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Abstract: The TLS security model enables the identification and secrecy of the host-to-host communication
channel on the Web; however, TLS cannot guarantee the relationship between service providers. This paper
proposes a lightweight self-managed mutual declaration mechanism, M2DMRT, in which service providers
mutually sign their TLS public keys and publish them in DNSSEC-protected DNS zones. With M2DMRT,
service providers can mutually declare their relationships with each other, and end users can easily trust the
relationships by verifying the signatures. Further, this paper implemented a server-side proof of concept.
After evaluating its basic performance and feasibility from an Internet architecture perspective, this paper
found this mechanism can realize more trustable Web security architecture by providing a sufficiently perfor-
mant way to declare and verify relationships between service providers without significantly impacting the
current Internet environment.

1. Introduction

The Web security model is based on host-to-host en-

cryption and integrity provided by Transport Layer Se-

curity (TLS) [1]. TLS ensures the integrity of the host

based on verification of the host’s public key certifi-

cate by Web PKI and encrypts communication by gen-

erating a shared key with forward secrecy using Diffie-

Hellman Ephemeral (DHE) [2] / Elliptic Curve Diffie-

Hellman Ephemeral (ECDHE) [3] key exchange.

Web service providers deal with an increasing number of

website functions, end users, and overall traffic volume, gen-

erally by building complex backend infrastructure. There-

fore, many Web services are built by rerouting traffic (e.g.,

HTTP redirection) from one service provider to another,

through the use of third parties such as Platform as a Ser-

vice (PaaS) or Content Delivery Networks (CDN). How-

ever, in order to define single host in TLS host-to-host secu-

rity model, it requires separate public key certificates, pub-

lic keys, and private keys per host, which amplifies opera-

tional costs in Web service provider. To reduce TLS opera-
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tional costs, such services often share their public key certifi-

cates across different domains by adding Subject Alternative

Names (SAN) [4] or defining content rerouting policy using

Cross-Origin Resource Sharing (CORS) [5].

However, this security model does not provide any assur-

ance of integrity when rerouting service traffic. TLS can en-

sure communications integrity with a single host but cannot

ensure the integrity of an entire service when requests are

redirected across several distinct service providers. Thus the

end users can be redirected to the malicious hosts or com-

munications between the end users’ client and the service

providers’ hosts can be monitored because the end users are

unaware of and have no way to trust the integrity of entire

service.

HTTP Strict Transport Security (HSTS) [6] allows site

operators to instruct clients to always use TLS when con-

necting to a specific domain, which can mitigate some of

the threats associated with machine-in-the-middle content

modification, DNS spoofing, and ARP spoofing, which rep-

resent potential attacks on the confidentiality of data sent

to a specific site.

Since the decision to use HSTS lies with the service

provider, TLS downgrade attacks [7, 8] are still possible

in non-HSTS compliant services, or in services which send

HSTS header to the client when the client try to connect

via HTTP without TLS at first. To avoid disabling HSTS

when the client try to connect via HTTP without TLS at

first, major Web browsers like Mozilla Firefox [9] and Google

Chrome [10] are migrating to “HTTPS by default” policy,

which does not try to use HTTP without TLS. Also, HSTS

preload list [11] is hardcorded into Google Chrome and other
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major Web browsers, though it is not standardised.

Even in services which do support HSTS, existing re-

search [12] has shown that attackers can disable HTTPS en-

forcement in certain conditions, such as when several hosts

share the same TLS certificate [13]. This research focuses

on the threat model around rerouting service traffic across

service providers located in different domains.

To address this threat, this paper proposes M2DMRT

(Mechanism of Mutual Declaration of Multi-provider Rela-

tionship for Trusted Web Services), a mechanism by which

several service providers forming one service can declare

their relationship mutually. M2DMRT assumes that end

users can already verify each hosts’ communications in-

tegrity using TLS and the existing Web PKI.

In the proposed mechanism, the reroute origin service

provider uses their TLS private key to sign the redirect des-

tination service provider’s TLS public key. Similarly, the

reroute destination service provider uses their TLS private

key to sign the redirect origin service provider’s TLS public

key. After both signatures are generated, the signature and

hostname corresponding to each TLS public key’s certificate

is registered in service provider’s DNSSEC-protected DNS

zone authoritative server. The end users can verify the rela-

tionship by querying DNS and verifying DNSSEC integrity,

the mutual signature provided by M2DMRT, and the host

integrity.

2. Requirements Definition

2.1 Definition of the Threat Model

As described in Sec. 1, this paper defines a threat model

for Web services in which either malicious attacks or opera-

tional failures [14] cause traffic to be rerouted to or from a

malicious service provider in a manner not intended by the

genuine service provider.

Sec. 1 describes the current situation of backend infras-

tructure of Web service providers, many of which use multi-

ple services, domain names, hosts to construct a single Web

service. This paper defines “service integrity” as the in-

tegrity of a single Web service from the end user perspective,

which may consist of several logically distinct Web services,

domain names, or hosts.

Currently, there are no existing mechanisms to assure ser-

vice integrity on the Internet. This is because the security

model of Web has been discussed based on host integrity as-

surance by TLS and Web PKI. The lack of Service Integrity

security model, which means only depends on the host itself

but the entire Web service, is causing threats described in

Sec. 1.

A single Web service can be consisted by a number of host

chained both vertically and horizontally.

In a vertically-chained hosts environment, a single service

provider may have multiple hosts related with other service

providers’ hosts. Such cases are assumed to exist widely in

cloud or CDN environments.

In a horizontally-chained hosts environment, many ser-

vice providers may have relationship when constructing a

Fig. 1 Example environment of horizontally-chained hosts.

single service integrity. Figure 1 shows an example envi-

ronment of single online shopping service constructed by

three services, (i) EC site service provider that actually sells

and ships products physically, (ii) payment processing site

service provider that collects credit card information from

users, and (iii) 3-D Secure [15] site service provider that

provides authentication for online credit card use.

Considering the popularity and increasing adoption of

cloud services like PaaS, a single service provider may have

a number of different relationships with other distinct ser-

vice providers. In such cases, the PaaS provider should bear

the responsibility of keeping track of its own relationship

relative to other related service providers.

This paper addresses threat models around service in-

tegrity assurance which have not been addressed previously

in the security model of host integrity assurance. Specifi-

cally, these include attacks or vulnerabilities of the nature

of host integrity, which can be affected by HTTPS hijacking

attacks or subdomain takeover attacks [16, 17] in CDN or

cloud environment. These threat models can be addressed

by combination of host integrity assurance and service in-

tegrity assurance to identify and verify single hosts in the

relationship and assuring the relationship among multiple

hosts.

2.2 Requirements

2.2.1 Requirements against the Threat Model

To address this threat model, this research defines three

requirements against the threat model that must be met

(Req. #1. – Req. #3.), along with two additional support-

ing requirements that may make this proposal more archi-

tecturally feasible in the real world (Req. #4, 5).

Req. #1. Mutual and Verifiable Declaration of

Service Relationship In order to prevent rerouting both

to and from malicious service providers, this declaration

must be mutual. In addition, to enable every end users to

verify this declaration using trust anchor trusted by anyone,

this declaration must be verifiable.

Req. #2. Self-manageable Declaration of Ser-

vice Relationship Relationship between service providers

is based on their actual business contract. This declaration

should not be modifiable unless both service providers have

intentions to do.

Req. #3. Minimum Disclosure of Each Party’s

Components From a business and cyber security perspec-

tive, the disclosure of endpoints configuration in each service

provider is sensitive. Thus, the disclosure should be as min-
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imal as possible.

Req. #4. Localization of Transaction of Modifi-

cation This mechanism should be scalable for use in global

platforms, thus modification transactions should be local-

ized.

Req. #5. Localization/Minimization of Failure

Points (Independent from Central Authority) This

mechanism should have availability, thus this mechanism

should not rely on a centralized topology or have specific

single points of failure.

2.2.2 Requirements for Feasibility

From a real-world operations perspective, this paper also

requires the mechanism to be work efficiently in a manner

compatible with existing current Internet architecture.

Req. #6. Adoption to the Vertically-chained En-

vironment The mechanism should be able to hold the com-

plex state of relationship in vertically-chained environment

to assure single service integrity in practical use.

Req. #7. Adoption Potential in Horizontally-

chained Environments The mechanism should be able

to hold the complex state of relationship in horizontally-

chained environment to assure single service integrity in

practical use.

Req. #8. Minimal Processing Time of Modifi-

cation Operating new mechanism generally requires addi-

tional time consumption. In order to reduce down time of

the services, the processing time of modification of declara-

tion must be minimized.

Req. #9. Mitigation of Load of PaaS Service

Provider The mechanism should be designed to mitigate

the load on relatively large service providers described in

Sec. 2.1.

3. Related Works

3.1 HTTPS-based Mechanisms

Certificate Transparency (CT) [18] is a mechanism that

allows network administrators and Web site operators to

monitor a set of public logs for misissued certificates for a

specific domain. In its current implementation, end users

are not able to determine whether a certificate has been is-

sued mistakenly or belongs to a compromised site indepen-

dently, meaning end users may still connect to a malicious or

compromised Web site. Using CT, certificates issued from

a Certification Authority (CA) are registered to a CT log

server run by a third party, which returns a signed times-

tamp known as a Signed Certificate Timestamp (SCT). Ver-

ification of the certificate using CT is done by checking if the

CT log server has an entry corresponding to a specific cer-

tificate based on the SCT. If this verification fails, the client

can assume the certificate has not been logged publicly and

may be suspect since other members of the Web PKI ecosys-

tem have not been able to confirm its policy compliance. As

a result, certificates are in practice forced to be publicly dis-

closed in order to be trusted by browsers that implement

CT.

Cross-Origin Resource Sharing (CORS) [5] is a mecha-

nism that allows clients to send HTTP requests to another

server when the same-origin policy [19] is defined in the Web

application. Same Origin Policy plays an important role to

protect fromWeb security threats such as cross-site scripting

(XSS) or cross-site request forgery (CSRF) attacks. When

CORS is applied, the Origin header is used to indicate the

requesting domain to the server that allows resource shar-

ing. The Web server which received HTTP request with

Origin field can read the provided header and allow access

to clients of the original Web server. When the original Web

server is successfully authenticated, Access-Control-Allow-

Origin field is added to the HTTP response header so that

the client can identify the authenticated origin name.

Subresource Integrity (SRI) [20] addresses the threat of a

subresource (such as a JavaScript library or stylesheet) be-

ing modified when hosted by a third party, such as a CDN.

When a Web service includes subresources hosted by a third

party referred using a script or link tag, the original Web

server provides the expected hash of the subresource in an

integrity attribute. The client can calculate the hash of the

downloaded subresource and verify whether it matches the

original site’s intended hash; resources that do not match

can be rejected easily, limiting the damage caused by a third-

party CDN compromise.

3.2 Application of Distributed Repository

Some researchers are trying to reconstruct DNS [21, 22]

using Distributed Hash Table (DHT) [23, 24] or

Blockchain [25].

Handshake [26] is a distributed naming protocol using

Blockchain. Peers in the Handshake network can create

or verify transactions that represent management changes

to top-level domain names. Also, Handshake Blockchain

proves the manager of the domain name, thus Handshake

can also act as a CA of sorts for use with PKI. The Hand-

shake model encourages distribution by providing economic

incentive for transactions and proof of administrative rights

for domains to Handshake users.

3.3 DNSSEC and DANE TLSA

DNSSEC [27] serves two main functions: (i) assurance of

DNS zone delegation in the global name space by using root

DNS zone’s Key Signing Key (KSK) as trust anchor, and

(ii) assurance of response contents from the authoritative

servers and its authenticity.

DNSSEC also provides denial of existence in response to

the query for non-existing domain name to assure integrity

of entire DNS zone. This is realized by using NSEC re-

source record and its signature by ZSK public key, which

contains the alphabetically next domain name of queried

domain name (QNAME ). NSEC3 [28] resource record is

also used for hashed denial of existence to avoid listing up

all of the domain name in a DNS zone.

DANE TLSA [29] is a protocol which allows a DNS zone

administrator to designate a particular host’s TLS public

key certificate or authorized issuing CA using DNSSEC. The
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Table 1 Comparison of requirements against the threat model
and related works.

CT [18]
CORS [5]/
SRI [20]

DHT [24]/
Handshake [26]

DANE
TLSA [29]

Req. #1. No No No No
Req. #2. No No No No
Req. #3. No No No Yes
Req. #4. Partial Yes No Yes
Req. #5. No Yes Yes Yes

Fig. 2 Assumed environment of M2DMRT.

DNS zone administrator can declare how clients should ver-

ify certificates and can even choose to instruct clients to ig-

nore Web PKI trust chain and rely on the DNSSEC-provided

chain only. The use of DANE TLSA is limited to specific

hosts in a given DNS zone, thus it is impractical for desig-

nating several hosts at once and hosts whose DNS resource

records resolve outside of a specific DNS zone.

3.4 Comparison of Related Works and Require-

ments against Threat Model

Table 1 shows the comparison of each related works and

requirements defined in Sec. 2. This research evaluated lo-

calization of transaction for Web PKI and CT as “partial”

since transactions are localized between the Web server and

CA but span multiple domains. None of the related works

surveyed satisfies all of Req. #1. – 3., thus even using combi-

nations of existing technologies simultaneously cannot sat-

isfy the goal of this research.

4. Proposal: M2DMRT

4.1 Assumed Environment

This paper assumes a Web service that consists of two

service providers that reroute service traffic using HTTP

redirects. One is a hypothetical e-commerce (EC) site that

operates an online store and redirects end users to the sec-

ond site during the checkout process, and the other is a

payment processor site that processes credit card payment

transactions for end users redirected from the EC site.

The left half of Figure 2 shows the current Web service

situation, protected only by the host integrity assurances of

TLS. An end user wants to buy some product from the EC

site is redirected to a payment processor and asked to enter

credit card information. The end user’s client is commu-

nicating to each Web service providers’ Web servers using

TLS, thus the client can use TLS certificates provided by

each server to verify each individual server’s integrity using

the Web PKI, with Web PKI CA certificates serving as a

trust anchor.

However, the end user cannot verify the relationship be-

tween the EC site and payment site easily; thus the end user

may be reluctant to provide credit card information to the

payment site, even though the payment site may be pro-

viding services on the EC site’s behalf. Furthermore, the

end user may have been redirected to a malicious server by

HTTPS hijacking attack or subdomain takeover attack on

CDN or cloud environment.

The right half of Figure 2 shows an environment which

uses both TLS and service integrity assurance provided by

M2DMRT. In M2DMRT, service providers sign the other

service provider’s TLS public key using own TLS private

key each other. The signatures are published in the ser-

vice provider’s DNSSEC-protected DNS authoritative server

as DNS resource records (declaration records). DNS and

DNSSEC provides self-manageability of declaration records

by service providers, decentralized structure, and assurance

that the any generation, modification or deletion is based

on the service providers’ intention. Every TLS keypair used

by the service providers are signed mutually, with each sig-

nature is published as a distinguished declaration record;

thus the service providers are not required to publish all of

their endpoints as a single list. End users can easily verify

relationship between service providers by using M2DMRT.

4.2 Architectural View of M2DMRT

Figure 3 shows the architectural view of M2DMRT. In

this figure, this paper assumes that an application service

provider named ec-1.com. has a business contract with a

payment processor provider named pay-1.net.. Likewise,

the other application service provider named ec-2.com. has

business contract with the other payment processor provider

named pay-2.net.. This paper also assumes that DNSSEC

is enabled for the DNS zones of . (root), com., ec-1.com.

and ec-2.com..

Focusing on the relationship between ec-1.com. and

pay-1.net., the declaration records shown on the right

half of Figure 2 are registered in form of DNS TXT

type resource records in the DNS zone of ec-1.com.

and signed by the ZSK of ec-1.com.. The domain

name of declaration records consists of the format

“destination hostname. m2dmrt.origin hostname.” The

data part of a declaration record consists of the hostname of

the signer TLS private key, the hostname of the target TLS

public key, and the signature itself. Since the declaration

is mutual, two declaration records are generated for each

relationship. In order to prevent DNS zone enumeration

attacks (also known as “DNS zone walking”), NSEC3

should be used.

4.3 Registration Sequence

Figure 4 shows the authentication and key exchange se-

quence between MRDAs belonging to the EC site and pay-

ment site. Both service providers register their TLS public
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Fig. 3 Architectural view of M2DMRT.
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Fig. 4 Authentication / key exchange procedures
in the registration.
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Fig. 5 Signing of TLS public keys / declaration procedures
in the registration.

keys to their respective MRDAs, create RSA keypairs, and

exchange the RSA public keys securely beforehand.

When beginning registration for a new declaration, both

MRDAs authenticate each other in a CHAP-like process and

perform DHE key exchange. In Figure 4–(1) – Figure 4–(3),

MRDAs send nonce (nonce1, nonce2) and authenticate each

other by verifying a nonce signed by their counterpart’s pri-

vate key against their counterpart’s public key certificate.

In Figure 4–(4), Figure 4–(5), MRDAs perform DHE key

exchange to derive a shared key (SK) and open an AES-

protected communication channel.

Figure 5 shows the sequence of signing of TLS public key

by MRDA and publishing of declaration records in DNS au-

thoritative server.

Next, MRDAs sign the target’s TLS public key with their

side’s TLS private key. Figure 5–(6), Figure 5–(7) shows

signing steps of payment site TLS public key, and Figure 5–

(8), Figure 5–(9) shows signing steps of the EC site’s TLS

public key. M2DMRT is still feasible if one service provider

has several Web servers with multiple TLS keypairs. MR-

DAs can identify which host’s TLS public key they are sign-

ing by sending the hostname of the Web server using that

TLS public key when MRDAs request a signature gener-

ation (Figure 5–(6), Figure 5–(8)). The TLS private keys

used in signature generation are not managed by MRDAs

but Web servers, thus MRDAs need to make requests to

signing agents running inside the Web server infrastructure.

Generated signatures are returned to the original MRDA

to verify that TLS public key is successfully signed. If this

verification fails, the MRDA should request a new signature.

Finally, signatures are published as declaration records by

sending a dynamic update [30] query from the MRDA to a

DNS authoritative server using TSIG [31]. The number of

resource records corresponds directly to the number of pairs

of signing TLS private keys and signed TLS public keys.

4.4 Verification Sequence

Figure 6 shows the verification sequence of steps of

M2DMRT when the user is redirected from ec-1.com. to

pay-1.net..

At first, the user’s device connects to the Web server of

ec-1.com. via HTTPS. At this time, the M2DMRT client

implemented in the user’s device obtains the public key cer-

tificate of ec-1.com., which includes the actual public key.

When the user’s device issues the HTTP query that results

in redirection to pay-1.net., the Web server of ec-1.com. re-

turns an HTTP 3xx response.

Second, before accessing the Web server of pay-1.net., the

M2DMRT client performs signature verification.

To obtain the M2DMRT signatures, the M2DMRT client

resolves the TXT resource record of pay-1.net. m2dmrt.ec-

1.com. using DNSSEC. In response to the query, the DNS

authoritative server of ec-1.com. should return a set of dec-

laration records which is signed by DNSSEC ZSK of ec-

1.com. with a NOERROR RCODE. If the M2DMRT client

receives an NXDOMAIN response with NSEC3 hashed de-
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Fig. 6 Verification sequence.

nial of existence, it can assume that the service providers do

not support M2DMRT.

After the DNSSEC verification, the M2DMRT client at-

tempts to connect to the pay-1.net. Web server with TLS.

During the TLS negotiation, the M2DMRT client can obtain

the public key certificate of pay-1.net. and the correspond-

ing public key itself. Using both service providers’ public

keys and declaration records, the M2DMRT client performs

signature verification on the declaration. If the verification

fails, the M2DMRT client can reattempt the verification se-

quence, or instruct the browser to terminate communication

with pay-1.net..

After completing both verification of DNSSEC and

M2DMRT signatures successfully, the browser can continue

to connect to the pay-1.net. Web server via HTTPS with

confidence the connection is trustworthy.

5. Experiment and Evaluation

5.1 Experiment using PoC

This paper performed 2 experiments to measure in-node

processing time of our proof of concept implementation.

In the first experiment, this paper used time library to

measure the cryptographic processing time of simulated dec-

laration record registration by calculating the difference in

timestamps. This experiment used Apple macOS Big Sur

11.4 on M1 CPU (3.2 GHz, 8 cores) with 16 GB RAM.

The second experiment measured the entire processing

time of the simulated modification of declaration record us-

ing the shell script. This experiment used Knot DNS 7.2.8

running on Ubuntu 20.04.3 LTS on VMware ESXi 7.0 with

4 vCPUs, 16 GB RAM.

5.2 Quantitative Evaluation against PoC

Figure 7 and Figure 8 show the evaluated in-node pro-

cessing time ranges of cryptographic processes.

Table 2 and Table 3 show the average time of 100 trial

Table 2 Average time of each range regarding authentication
and key exchange.

(1) (2) (3) (4) (5)
11.7 ms 0.616 ms 11.2 ms 0.409 ms 49.0 ms

(6) (7) (8) - -
6.87 ms 0.227 ms 0.282 ms - -

Table 3 Average time of each range regarding TLS public key
signing.

(9) (10) (11) (12) (13)
1.43 ms 1.40 ms 11.0 ms 0.366 ms 0.379 ms

(14) (15) (16) (17) (18)
0.20 ms 0.183 ms 10.9 ms 0.176 ms 0.201 ms

(19) - - - -
0.393 ms - - - -

runs for each time range. Measurement was performed in

an environment assuming two service providers which man-

age one Web server and one TLS keypair each.

In Table 2, Table 2–(1) and Table 2–(3) express time for

signing nonce by MRDA’s private key, Table 2–(2) and

Table 2–(4) express time for verification of the signature

generated in Table 2–(1) and Table 2–(3) by MRDA’s public

key, Table 2–(5) and Table 2–(6) express time for calculating

DHE public key (DHK ) of payment site’s MRDA, Table 2–

(7) and Table 2–(8) express time for calculating DHE shared

key (SK ) for AES encryption and decryption. Verification of

signatures and calculation of SK are finished faster enough

compared to signing of nonce or calculation of DHK.

For evaluation of authentication and key exchange, gen-

eration of signature against nonce (Table 2–(1), (3)) and

calculation of DHE public key (Table 2–(5), (6)) take longer

time; however, verification of nonce signature (Table 2–(2),

(4)) and calculation of DHE shared key (Table 2–(7), (8)) is

processed faster.

In Table 3, Table 3–(9), Table 3–(14), and Table 3–(17)

express time for AES encryption of the message by SK,

Table 3–(10), Table 3–(12), Table 3–(15) and Table 3–(18)

express time for AES decryption of the message by SK,

Table 3–(11) and Table 3–(16) express time for signing TLS

public key by TLS private key of the opponent, Table 3–(13)

and Table 3–(19) express time for verification of signature

generated in Table 3–(11) and Table 3–(16).

For evaluation of generating signature of TLS public key

(Table 3–(11), (16)), which is the core of this mechanism,

can be processed in about 10 msec.

This paper measured average processing time of registra-

tion. In the experiment, this paper used exp.jj1lfc.dev. DNS

zone for both simulated EC site and payment site to utilize

DNSSEC environment of the global DNS.

The average time took for registration was 676.6 msec.

5.3 Qualitative Evaluation against Threat Model

Requirements

This section evaluates how M2DMRT satisfies three

requirements against threat model defined in Sec. 2.2.1

(Req. #1. – 3.). M2DMRT’s fulfillment of system require-

ments (Req. #4., 5.) by using DNS and DNSSEC is as
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Fig. 7 Evaluated time range of authentication /
key exchange procedures.

Fig. 8 Evaluated time range of signing of TLS public keys /
declaration procedures.

described previously in Sec. 3.3.

Req. #1.: Declaration records are mutually signed by

both reroute origin and destination service providers. Regis-

tration, modification, and deletion of declaration records can

only be done through mutual authentication of both MR-

DAs using MRDAs’ asymmetric keypairs. Thus, end users

are protected against redirection both to and from malicious

service providers. Since declaration records are published in

DNSSEC-protected DNS zones, end users can access and

verify declaration records easily.

Req. #2.: Signatures require both service providers’

TLS private keys to be generated. Since these keys are held

directly by the service providers themselves, providers who

have agreed mutually can manage their declaration records

on their own without reliance upon third-party external in-

frastructure.

Req. #3.: The redirect origin and destination hostname

are both necessary to query the declaration records success-

fully. Acquiring these hostnames through DNS zone-walking

is prevented by using NSEC3 hashed denial of existence. As

a result, it is relatively difficult for an attacker to list all

endpoints involved in a transaction using M2DMRT.

Req. #4.: Modification transactions is mainly per-

formed by MRDAs in each service provider. As described in

Sec. 3.3, after signature declaration, the declaration records

are published through DNS authoritative server under which

control of the service provider. Thus the transaction of

modification is localized to the related service providers’ do-

mains.

Req. #5.: As described in Sec. 3.3, DNS is a feasible

way to avoid centralization. M2DMRT does not rely on any

new global architecture that could be failure points.

5.4 Evaluation against Feasibility Requirements

This section evaluates M2DMRT against feasibility re-

quirements (Req. #6. – 7.).

Req. #6.: In vertically-chained environments, each ser-

vice provider needs to have as many declaration records as

the couplings of end nodes. As discussed in Sec. 5.2 and

Sec. 5.4, although an increase of the number of end node

couplings affects the processing time for modifications, it

can be considered minimal since the end user is not im-

pacted directly.

Req. #7.: In horizontally-chained environments, decla-

ration records will be made by each set of service providers

that serve end users a redirect, which is enough for end users

to validate all services in the chain (and therefore the over-

all service as a whole). In the EC – payment – 3-D Secure

example in Figure 1, each assurance between EC – payment

and payment – 3-D Secure is enough for the entire service

integrity assurance.

Req. #8.: As a result of the experiments in Sec. 5.2,

the average time for registration process is evaluated to be

sufficiently short, as this process runs only during initial reg-

istration or when a record modification becomes necessary.

Req. #9.: The declaration records are published only

from the reroute origin service provider’s DNS authoritative

server by design. This can mitigate the operational cost of

the destination service provider, which this paper assumes

to have many relationships with different reroute origin side

service providers, as is the case with many PaaS payment

providers and cloud services.

5.5 Considerations for Real World Implementa-

tion and Deployment

From the view point of the entire Internet architec-

ture, M2DMRT requires only two additional DNS resource

records per relationship by taking advantage of the exist-

ing DNS environment. M2DMRT is believed to be feasible

enough to support the current Internet architecture. How-

ever, there still are some consideration for implementation

in real world.

From the service providers’ perspective, they are required

to protect their DNS zones with DNSSEC; however, there

still are non DNSSEC-compliant DNS zones which are not

ready for M2DMRT deployment as service providers.
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On the other hand, from the end user’s perspective, their

full service resolvers or the clients themselves need to vali-

date DNSSEC chain when fetching declaration record. Simi-

lar to the DNS zone authoritative servers, there still are non

DNSSEC validating full service resolvers. If the end user

have no obstacle to query and validate DNSSEC chain by

themselves using clients on their network, they can validate

M2DMRT declaration record without relying full service re-

solvers.

When a declaration record is registered, modified, or

deleted, the client must be able to detect the change. How-

ever, if there are stale caches on a full service resolver or

stub resolver used by any of the end users, the validation

process may be impacted adversely. Service providers can

set shorter TTL for each declaration record RRset to mini-

mize the impact.

6. Conclusion

This paper proposed M2DMRT, a lightweight and

self-manageable mutual declaration mechanism of multi-

provider relationship, by signing TLS public keys mu-

tually and publishing declaration records in DNSSEC-

protected DNS zones. The quantitative evaluation shows

that M2DMRT is feasible sufficiently from the perspective

of processing speed. The qualitative evaluation shows that

M2DMRT satisfies all five of this paper’s design require-

ments, demonstrating the proposed mechanism can prevent

attacks (threats) which the current TLS security model does

not cover.

This paper concludes that the proposed M2DMRT has

no significant negative effect to the Internet environment

including service providers rerouting traffic and end users

using such providers. Furthermore, M2DMRT may help fa-

cilitate development of a more trustworthy Web by introduc-

ing the concept of redirect integrity assurance, which has not

been discussed previously.

This paper leaves consideration of the effects of stale DNS

cache on the end user’s client and implementation of a client

that enables end users to verify declaration records as future

works.
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