on constrained MLLR [23].

— Precision matrix modeling based on semi-tied covariance
matrices [24].

-~ Heteroscedastic linear discriminant analysis (HLDA)
based feature transform [25].

— Phonetic decision trees can be used to define regression
classes for adaptation [26]

- Adapted HMMs can be converted to the run-time synthe-
sis engine format.

* Maximum a posteriori (MAP) adaptation [27] for MSD-HMMs
in HERest.

HTS version 2.0.1 was a bug fix version. The new features in this
version are as follows:

s Band structure for linear transforms [28].

® Speaker interpolation [3].

* Stream-dependent variance flooring scales.

*  Demo scripts support LSP-type spectral parameters.
e B version of the runtime synthesis engine APIL.

3.3 New features in version 2.1

We are planning to release HTS version 2.1 at the end of March
2008. This version will include four important new features: hidden
semi-Markov models (HSMMs) [29,30), the speech parameter gen-

eration algorithm considering global variance (GV) [31], advanced

adaptation techniques [32], and stable version of runtime synthesis
engine APL

Note that HTS version 2.1, with the STRAIGHT analy-
sisfsynthesis technique [33], provides the ability to construct the
state-of-the-art HMM-based speech synthesis systems developed
for the past Blizzard Challenge events [34-36].

3.3.1 Hidden semi-Markov model

In HMM-based speech synthesis, rhythm and tempo are con-
trolled by state duration PDFs. They are estimated from statistical
variables obtained at the last iteration of the forward-backward algo-
rithm, and then clustered by a decision tree-based context-clustering
algorithm: they are not re-estimated in the Baum-Welch iteration
[17]. In the synthesis stage, we construct a sentence HMM and
determine its state durations so as to maximize their probabilities.

Then, speech parameter vector sequences are generated. However,

there is an inconsistency: although parameters of HMMs are esti-
mated without explicit state duration PDFs, speech parameter vector
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sequences are generated from HMMs using the explicit state dura-
tion PDFs. This inconsistency can degrade the quality of synthe-
sized speech.

To resolve the discrepancy, HSMMs [37], which can be viewed
as HMMs with explicit state duration PDFs, were introduced into
the training part [29]. The use of HSMMs makes it possible to
simultaneously re-estimate state output and duration PDFs. The
adaptation and adaptive training techniques for HSMMs were also
derived [30]. Zen et al. reported small improvements in speaker-
dependent systems [29]. However, Tachibana et al. reported that the
use of HSMM was essential to adapt state durations PDFs [38]. The
HSMM was also successfully applied to speech recognition [39].

3.3.2 Speech parameter generation algorithm considering

global variance

In the basic system, the speech parameter generation algorithm is
used to generate spectral and excitation parameters from the HMMs
{13]. By taking account of constraints between the static and dy-
namic features, it can generate smooth speech parameter trajecto-
ries. However, the generated spectral and excitation parameters are
often excessively smooth compared with the natural speech. We
expect that the statistical modeling process removes the details of
spectral structure. Although this smoothing surely causes error re-
duction of the spectral generation, it also causes the degradation of
naturalness of synthesized speech because those removed structures
are still necessary to synthesize high-quality speech. To suppress
this problem, Toda et al. proposed a speech parameter generation
algorithm considering global variance (GV) [31].

This algorithm iteratively maximizes the following objective
function with respect to a speech parameter vector sequence ¢ =

[c{, e ]T (static features only):
Lic)=wlogP(We | g, D) +1log P(v(c) | A) 2)
where A is a sentence HSMM, ¢ = {q,..., g7} is a state sequence

determined by state duration PDFs, W is a window matrix which
appends delta and delta-delta features to ¢, w is a weight for the
state output probability, v(¢) is a GV of ¢ which is defined as an
intra-utterance variance of ¢, and A, denotes parameters of a GV
PDE The second term of Eq. (2) can be viewed as a penalty term
for over-smoothing. The use of this algorithm dramatically reduces
the buzziness in synthesized speech and improves the speech qual-
ity [31]. This was one of main components of Nitech's Blizzard
Challenge 2005 system [34].

3.3.3 CSMAPLR

The MLLR adaptation algorithms utilize the ML criterion to esti-
mate linear transformation matrices. However, the amount of adap-
tation data is usually very limited in the adaptation stage. Therefore,
we should use more robust criteria such as the MAP criterion. In the
MAP estimation, we estimate the linear transformation matrices X
as follows:

X’=argm?xP(o]/l,X)P(X) 18]

where P(X) is a prior distribution for the linear transformation ma-
trix X.

In the structured MAP linear regression (SMAPLR) [41], tree
structures of the distributions effectively cope with the control of

the parameters of prior distributions. Specifically, we first estimate
a global linear transformation matrix at the root node of the tree
structure using all the adaptation data, and then propagate it to its
child nodes as their prior distributions. In the child nodes, linear
transformation matrices are estimated again using their adaptation
data, based on the MAP criterion with the propagated prior distri-
butions. Then, the recursive MAP-based estimation of the trans-
formation matrices from a root node to lower nodes is conducted.
Nakano et al. applied the SMAP to the constrained MLLR adapta-
tion and derived constrained SMAPLR (CSMAPLR) [32], in which
the linear transformation matrices for both mean vectors and co-
variance matrices of state output PDFs are shared and estimated
using the recursive MAP criterion. The CSMAPLR adaptation al-
gorithm can utilize the tree structure more effectively than the con-
strained MLLR adaptation since the tree structure represents con-
nection and similarity between the distributions, and the propagated
prior information automatically reflects the connection and similar-
ity. This algorithm was applied to the HMM-based speech synthesis
and showed that it was better than the other linear transformation-
based adaptation techniques [32]. We expect that it is also useful for
speech recognition.

3.3.4 hts_engine AP1

Since version 1.1, a small stand-alone run-time synthesis engine
named hts_engine has been included in the HTS releases. It works
without the HTK libraries, hence it is free from the HTK license.
Users can develop their own open or proprietary software based on
the run-time synthesis engine. In fact, a part of hts_engine has
been integrated into several softwares, such as ATR XIMERA [42],
Festival [18], and OpenMARY [43]. The spectrum and prosody
prediction modules of ATR XIMERA are based on hts_engine.
Festival includes hts_engine as its one of the waveform synthe-
sis modules. The upcoming version of OpenMARY uses the JAVA
version of hts_engine,

As described above, hts_engine has been used as a module
rather than a stand-alone software. It suggests that users demand
hts_engine library, not stand-alone program. In response to this
demand, we decided to rewrite hts_engine to API-style implemen-
tation. We released the B version of this API at the same time we
released HTS version 2.0.1. It is written in C and provides various
functions required to setup and drive the synthesis engine. Refer-
ence of this API is available at the HTS website [5]. The stable
version, hts_engine API version 1.0, will be released with HTS
version 2.1. It will support LSP-type parameters in addition to cep-
stral parameters. The speech parameter generation algorithm con-
sidering GV will also be included.

3.4 Demonstrations and decumentation

Currently two demo scripts to construct speaker-dependent sys-
tems (English and Japanese) and a demo script to train a speaker-
adaptation systém (English) are released. The English demo scripts
use the CMU ARCTIC databases and generate model files for Fes-
tival and hts_engine. The Japanese demo script uses the Nitech
database and generates model files for the Galatea toolkit [20].
These scripts demonstrate the training processes and the functions
of HTS. Six voices for Festival trained by the CMU ARCTIC
databases have also been released. Each HTS voice consists of
model files trained by the demo script, and can be used as a voice
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for Festival without any other HTS tools.

Currently no documentation for HTS is available. However, the
interface and functions of HTS are almost the same as those of
HTK. Therefore, users who are familiar with HTK can easily un-
derstand how to use HTS. The manual of HTK [15] is also very
useful. There is also an open mailing list for the discussion of HTS
(hts-users@sp.nitech.ac.jp).

4. Other applications

Although HTS has been developed to provide a research platform
for HMM-based speech synthesis, it has also been used in various
other ways, such as

*  Human motion synthesis [44-46],

* Face animation synthesis [47],

® Audio-visual synthesis [48,49] and recognition {S0],
®  Acoustic-articulatory inversion mapping [51],

* Prosodic event recognition [52, 53],

* Mispronunciation detection in CALL systems [54],
®  Very low-bitrate speech coder [55],

®  Acoustic model adaptation for coded speech [56],
® Training data generation for ASR systems [57].

e  Automatic evaluation of ASR systems [58].

*  Online handwriting recognition [59].

‘We hope that HTS will contribute to progress in other research fields
as well as speech synthesis.

5. Conclusions and future release plans

This report described the recent developments of the HMM-based
speech synthesis system (HTS). Internally, we have a number of
variants of HTS, e.g.,

®  Variational Bayes [60],

®  Trajectory HMMs [61],

* Minimum generation error training {62],
®  Shared tree construction [63],

* Eigenvoice [4],

e  Multiple linear regression HMMs [64].

Hopefully, we can integrate valuable features of these variants into
future HTS releases. The current release plan is as follows:

®  Version 2.1 (November 2007)

Speech parameter generation algorithm considering GV.
e Version 2.18 (January 2008)

HSMM training and generation.
®  Version 2.1 (March 2008)

Advanced adaptation techniques.

On-line demonstrations which have been built using the above HTS
version 2.1 features are available at [65].
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