
IPSJ SIG Technical Report

Qualitative and quantitative performance
evaluations of relatively inexpensive storage

products (3)

Hiroki Kashiwazaki1, ,a)

Abstract: In 2017 and 2020, respectively, the author reported on his research on qualitative and quantitative
performance evaluation of relatively low-cost Network Attached Storage. This report is a continuation of the
2020 report, in which the NIC of Synology’s FS6400 all-flash storage was replaced with a 40Gigabit Ethernet
NIC, and a 100Gigabit Ethernet Switch was used to connect the 100Gigabit Ethernet NIC to a Linux server.
From a Linux server with a 100Gigabit Ethernet NIC connected by a 100Gigabit Ethernet Switch, I prepared
multiple values with multiple parameters using the I/O test tool fio, and conducted exhaustive measurements
to benchmark all combinations of these values. The measurement results were formatted and visualized in
a heat map. This time, I applied this method to disk arrays with a unit price of 100 USD/TB terabytes,
all-flash storage with a price of 250 USD/TB, and all-flash storage with a price of 5000 USD/TB.

1. Introduction

A distributed system consists of computers, networks, and

power supplies. The computer has a storage device, which

is the main memory, and an auxiliary storage device, which

is storage. Applications that do not use auxiliary storage,

such as on-memory databases, are emerging, but there are

still a certain number of applications that read and write

through file descriptors.

Some auxiliary storage devices are housed in the computer

chassis, while others are installed externally as independent

devices and are connected to the computer via a network.

FibreChannel and iSCSI are used as interfaces for the OS

to access external storage over the network as block devices.

There is also the method of mounting as a file system us-

ing NFS. The former is sometimes called Storage Area Net-

work (SAN), while the latter is sometimes called Network

Attached Storage (NAS).

These network-attached storage products are available

from a variety of vendors. Each vendor discloses its prod-

uct specifications, but only what can be definitively men-

tioned about the quantitative performance of the product.

Therefore, the user cannot know what performance charac-

teristics the product has. The conditions under which the

performance is measured may not match the conditions un-

der which the user actually uses the product. There is a need

for fair, reproducible, and comprehensive benchmarking.

In 2017, I benchmarked storage products equipped with

1 National Institute of Informatics, Chiyoda, Tokyo 101–8430,
Japan

a) reo kashiwazaki@nii.ac.jp

10Gigabit Ethernet [1] Network Interface Cards (NICs). In

the 2020 report, I benchmarked storage products with 40Gi-

gabit Ethernet [2]. In both cases, I chose products that cost

around USD 100 per terabyte. On the other hand, in the

2020 research report, I also benchmarked all-flash storage

products that cost around 500 USD per terabyte.

In the 2020 report, I was not able to benchmark storage

performance by examining the characteristics of MTU on

performance, especially in a 100Gigabit Ethernet environ-

ment. In this paper, I propose a method for comprehensive

benchmarking using fio, a storage benchmarking software,

and propose a method for processing the results.

2. Benchmark

2.1 fio

In the 2020 research report, I described various bench-

marking software, but I will not do so this time. In this

article, I will perform an comprehensive benchmark using

fio, one of the benchmark software mentioned in the 2020 re-

port. fio is a flexibile I/O tester developed by Jens Axboe*1.

Fio was originally written to save him the hassle of writing

special test case programs when he wanted to test a specific

workload, either for performance reasons or to find/repro-

duce a bug. The process of writing such a test app can be

tiresome, especially if users have to do it often. Hence he

needed a tool that would be able to simulate a given I/O

workload without resorting to writing a tailored test case

again and again. The newest version of fio is 3.27 (on 9th

Aug. 2021).

*1 https://git.kernel.dk/?p=fio.git;a=summary

1ⓒ 2021 Information Processing Society of Japan

Vol.2021-IOT-55 No.4
Vol.2021-SPT-44 No.4

2021/9/6

IPSJ SIG Technical Report

It has support for 19 different types of I/O engines (sync,

mmap, libaio, posixaio, SG v3, splice, null, network, syslet,

guasi, solarisaio, and more), I/O priorities (for newer Linux

kernels), rate I/O, forked or threaded jobs, and much more.

It can work on block devices as well as files. fio accepts job

descriptions in a simple-to-understand text format. Several

example job files are included. fio displays all sorts of I/O

performance information, including complete IO latencies

and percentiles. Fio is in wide use in many places, for both

benchmarking, QA, and verification purposes. It supports

Linux, FreeBSD, NetBSD, OpenBSD, OS X, OpenSolaris,

AIX, HP-UX, Android, and Windows.

In academic research, fio has been used in various studies:

Xianzhang Chen et al. introduced a process-variant wear-

leveling mechanism to persistent memory file systems, and

fio was used to evaluate the proposed method [3]. Gyusun

Lee et al. have proposed a hardware-based demand paging

method, and fio is used for this evaluation [4]. Ravi Kiran

Boggavarapu et al. proposed a block deduplication-aware

page cache management method and perform FIO bench-

marking on a dataset containing 25% duplicate data [5].

Rodrigo Leite et al. proposed a hyper-converged system

to host Docker containers and investigated the performance

of container persistent data storage using various workloads

in Microsoft data centers and multiple disk configurations

of the hyper-converged system [6]. Ziye Yang et al. pro-

pose SPDK-vhost-NVMe, an I/O service target relying on

user space NVMe drivers, which can collaborate with hy-

pervisors to accelerate NVMe I/Os inside VMs, and use fio

to benchmark against QEMU native NVMe emulation solu-

tions [7].

As related work shows, fio allows benchmarking with spe-

cific workloads. fio provides a variety of options, with mul-

tiple numbers that can be specified with these options, and

exhaustive benchmarking with multiple options specifying

all combinations. fio provides various options. The main

options of fio are described below.

The direct option takes a bool value. If the value is

true, use non-buffered I/O. This is usually O_DIRECT. Note

that OpenBSD and ZFS on Solaris don’t support direct I/O.

On Windows the synchronous ioengines don’t support direct

I/O. Default: false.

The rw option specifies the Type of I/O pattern. Accepted

values are:

read Sequential reads.

write Sequential writes.

trim Sequential trims (Linux block devices and SCSI char-

acter devices only).

randread Random reads.

randwrite Random writes.

randtrim Random trims (Linux block devices and SCSI

character devices only).

rw,readwrite Sequential mixed reads and writes.

randrw Random mixed reads and writes.

trimwrite Sequential trim+write sequences. Blocks will

be trimmed first, then the same blocks will be written

to.

Fio defaults to read if the option is not specified. For the

mixed I/O types, the default is to split them 50/50. For

certain types of I/O the result may still be skewed a bit,

since the speed may be different.

The bs option can specify the block size in bytes used for

I/O units. Default size is 4096. A single value applies to

reads, writes, and trims. Comma-separated values may be

specified for reads, writes, and trims. A value not termi-

nated in a comma applies to

The size option can specify the total size of file I/O for

each thread of this job. Fio will run until this many bytes

has been transferred, unless runtime is limited by other op-

tions (such as runtime, for instance, or increased/decreased

by io_size). Fio will divide this size between the available

files determined by options such as nrfiles, filename, unless

filesize is specified by the job. If the result of division hap-

pens to be 0, the size is set to the physical size of the given

files or devices if they exist. If this option is not specified,

fio will use the full size of the given files or devices. If the

files do not exist, size must be given. It is also possible to

give size as a percentage between 1 and 100. If ‘size=20%’

is given, fio will use 20% of the full size of the given files or

devices. Can be combined with offset to constrain the start

and end range that I/O will be done within.

If an integer value is specified in the numjobs option, Cre-

ate the specified number of clones for this job. Each clone

of the job is spawned as an independent thread or process.

May be used to set up a larger number of threads/processes

doing the same thing. Each thread is reported separately.

The default value is 1.

If an integer value is specified in the runtime option, Tell

fio to terminate processing after the specified period of time.

2.2 targets

In 2020, I accidentally met an opportunity to get two stor-

age products. One is Synology FlashStation FS6400*2 and

the other is Synology SA3400*3. The unit price per TiB of

these two products are shown in Table 1. The unit of price

is USD*4. I adopted Cisco Nexus 9332C*5 as SAN 100Gi-

gabit Ethernet Switch. Including the switch, the unit price

of FS6400 can be less than 250 USD and the one of SA3400

*2 Synology FlashStation FS6400
https://www.synology.com/en-global/products/FS6400

*3 Synology SA3400https://www.synology.com/en-global/
products/SA3400

*4 USD-JPY currencies rate is 106.9 JPY/USD (18 Juune 2020)
*5 Cisco Nexus 9332C and 9364C Fixed Spine Switches Data

Sheet
https://www.cisco.com/c/en/us/products/collateral/

switches/nexus-9000-series-switches/datasheet-c78-

739886.html

2ⓒ 2021 Information Processing Society of Japan

Vol.2021-IOT-55 No.4
Vol.2021-SPT-44 No.4

2021/9/6

IPSJ SIG Technical Report

Table 1 A comparison of the specifications of each storage prod-
uct.

FS6400 SA3400

number of drives 72 36
drive WDS400T1R0A WUH721818ALE6L4
total price (USD) 70,000 40,000
total capacity (TiB) 288 TiB 648 TiB

unit price per TiB 243 62

Table 2 A comparison of specifications of each storage product.

FS6400 SA3400

CPU
Intel Xeon
Silver 4110

Intel Xeon
D-1541

number of cores 8 8
CPU Frequency

(GHz) 2.1 ˜3.0 2.1 ˜2.7
memory (GB) 512 128
number of NIC 40GbE x2 40GbE x2
size (mm) 264 x 482 x 724 264 x 482 x 724
internal file system Btrfs/EXT4 Btrfs/EXT4

also can be less than 100 USD each. Each total capacity is

a number with 2 external units. Each total price includes a

cost of the units, 40Gigabit Ethernet and the main memory

expansion.

Specification of two products are described in Table 2.

Each product certifies 40Gigabit Ethernet NICs such as Mel-

lanox ConnectX series*6.

2.3 setting up

This paper shows evaluation results of network attached

storage with 100GbE/40GbE environment. A diagram of

an environment of evaluations is shown in Figure 1. FS6400

and SA3400 are connected to Cisco Nexus 9332C Fixed

Spine Switches with 40GBase-SR4. And Nexus 9332C is

also connected to Cisco UCS C220M5 with 100GBase-SR4.

Ubuntu Linux 20.04 LTS (Focal Fossa)*7 is running on the

C220M5. Benchmark programs are executed on Ubuntu

Linux. FS6400 and SA3400 provides block device with iSCSI

and NFS service.

Synology products provide a web-based management tool

called DiskStation Manager (DSM), which is used to create

storage pools using Storage Manager in DSM’s suite of man-

agement tools. A storage pool can consist of multiple drives,

and a RAID configuration can be specified. RAID F1 applies

RAID 5 mechanism and provides fault tolerance to increase

read performance. However, when RAID F1 is used, more

parity information is written to certain drives to accelerate

aging. Thus, it prevents all drives from expiring at the same

time. This may have a slight performance impact compared

to RAID 5. At least three drives are required; RAID F1 will

not lose data if one drive fails. In the event of a drive failure,

the data on the failed drive is reconstructed from the parity

stripped across the remaining drives. For this reason, both

read and write performance can be very severely impacted

if the RAID F1 array becomes degraded. RAID F1 can be

*6 Mellanox ConnectX Ethernet Adapters
https://www.mellanox.com/products/ethernet/connectx-

smartnic
*7 Ubuntu 20.04 LTS (Focal Fossa)

https://releases.ubuntu.com/20.04/

Synology FS6400
2TB 2.5 SSD×24×3
Synology SA3400
12TB 3.5 HDD×12×3

Cisco Nexus 9332C

100GBase-SR4

40GBase-SR4

Cisco UCS C220M5
2.4GHz 24 cores CPU x2
512GB memory

Fig. 1 A diagram of benchmark setup for IOzone

configured with three or more drives*8.

Creating a storage pool creates a meta-device that can be

recognized as a volume, which can be formatted in Linux,

the operating system of Synology products. The volume can

be formatted in Linux, the OS of Synology products. ext4

and Btrfs are available as file systems. The volume can be

used as a block device by client machines using iSCSI, and

can also be used for file operations using network file transfer

protocols such as NFS and CIFS. In this example, I will use

iSCSI as a block device. iSCSI Manager is provided in the

DSM. Allocate the specified area from the volume created

earlier and assign a Logical Unit Number (LUN). When the

target is specified for the allocated LUN, an iSCSI Qualified

Name (IQN) is associated with the LUN, and this LUN can

be discovered from the client machine by using the iSCSI

initiator. In addition to setting up authentication, multiple

settings can be configured on the target. in Ubuntu Linux,

the iscsiadm command can be used to discover the iSCSI

target as a block device.

In this case, I wanted to measure the impact of the

number of RAID F1 units on performance, so I created 9

storage pools, ranging from a minimum of 3 units to 11

units, and created iSCSI targets associated with each of

them. The SSD in the Synology FS6400 is a Western Digi-

tal WDS400T1R0A*9 with a capacity of 4TB, connected via

SATA III. The volume was formatted with Btrfs.

3. Evaluations

In order to perform comprehensive benchmarking, I con-

nected to iSCSI targets associated with the 9 storage pool

patterns on FS6400, and benchmarked all iSCSI targets us-

ing fio. The rw option was specified for read and write re-

*8 Synology RAID F1 White Paper
https://global.download.synology.com/download/

Document/Software/WhitePaper/Firmware/DSM/All/enu/

Synology_RAID_F1_WP.pdf
*9 WD Red™ SA500 NAS SATA SSD 2.5”/7mm cased —

Western Digital Store
https://shop.westerndigital.com/products/internal-

drives/wd-red-sata-2-5-ssd

3ⓒ 2021 Information Processing Society of Japan

Vol.2021-IOT-55 No.4
Vol.2021-SPT-44 No.4

2021/9/6

IPSJ SIG Technical Report

1 10 100 1000 1 10 100 1000 1 10 100 1000 1 10 100 1000 1 10 100 1000 1 10 100 1000 1 10 100 1000 1 10 100 1000

 10

 100

 1000

 10

 100

 1000

 10

 100

 1000

 10

 100

 1000

 10

 100

 1000

 10

 100

 1000

 10

 100

 1000

 10

 100

 1000

 0

 500

 1000

 1500

 2000

 2500

1

2

4

8

16

32

64

128

1 2 4 8 16
runtime

nu
m

jo
b

32 64 128

Fig. 2 Heatmaps of Read Throughput Performance of Synology FS6400 (3 SSDs).

spectively. The bs option was set to a minimum value of 4

B, and was measured in 10 patterns of doubled values up

to 2048 B. The size option was set to a minimum value of

1 MB, and was measured in 12 patterns of doubled values

up to 2048 MB. The numjobs option was set to a minimum

value of 1, and was measured in 8 patterns up to 128. The

runtime option was set to 1 as the minimum value and mea-

sured in 8 patterns up to 128. The MTU of the FS6400’s

40Gigabit Ethernet NIC is set to 1500 B.

3.1 Results and Discussions

The throughput information was extracted from each

benchmark result measured, and a heat map was created by

mapping the values of throughput (MB/sec) from 0 to 2500

to the color of the gradient, with the x-axis being the file size

and the y-axis being the block size. This heat map was cre-

ated for each numjob value from 1 to 128 and each runtime

value from 1 to 128, and arranged in an 8x8 tiled format

as shown in Figure 2 (the 3 SSDs target). The heatmaps

were created using gnuplot*10, and pm3d was specified. A

shell script was prepared to format and align the benchmark

result data so that it can be drawn with gnuplot’s splot.

The benchmark was run with 9 storage pool patterns, 2 I/O

patterns (rw), 10 block size (bs) patterns , 12 file size pat-

terns, 8 numjobs patterns, and 8 runtime patterns, for a

total of 138,240 benchmark runs, which took 198 hours.

*10 gnuplot homepage http://www.gnuplot.info

As you can see from the definition of the option runtime,

it does not make sense to benchmark runtime in 8 steps.

As I understand it at the time of writing, the runtime op-

tion was misunderstood as the number of iterations when

benchmarking. Therefore, the more iterations, the more the

measurements are averaged and outliers are rounded, and I

thought it was meaningful to find a runtime value where the

mean and deviation converged within a certain value, but

I was wrong in my understanding. Therefore, in practice,

I can exclude runtime variations and expect to measure in

less than 2.75 hours per target.

Since numjobs is the number of parallel jobs, the more

the number of parallel jobs is, the more the throughput will

increase, and finally it will be saturated at the upper limit

of IOPS or throughput. In this measurement, the maximum

throughput of 2500MB/sec is measured when the value of

numjobs is greater than 16 and the block size is 1024KB.

2500MB/sec is equal to 20Gbytes/sec, so it is not a 10Giga-

bit Ethernet NIC but a 40Gigabit Ethernet NIC. By chang-

ing the MTU value, a higher upper limit can be expected.

The block size (bs) value is changed step by step starting

from 4B to 2048B, but the default value is 4096B. I would

like to measure it by varying it from 1KB to 1MB. The

throughput and IOPS should be doubled as the value of

numjobs is doubled until the upper limit of IOPS is reached,

so I can calculate the average throughput and IOPS per pro-

cess by dividing the throughput and IOPS by the value of

4ⓒ 2021 Information Processing Society of Japan

Vol.2021-IOT-55 No.4
Vol.2021-SPT-44 No.4

2021/9/6

IPSJ SIG Technical Report

numjobs. This is the average throughput and IOPS per

process. By observing how this value changes as numjobs

changes, I can measure the maximum number of connec-

tions.

4. Conclusion

In this paper, I used fio, an open-source I/O testing

tool, to comprehensively measure and visualize a relatively

inexpensive iSCSI storage product. From the generated

heatmap, I show that it is possible to intuitively understand

at which block size this storage product shows the highest

performance. I also presented a visualization method to un-

derstand the differences in performance due to changes in

parameters by arranging the benchmark results measured

with different parameters.

This time, I presented a visualization method to ob-

serve the entire throughput comprehensively by arranging

heatmaps in 8x8 panels, but this method is still not easy to

see. There are many variations of fio options, and by adopt-

ing more appropriate options, I can expect to visualize more

appropriate and fair benchmark results.

In this paper, I only show the measurement results of

Synology FS6400 (with a single MTU value in a single stor-

age pool configuration), but I will release the measurement

results of Synology SA3400, a disk array that is already

in preparation. In addition, I have installed PureStorage’s

FlashArray X20, so I plan to perform the same iSCSI config-

uration here and compare the benchmark results. The price

per terabyte is 5000USD/TB, which is 10 times higher than

Synology FS6400, so I expect to compare the cost effective-

ness of the two.

References

[1] : IEEE Standard for Information technology - Local and
metropolitan area networks - Part 3: CSMA/CD Access
Method and Physical Layer Specifications - Media Access
Control (MAC) Parameters, Physical Layer, and Management
Parameters for 10 Gb/s Operation, IEEE Std 802.3ae-2002
(Amendment to IEEE Std 802.3-2002), pp. 1–544 (2002).

[2] : IEEE Standard for Information technology– Local and
metropolitan area networks– Specific requirements– Part 3:
CSMA/CD Access Method and Physical Layer Specifications
Amendment 4: Media Access Control Parameters, Physi-
cal Layers, and Management Parameters for 40 Gb/s and
100 Gb/s Operation, IEEE Std 802.3ba-2010 (Amendment
to IEEE Standard 802.3-2008), pp. 1–457 (2010).

[3] Chen, X., Sha, E. H.-M., Wang, X., Yang, C., Jiang, W.
and Zhuge, Q.: Contour: A Process Variation Aware Wear-
Leveling Mechanism for Inodes of Persistent Memory File Sys-
tems, IEEE Transactions on Computers, Vol. 70, No. 7, pp.
1034–1045 (online), DOI: 10.1109/TC.2020.3002537 (2021).

[4] Lee, G., Jin, W., Song, W., Gong, J., Bae, J., Ham, T. J.,
Lee, J. W. and Jeong, J.: A Case for Hardware-Based De-
mand Paging, 2020 ACM/IEEE 47th Annual International
Symposium on Computer Architecture (ISCA), pp. 1103–1116
(online), DOI: 10.1109/ISCA45697.2020.00093 (2020).

[5] Boggavarapu, R. K. and Jiang, S.: Deduplication-aware I/O
Buffer Management in the Linux Kernel for Improved I/O Per-
formance and Memory Utilization, 2020 12th International
Conference on Knowledge and Smart Technology (KST), pp.
70–74 (online), DOI: 10.1109/KST48564.2020.9059514 (2020).

[6] Leite, R. and Solis, P.: Performance Analysis of
Data Storage in a Hyperconverged Infrastructure Us-
ing Docker and GlusterFS, 2019 XLV Latin American
Computing Conference (CLEI), pp. 1–10 (online), DOI:
10.1109/CLEI47609.2019.235108 (2019).

[7] Yang, Z., Liu, C., Zhou, Y., Liu, X. and Cao, G.: SPDK
Vhost-NVMe: Accelerating I/Os in Virtual Machines on
NVMe SSDs via User Space Vhost Target, 2018 IEEE 8th
International Symposium on Cloud and Service Comput-
ing (SC2), pp. 67–76 (online), DOI: 10.1109/SC2.2018.00016
(2018).

5ⓒ 2021 Information Processing Society of Japan

Vol.2021-IOT-55 No.4
Vol.2021-SPT-44 No.4

2021/9/6

