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Abstract

We propose a model of natural language processing based on a paradigm of massively par-
allel (symbolic/subsymbolic) constraint propagation. It differs from the traditional spreading-
activation marker-passing schemes in its capacity to handle linguistic phenomena that require
application of complex grammatical constraints. We also discuss a scheme of realizing mas-
sively parallel constraint propagation activity on a parallel machine hardware through the use
of light weight processes while retaining the capacity to integrate fully-distributed contextual
and acoustic recognitions. Unlike existing parsing schemes, in our model, the increase in the

size of grammar can be directly countered through an increase in number of parallel light weight
processes.

1Visiting Research Scientist from Center for Machine Translation, Carnegie Mellon University.
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1 Motivation

Recent developments in marker-passing based
theories have shown us some promising results
especially in providing strong contextual infer-
ences. There still remains a few questions that
needs to be answered before these models replace
traditional models of natural language process-
ing. These questions are typically of 1) capac-
ity to handle complex syntactic processing such
as attained by unification-based framework 2) ad
hoc nature of preparing top-down scriptal (and
thematic) a priori contextual knowledge and re-
trieval of such a knowledge, 3) scalability, espe-
cialy to handle a realistic size of grammar and to
actually implementing the massive parallelisms.

Thus, our motivation for proposing the model
introduced in this paper:

o Processing of different levels of natural lan-
guage phenomena in a uniform framework.
Namely, we are interested in phonemic, syn-
tactic, semantic and pragmatic processing in
a uniform framework.

o Support of direct interactions between sub-
symbolic and symbolic level processing. We
would like to maintain the constrained in-
ferential capability of symbolic processing
while minimizing the ad hoc nature of
schemes designed for such a purpose through
participation of subsymbolic recognitions.

e To propose a scalable theory of natural lan-
guage processing and implementing it.

We have identified several criteria that needs
to be met in order to propose a model of natural
language processing that will address the above
motivations. We would like to focus on two of
such criteria in this paper:

1. The model needs to be massively parallel
in nature. Constraints that participate at
different levels of abstractions and process-
ing at a given time slice may be arbitrarily
large and their application may be fully non-
deterministic?.

1This importance is particularly felt when dealing with
noisy speech inputs and contextual inferences when candi-
date alternatives at a given point of sentential processing
may be numerous ([Tomabechi and Tomita, 1988]).

2. The model needs to be able to handle ex-
plicit symbolic constraints. By meeting this
criterion the model will be capable of impos-
ing constraints that are identified within the
existing linguistic and cognitive theories.

2 Basic Processing Principle

In our past proposed models {[Tomabechi, 1987],
[Tomabechi, et al, 1989}, etc.); the architectures
assumed data level fine-grain parallelism? such as
supported by Connection Machine. The HMCP
model proposed in this paper is massively parallel
in nature essentially meeting our previously men-
tioned first criterion as well; however, as a pars-
ing algorithm, direct support of a full massive
parallelism will make the second criterion hard
to meet. In other words, symbolic constraints
such as formulated by HPSG ([Pollard and Sag,
1987]) are essentially functional and are not triv-
ially @ priori postulatable using fully distributed
data-level fine grain parallel architecture (such as
connectionist® and spreading activationist mod-
els).

As demonstrated in [Tomabechi and Levin,
1989)], the advantage of the constraint propaga-
tion model we are proposing in this paper over
sources of activation passing models lies in the ca-
pacity to handle symbolic linguistic constraints.
This is not to claim that the model’s all parallel
processings need to stay at medium grain. The
most node level firing activities stay essentially
fine grain in nature and we would like to have
different levels of granularity of parallelism to co-
exist in a constraint propagation architecture.

Our solution to this issue is the separation
of algorithmic massive-parallelism from the fine-
grain data-level massive-parallelism assumed in

2By way of definition, we will be using the following
notion of levels of parallelism in this paper: Fine grain — a
level where basic operations of the system is parallelized.
For example, firing of each nodes, basic arithmetic opera-
tions on each input, etc.. Medium grain — the level where
functional units are parallelized. By this definition, con-
current applications of various constraints at various loca-
tions of memory would be medium grain. Coarse grain —
parallelism at the level of sub-modules of the whole sys-
tem. Parallel processing of input at different modules of
system may be coarse.

3 Although some recent reports (such as [Elman, 1988])
imply these networks may a posteriori capture some of
such constraints.



the massively parallel spreading activation archi-
tecture through the introduction of the notion of
light weight processes®. A lwp is a process that is
spawned explicitly by other lwps (or by an initial
process)®. When a lwp completes its evaluations,
it simply goes way (i.e., need not be killed by an
external process). By making numerous lwps to
work at the same time (with little or no synchro-
nization between them) on different nodes, mas-
sively parallel processing can be attained with-
out a hardware massive parallelism. Also, any
number of /wps can work on one node, and there-
fore, if necessary the parallelism can be even finer
than the node level parallelism. Since a lwp may
work on a functional constraint, a mixture of a
fine-grain and a medium-grain parallelisms can
be supported. Thus our model has three distinct
levels of processing:

e Node level: this is the level where phone-
mic and conceptual nodes receive and fire
activations, ie, the representational level of
memory nodes. In the past models of mas-

- sively parallel natural language processing,
this was the level of processing as well.

e Light weight process (lwp) level: this is the
level at which actual massively parallel pro-
cessing is performed. Any number of lwps
may be created during processing, indepen-
dent of number of nodes and number of pro-
cessing units.

o Processing unit level: this is the level of ac-
tual processing hardware. Any number of
processors may be configured depending on
the hardware architecture. One (or more)
processing unit may be dedicated to the
scheduling of lwps.

Thus in our model, the representational level, the
process level and the hardware level are explicitly
separated.

* As supported in Mach through ‘thread’. In our imple-
mentation, lwps are explicitly provided by CLiP Parallel
Commonlisp.

5Each lwp may run on any available processing unit
(processor) and is scheduled for by a separate scheduling
process. Each lwp is capable of accessing the entire shared
memory and may lock or unlock and read/write any parts
of shared memory.

3 Our Paradigm

Let us now turn to the theoretical points of
our model which is based on our proposed
paradigm called “Head-driven Massively-parallel
Constraint Propagation” (EMCP). HMCP, as a
model of massively-parallel spreading activation,
can be viewed as a strongly constrained spread-
ing activation model. In the EMCP model, we
propagate constraints instead of markers. From
the algorithmic point of view, the constraints
can be stored in the “marker objects” that are
propagated in the network, and therefore, =IMCP
may be viewed as an extension of the “marker-
passing” algorithm, except for our strong theoret-
ical distinction between the underlying notions
of propagating constraints and spreading
pointers to origins. From a non-algorithmic
point-of-view, the EMCP paradigm proposes a
model in which input (natural language or from
other sensory input) imposes constraints that are
propagated from the lower classes in the abstrac-
tion hierarchy to the higher classes in the ab-
straction hierarchy. In other words, the new fea-
tures or constraints are reversely inherited
from the lower class to the upper class in order
to determine the meaning (or identity) of the in-
put that is captured by the network of concepts
that received (reverse inherited) the new features
from the nodes that are below them in the ab-
straction hierarchy. To be more precise, we view
natural language “understanding” as a recogni-
tion process, in which already known concepts
(ideas, episodes, memory about things, etc.) col-
lectively receive new features that are screened
through the grammar® of the language. By such
an activity, the input language is recognized and
identified with the existing concepts in memory,
while the existing network itself is modified by ac-

8 we can view the grammar of language to be the
information that maps the input language to the collec-
tion of concepts that are recognized and organized in the
manner that is consistent with the already existent knowl-
edge (memory) about the world, then the grammar of lan-
guage for the conceptual inheritance network is the con-
straints that are imposed in order to guide (map) the
recognition and re-organization of the conceptual inheri-
tance (i.e., memory) network in order to accept the input
langnage. “Meaning” representation in such a network
is a time-sliced state of the network after the application
of the constraints imposed by the input language itself,
which is not extractable by isolating certain feature value
pairs from the whole network.



cepting the constraints that are imposed by the
input activations.

3.1 Constraint Propagation Parsing
Under the EMCP model, conceptual nodes repre-
senting argument-taking predicates carry subcat-
egorization features which specify syntactic prop-
erties (such as case) of constituents which can
fill their argument positions. Syntactic informa-
tion such as case, number, and person is propa-
gated up from noun phrases in a package of ‘head
features’ which eventually collides with the con-
straints in subcategorization frames.

The following three things are propagated from
lexically activated nodes: 1) head-features at-
tached to the node, 2) identity of the instance
node that is associated with the current lexical
activation (i.e., which specific instance should be
associated or created with the current lexical ac-
tivation) and 3) the specific cost (weight) associ-

ated with the given lexical activation’.

3.1.1 A Walk through a Parse

We will describe the HMCP parsing model by
walking through the parse of John persuaded
Sandy to give Mary the book. The verb persuade
specifies that the entity associated with its object
be shared with that of the unexpressed subject
of its VP complement. In other words, persuade
specifies that it subcategorizes for a complement
which is itself unsaturated®. Thus, there is a de-
pendency between the embedding object and the
embedded subject. This phenomenon is known
as object controP.

We have three types of nodes in the con-
straint propagation network: lexical nodes, in-
heritance nodes, and memory-instance nodes.
Lexical nodes are the nodes that have phonologi-
cal entries attached to them. Two kinds of lexical
nodes exist: head-node and complement-node.
Head-nodes have subcategorization feature at-
tached to them (i.e., package complement nodes).
‘Complement-nodes do not. Inheritance nodes

"The cost based ambiguity resolution schemes are dis-
cussed in detail in [Tomabechi, et al, 1989] and [Kitano,
et al, 1988] and are not discussed in this paper.

8The vocabulary in this paper describing linguistic phe-
nomena is based on HPSG framework ([Pollard and Sag,
1987]).

8For detail of handling control verbs and word order
(obliqueness) constraints, please refer to [Tomabechi and
Levin, 1989].

are the nodes that are organized as a hierarchy
and are superclasses of lexical nodes. Memory-
instance nodes are the specific instances of lex-
ical and inheritance nodes that are recorded in
the network as experiential memory.

We have four kinds of layers in the network: 1)
Static Layer (SL); 2) Potential-activation Layer
(PL); 3) Activation Layer (AL); and 4) Decaying
Layer (DL). SL is where nodes by default belong
to. PL is where head nodes and nodes that are
packaged by head nodes initially belong to. AL is
where node that received constraint propagation
belong to. DL is where nodes in AL move to after
a given period. Nodes in DL eventually move to
PL.

Prior to the parse, all complement nodes (i.e.
all nodes that potentially satisfy an element of a
subcategorization list) are put into the Potential-
activation Layer (PL). In this example, nodes
corresponding to persuade and give contain sub-
categorization lists as the value of the subcat-
egorization feature. In the node corresponding
to persuade, the constraint NP[NOM] in the sub-
categorization list is provided with *PERSON in
the persuader (actor) role, so *PERSON is added
to the PL. *acTION and all other concepts coin-
dexed with subcategorized positions are concur-
rently added to the PL. All other nodes in the
network are in the Static Layer (SL) (- Or in a

DL if a previous utterance exists).

For example, the lexical concepts representing
the verbs persuade and give are encoded!® in the
network as below:

(def-lex *PERSUADE
(inherits-from *ACTION)
(phonology Ipl Ixl 1sl lwl lel 1il 1dD)
(spelling persuade)
(head-feature v-inf-plus)
(control object)

(subcat (n-nom n-acc v-inf))
(roles (actor
argl
arg2))
(holders (*person
*person
*action)))

(def~lex *GIVE
(inherits~from *ACTION)
(phonology gl il Ivl)

10The representation here is taken from our implemen-
tation using the ‘HyperFrame’ ([Nyberg, 1989]) frame-
based knowledge representation tool.



(spelling give)
(head-feature v-bse-minus)
(subcat (n n-accl n-acc2))
(roles (actor
argl
arg2))
(holders (*person
*person
*object)))
The head-features such as v-inf-plus and v-bse-
minus are themselves part of a subsumption re-
lation subnetwork for grammatical categories.
They are representing the features [maj: v,
vform: inf, aux: plus] and [maj: v, vform:
base, aux: minus] respectively!!. Each ele-
ment in the subcat, roles and holders lists at one
particular position represents the constraint for
another element in the same position in other two
lists. Therefore, nin SUBCAT represents the sub-
categorization constraint for the actor to be noun
and the semantic (relational) constraint for this
position is *person as represented in the HOLDER
list. Since a word order is captured through
a separate application of obliqueness order con-
straints ([Tomabechi and Levin, 1989]), each set
of lists is order independent. The CONTROL fea-
ture specifies the constraints for complement con-
trol relations. For example, if the value is ob-
ject, it is postulating that its object (argl) gets
unified'? with the first role in the complement.

A lexical entry for to may be encoded as below
(following HPSG analysis) as well:

(def-lex *TO
(inherits-from *AUX-ACTION)
(phonology It| lul)
(spelling to)
(head-feature v-inf-plus)
(control subject)

(subcat (n v-bse))
(roles (actor
argl))
(holders (*generic-object*
*action)))

The speech recognition subnetwork!® that re-
ceives the acoustic input activates the phone-

1n this particular implementation, head-features and
subcategorization constraints are checked by traversing
the subsumption relation network. This could be per-
formed by a unification operation as well.

2In our model, the notion of unification in the context
of control relation is specified by the constraint that the
memory instance for the argl position is the same node
as the memory instance for the first role position in the
complement.- :

13The efforts to integrate Time-Delay Neural Network

mic nodes in the constraint propagation network.
Once the phonemic sequence < /j//o//n| >
is recognized lexical-node *JOHN is activated.
The head-features, phonemic and other cost in-
formation, and memory-instance of *JOHN (i.e.,
*JOHNQO1, etc.) are propagated upward in the
abstraction hierarchy. Phonemic cost informa-
tion is used for phonemic confusion disambigua-
tion not discussed in this paper ([Tomabechi, et
al, 1989])'*. The memory-instance represents the
discourse entity that John is referring to in the
current utterance!® for the input John. When
an upward propagation reaches a node in the
PL, in this case *PERSON, the constraints prop-
agated (such as head-features) are left on that
node in the PL. In this example, the upward
constraint propagation triggered by John carries
the head feature NP[ALL-CASE], and this is left
(along with phonemic cost and memory-instance
informatjon) on the node *PERSON.

When an activation reaches the top of the in-
heritance network, lwps are spawned for all head-
nodes in the network. If any head-node is al-
ready activated, the spawned lwps in turn spawn
their children lwps for each role of the head-
node to check their constraints. Grand chil-
dren lwps may be further spawned!® for differ-
ent types of linguistic constraints that may be
applied nondeterministically (including subcat-
egorization, linear-precedence, obliqueness-order
constraints.). Since at the input of the first word
John, no head-node is already activated, nothing
happens and all spawned lwps disappear.

The next word, persuaded, activates!” the

phoneme recognition with an HMCP parsing is described
in [Tomabechi, 1990).

4Other cost information includes reverse cost that is
given by the subsymbolic recurrent network as contextual
priming, which is not discussed in this paper ([Tomabechi,
1990}, [Tomabechi, ms)).

!*[Kitano, et al, 1988] and [Tomabechi, ms] discuss the
schemes for identity resolution when multiple candidate
discourse entities exist for a noun phrase using top-down
([Kitano, et al, 1988]) and subsymbolic ([Tomabechi, ms])
contextual priming.

18Since at this grand-children level, lwps need to be co-
ordinated through ‘and’ parallelism, depending upon im-
plementations, parallel spawning at this level may not
be advantageous over sequential constraint satisfactions.
Such a trade-off between making grain size finer and in-
crease in overhead varies depending on the specific ma-
chine architectures. ]

1"Nodes for past tense morphology inherit all lexical



(lexical) head-node *PERSUADE, which is sub-
categorized for NP[NOM] coindexed with *PER-
SON. The head-nodes that are activated per-
form local activities to find their complement
role fillers (this is performed by spawned lwps
for each of the activated head-node). In per-
forming role filling activities, memory-instances
of the head-nodes are created and the constraint
checking is performed on the memory-instances
for the current utterance. The constraint applica-
tion activities for subcategorization, obliqueness-
order, complement-order, etc. are performed
and if all constraints are met, (memory-instances
of) complement-nodes fill the relational roles of
their heads. In our example, *PERSUADEQO1
tries to find (memory-instances of subclasses
of) *PERSON to fill its persuader (actor) role.
The head-feature NP[ALL-CASE] constraints suc-
cessfully meet the subcategorization constraint
NP[noM] and therefore, *30HN001 fills the per-
suader (actor) role. NP[NoM] is removed from
the subcategorization list and the parse contin-
ues looking for the other subcategorized argu-
ment of persuade. Other activated head-node
{memory-instance) continues its role filler con-
straint application activity (performed by their

lwps) concurrently!®

Recognition of to give Mary the book contin-
ues in a similar manner. Mary (¥*MARY001) fills
the receiver (argl) role and the book (*B00K001)
fills the given (((]zrgQ) role. When the whole sub-
categorization of a head-node (memory-instance)
is accepted (i.e., all roles are filled), the head-
node propagates its own constraints upward
(i.e., its head-features and its memory-instance
that packages the accepted memory-instances of
the complement nodes). In this case, *GIVE
propagates the head features ((Ma3J V) (VFORM
fin) (AUX minus))!® along with the identity of
the memory-instance that packages the accepted
complement instances. The concept *ACTION in
the PL receives this activation, which satisfies
the constraints on the circumstance (arg2) role
of *PERSUADE. *PERSUADE specifies that the
NP[acc] which fills the persuadee (argl) role is

node information from the default finite verb forms except
(TENSE PAST) is added to the verb form features.

18The system’s recognition is massively-parallel in na-
ture and multiple number of subcategorization can be ac-
tive at a given time, as well as different hypotheses for
discourse entity reference and phonemic, lexical and con-
ceptual ambiguity.

One thing we have omitted here for the sake of sim-
plicity is that there is an intermediate subject control head
to whose head-feature is (VFORM inf).

coindexed with the NP that was unsaturated in-
side the VP which fills the circumstance (arg2)
role. This now indicates that same John fills the
giver (actor) role in *Gi1vE. This way, the phe-
nomenon known as control is correctly handled
in the HMCP recognition model. Thus if we in-
spect the content of the created instance of the
root lexical node *PERSUADE, we get the follow-
ing output?’:

(*PERSUADED-10
(INHERITS-FROM *PERSUADED)
(TYPE

(VALUE
(COMMON MEMORY-INSTANCE)))
(ACTOR
(VALUE
(COMMON *JOHN-10)))
(ARG1
(VALUE
(COMMON *MARY-10)))
(ARG2
(VALUE
(COMMON *T0-10))))

Note that we follow the HPSG analysis in our
syntactic constraint handling that we treat to as
a VP-head of the infinitival phrase which itself
subcategorized for a VP. Thus, when we print
the contents of *T0-10 we get:

(*T0-10
(INHERITS-FROM *T0)
(TYPE
(VALUE
(COMMON MEMORY-INSTANCE)))
(ARG2-0F
(VALUE
(COMMON *PERSUADED-10)))
(ACTOR
(VALUE
(COMMON *MARY-10)))
(ARG1
(VALUE
(COMMON *GIVE-10))))

which subject controls the embedded VP headed
by give:

(*GIVE-10
(INHERITS-FROM *GIVE)
(TYPE
(VALUE
(COMMON MEMORY-INSTANCE)))
(ARG1-OF
(VALUE
(COMMON *T0-10)))
(ACTOR
(VALUE
(COMMON *MARY-10)))

20Taken from our actual sample output on a Sequent
/Symmetry running a parallel Commonlisp.



(ARG1
(VALUE
(COMMON *SANDY-10)))
(ARG2
(VALUE
(COMMON *SUSHI-10))))

Thus, correct assignments of controlled and em-
bedded complement subject positions are at-
tained through the constraint propagation pars-
ing.

4 Discussion:

The HMCP model shares with the spreading acti-
vation marker passing models its difference from
localist connectionist models that HMCP and
marker passing models pass sources of activations
around. This is an algorithmic solution to the
problem of connectionism commonly known as
‘binding problem’ in that variable binding is a
hard problem in a connectionist network. By ac-
tually storing a pointer to the origin of an activa-
tion, the ’HMCP and the traditional marker pass-
ing models make it possible to keep track of an
instance that a variable (activated node) needs to
be bound to. The theoretical difference between
the HMCP and the traditional models of spread-
ing activation marker passing models such as
DMTRrANS([Tomabechi, 1987]) is paradigmatic
and philosophical in nature as well as functional.
In traditional models, the markers were typically
passed in order to: 1) activate relevant nodes, 2)
record sources of activations, and 3) predict the
next input activations. Given the networks were
purely conceptual, these models were schemes
of semantic (conceptual) recognition and infer-
ences. While the inference provided from these
networks may be valuable for external linguistic
modules ([Norvig, 1989] [Tomabechi and Tomita,
1988]), these models were insufficient as models
of parsing because knowledge such as phonology,
syntax and discourse parameters were not for-
mulatable within these frameworks (for example,
there is no way to capture the obligatory object
controlin traditional marker passing framework).
HEMCP is a model of constraint propagation and
in EMCP, markers act as media for propagating
constraints. Constraint satisfaction activities of
a network constitute a parsing process.

We view the HMCP model to be scalable in
that constraints are stored distributedly in each

lexical-nodes. In other words, increase of num-
ber of constraints, such as corresponding to the
increase in number of grammatical rules, will take
the form of increase in number of nodes horizon-
tally in the network. Given the activations are
essentially local (i.e. only upward in the abstrac-
tion hierarchy, never horizontally in the network),
increase in the grammatical complexity can be
countered by the increase in number of lwps (and
actual processors to counter the increase in num-
ber of processes). Each node changes its state
through a constraint satisfaction activity based
on its own local environment and sole communi-
cation between nodes is a passing of head-feature
markers vertically upward in the abstraction hi-
erarchy. An aggregation of numerous such local
activities will constitute a result of a parse.

In the past models of massively parallel spread-
ing activation natural language processing, algo-
rithmic massive parallelism as activities of nodes
were either explicitly designed to be hardware
activities of fully distributed massively parallel
processing units ([Tomabechi, et al, 1989]), or
implicitly assumed [Riesbeck and Martin, 1985]
[Norvig, 1989]). However, when the amount of in-
formation passed between nodes increases (such
as in our constraint propagation network), it
is easy to predict that communication speed of
loosely coupled processing units, typically found
in hardware massive parallel architecture, will
create an intolerable bottleneck. We have learned
that by introducing the notion of light weight pro-
cesses, tightly coupled shared memory architec-
ture is one viable architecture for implementing
a massively parallel constraint propagation net-
work.

5 Conclusion

We have seen that HMCP model makes the
coexistence of massively-parallel memory-based
recognition activities and strict linguistic con-
straint applications such as postulated by HPSG
possible through a propagation of both linguis-
tic and non-linguistic constraints in the inheri-
tance memory network. We have also proposed
a scheme of realizing such a massively parallel
constraint propagation activity on a parallel ma-
chine hardware through the use of light weight
processes. By separating the data-level massive-
parallelism of the localist connectionist network



from the hardware level parallelism by interme-
diate lwps, the mixture of fine-grain node level
activities and medium-grain constraint applica-
tion activities were attained in a uniform massive
parallelism. Also, EMCP network is compatible
with a connectionist network in its architecture
and we have already succeeded in integrating var-
ious types of connectionist network as subnet-
work of the EMCP network to enhance contex-
tual and other processing of the system?!. We
are especially interested in combining the explicit
a priori provided deductive symbolic constraints
with a @ posteriori learned inductive constraints
from the connectionist subnetwork??. Currently,
the HMCP architecture seems to be a sole viable
model for such a symbolic and subsymbolic in-
teraction.
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Appendix: Implementation

The HMCP parsing system is implemented us-
ing Allegro CLiP version 3.0.3 which is a par-
allel Commonlisp from Franz Inc. The sys-
tem is running on a Sequent Symmetry which
is a tightly coupled multiprocessor shared mem-
ory machine running DYNIX 3.0 parallel UNix.
Light weight processes and their scheduling are
directly supported by CLiP. Parallel implemen-
tation of HMCP was originally done on Multi-
lisp running on Mach at CMU. A serial lazy

21 Please refer to [Tomabechi, 1990] for the schemes to
integrate a time-delay neural network and a recurrent neu-
ral network.

22Since a learned subsymbolic knowledge in the con-
nectionist subnetwork is captured in a smooth activation
space (as opposed to frame-based scriptal and thematic
knowledge encoded originally in the network), constraints
captured in a subsymbolic network may be valuable to a
symbolic network.

evaluation version is also running on CMU-
ComMMoONLisP.
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