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Abstract: Strategy board games such as Chess, Shogi and Go are popular benchmark for Artificial Intel-
ligences (AIs). However, there already exist very strong agents that outperform humans for these games.
In order to expand AI research, it is necessary to turn to new difficult strategy games, such as with more
than 2 players. This paper presents Ceramic, a new environment based on the board game Azul with such
challenge, as well as randomness, a large state & action space and perfect information. In a game of Ceramic,
2 to 4 players take turns in selecting tiles from a common shared set of factories, and placing them on their
pyramid and wall to form patterns and score points. In order to have a strong strategy, a player must plan
his moves as well as anticipate the opponents’. This paper presents the framework’s various functionalities,
and provides an in-depth analysis of the different baseline players implemented. The strongest AI, mc*-
10 000, significantly out-performs the others, but remains weaker than human players, indicating the game
is difficult for AIs and there is a large margin of improvement. The code is open-source, and was binded into
a python module to provide a simple interface to python libraries, and thus ease the training and evaluation
of Reinforcement Learning-based AIs.
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1. Introduction

Games, and more specifically board games, have for long

served as testbeds for Artificial Intelligence (AI) research.

Since the success of Deep Blue at Chess in 1997 [1], re-

searchers have moved on to create AI agents that can out-

perform humans in more and more difficult environments:

AlphaGo and AlphaGoZero at Go in 2015 and 2017 [8],

AlphaZero at Shogi, Chess, and Go [9], and AlphaStar at

Starcraft II in 2019 [10].

To push AI’s potential further, it is necessary to cre-

ate new research environments, with new challenges that

haven’t been solved yet. Some frameworks focus on play-

ing consistently on multiple games, for example the Gen-

eral Video Game AI Framework [7]. Others focus on a

complex game, such as the 3D environment of Minecraft

(Malmo [3]), or the strategic collectible card game Hearth-

stone (The Hearthstone AI framework [2]).

One important challenge is multi-agent systems. In real-

life scenarios, agents are rarely alone and share the envi-

ronment with other entities. A sub-problem of this is mul-

tiplayer games with 3 or more players, which are a great

representatives of such domains. Catan, with the Java im-

plementation JSettlers [6], is a modern board game example.

In this paper, we introduce Ceramic, an environment and
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research framework inspired by the board game Azul, itself

influenced by the Portuguese ceramic tiles azulejos. Azul

is a two to four player strategy board designed by Michael

Kiesling in 2017 that won the Spiel des Jahres award (Game

of the Year) the next year. In the game, players take turns in

picking tiles from a shared set of factories, and forming pat-

terns on their pyramid. It has very interesting multi-player

mechanics, where one player must take into accounts the

tiles picked by the opponents in order to always have access

to good tiles, not get backed into a corner and instead force

opponents to take bad actions. Players must also plan their

tiles placement to maximize their score, without taking too

much risks and getting stuck later in the game.

The source code of Ceramic is open-source (under the

GPL-3.0 license), and available at the following address:

https://github.com/Swynfel/ceramic. It has been pro-

grammed in C++ for its efficiency, but we also included

bindings to turn it into a python module, thus it is easily

usable in combination with PyTorch, Tensorflow, or other
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Fig. 1 Example of 2-player mini ceramic state
(bag, bin, and floor are not shown)
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python libraries. We welcome researchers interested in mak-

ing agents for this game to re-use our code.

2. Game of Ceramic

The rules of Ceramic basically follows Azul’s*1, but sup-

ports rule variations to allow a greater range of environ-

ments. In the game, players pick tiles in factories, forming

patterns in a pyramid and score points by placing them on a

wall. Ceramic is very challenging, as good players must an-

ticipate what tiles opponents will take (to potentially hinder

them), as well as balancing short-term and long-term deci-

sions, risk-taking and safely scoring.

The rules of Ceramic are configurable by several parame-

ters, C, T, F,N, Sv, Sh, Sc, with typical combinations listed

in Table 1. In the rest of the paper, if no rules are specified,

the base*1 rules are implied.

Table 1 Possible rule parameters

C T F N Sv Sh Sc

Base 5 20 1 + 2× p 4 2 7 10
Mini 3 15 1 + p 3 1 4 6

2.1 Rules

The game is played in multiple rounds. In each round,

players will collect tiles to ultimately place on their wall to

score points. The player that ends with the highest score

wins.

Let p ∈ {2, 3, 4} be the number of players. There are C

colors with T tiles of each color, initially placed in a bag.

Each player has their own Wall with C × C cells, C-base

Pyramid, Floor (i.e. penalty) and Score.

2.1.1 Round setup

F factories are placed in the middle, each filled with N

random tiles. If no tiles are left in the bag, discarded tiles

in the bin are moved to the bag. If no more tiles remain in

the bin as well, factories are left empty or half-filled and the

game continues.

The player with the first player token goes first, after plac-

ing the token back in the center. At the very start of the

game, there is no token, so the player order is determined

randomly.

2.1.2 Acquiring tiles

At their turn, a player chooses a factory, a tile color on it,

and takes all the tiles of this color. The factory’s tiles of a

different color are moved to the center. Instead of selecting

a factory, a player may also choose to take all tiles of the

same color from the center.

Once a player has picked tiles, they may place them on a

line of their pyramid, as long as certain conditions are met:

a pyramid ’s line must only hold tiles of the same color, and

this color must not be present on the wall’s matching line.

Extra tiles that can’t fit – or all of them if the player can-

not/doesn’t want to choose a line – are placed on the player’s

*1 Ceramic’s base rules are identical to Azul’s, albeit the equality
break for winner and the ending condition when a tile color is
depleted

floor, i.e. penalty line.

If the player took tiles from the center, and is the first

one to do so this round, they must also take the first player

token and place it on their floor.
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Fig. 2 Example of where tiles “B” of factory can be placed

After a player completes their turn, the next player in

clockwise continues, and so until no tile remains on the fac-

tories or center.

2.1.3 Round end and Scoring

At the end of the round (c.f. above), the following should

be done for each player: For each filled line on the pyramid

(from smallest to largest line in case multiple are filled) one

of the tiles moves to the wall at the corresponding height

and color, and the rest is discarded to the bin (c.f. Fig. 3).

When a tile is placed on a wall, it scores a point for each

consecutive horizontal or vertical tile, or a single point if

isolated (c.f. Fig. 4).
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Fig. 3 Example of tile placement from pyramid to wall

Tiles on the floor decrease points, then they are sent to

the bin. The tiles on the pyramid or wall are left untouched.

2.1.4 End of game

If, at the end of a scoring round, a player has a line on their

wall completed, the game stops. To prevent soft-locking, the

game is also stopped if no more tiles of a certain color are

left. Extra points are given for each complete vertical line

Sv, horizontal column Sh, and color set Sc on the walls.

The player with the highest score wins the game. In case

of tie, the one with the largest amount of filled horizontal

lines wins. In case of another tie, the last player to have

played their first move wins.
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2.2 Challenges and Specificities

Ceramic is a perfect information game (i.e. no information

is hidden), and – although the Round setups are random –

every action within a round has a deterministic outcome.

This means that even though Ceramic is very difficult, it

still follows strong conditions. This enables many existing

algorithms (such as Monte Carlo Tree Search) to play the

game without cheating.

However the game tree is very large and deep. To take the

4-player base rules as an example, finishing a game requires

at least 5 rounds, each consisting of 10 to 36 moves. The

number of legal actions decreases throughout the rounds,

but can start at 228: 36 tile sets (selection) times 5 pyramid

lines plus 1 penalty line (placement). Combined with the

random factory refill between rounds, this makes perfectly

solving the game with current algorithms (e.g. preferences

of outcomes) impossible.

Furthermore, the game is multi-player, meaning a strong

agents must take into consideration not only its own panel

and actions, but also the opponents’ and their interactions

between them. Not only should an eye be kept on the lead-

ing player, but it is necessary to predict what the opponents

will play in order to avoid being stuck in a situation where

one is forced to play a bad action. For example, it is com-

mon at the end of the round that the center contains a lot

of tiles that have accumulated throughout the round, and

unprepared players forced to take them, place them on the

floor and lose a lot of points

Finally, the interpretation of the state is very complex. In

the base rules, the features need to represent a combination

of one panel for each player (composed of a 5 by 5 wall and

a pyramid of size 5), and a common board (composed of a

center and 5 to 9 factories that should be invariant by per-

mutation). This makes it rather challenging for AI based on

neural networks.

3. Related Work

As Ceramic is a new environment, there exists no preex-

isting work for this specific game. However, solving similar

problems is common, so we were able to base our work on

the following.

3.1 Markov Decision Process (MDP)

A game in Ceramic can be represented as a Markov De-

cision Process (MDP). Namely, when at a state s, an agent

can take an action a following policy π, and will receive a

reward r and the next state s′.

Opponents can either be seen as part of the environment

(but it ignores the multi-agent dynamics), or the definition

can be extended to a Markov Game [5], where each player

takes their own actions.

There are multiple ways to define the reward in Ceramic:

as the delta of the guarantied score after every move, the

delta of the raw score at every round, or simply winning at

the very end. The final score of a game (i.e. cumulative

reward) is called the return.

3.2 Monte-Carlo Tree Search

Monte-Carlo Planning is a very popular technique to se-

lect actions in complex MDP. This idea is to approximate

the relevance of an action with roll-outs, i.e. simulating it

and finishing the game randomly multiple times, and con-

sider their average outcome as a good approximation of the

expected outcome.

3.3 Upper Confidence Bounds applied to Trees

(UCT)

Upper Confidence Bounds applied to Trees (UCT) is a

common technique to improve Monte-Carlo’s balance be-

tween exploration and exploitation [4]. Instead on exploring

branches randomly, since ones with poor outcome are un-

likely to be played anyway, branches with the best outcome

are prioritized.

At every state s already encountered N times, we have

for each possible action a, already encountered na times

and with an average return of Xa, the next sampled action

a′ will be chosen as:

a′ = argmax
a

(
X̄a + c

√
lnN

na

)

with c a constant, often given the value
√

2.

4. Framework

As mentioned in the introduction, we implemented an

optimized framework for playing Ceramic games, that we

also called Ceramic. It is open sourced under the GPL-3.0

license, and available on github at the following address:

https://github.com/Swynfel/ceramic. Additional help

on how to use the framework can be found there.

The code is written mostly in C++ for its execution speed,

but bindings in pybind11 enables it to be compiled as a

python module, thus providing a simple interface for python

Machine Learning libraries such as Tensorflow and PyTorch.

Ceramic has many features useful for researchers wanting

to conduct Reinforcement-Learning research, such as:

• Flexible rules and parameterization. This can be useful

to simplify or play a variation of the game. For exam-

ple, if one wants a minimal environment to test their

The 25th Game Programming Workshop 2020

© 2020 Information Processing Society of Japan - 157 -



agents, we recommend using the mini rule-set intro-

duced in Table 1.

• Fast concurrent execution, to allow quick experience

generation and evaluation (c.f. Section 6.1). For exam-

ple, an “arena” module for evaluating and comparing

multiple agents playing against each others.

• Multiple baseline-agents, that can play in any rule-set

(c.f. Section 5).

• Helper functions and an abstract base player class, to

quickly prototype an agent in C++ or python.

• A “terminal-player”, i.e. an interface in the command

line so humans can play against the different agents.

5. Agents

5.1 First Legal Player

This “First Legal” Player is deterministic and takes the

first legal action it finds. Actions are ordered from longest

pyramid line to shortest, then center or factory id, and fi-

nally color. This is the simplest and fastest agent, but it

plays poorly. In the rest of the paper, this agent’s name will

be abbreviated as “f-legal”.

5.2 Random Players

The random agent (abbreviated as “rand-naive”) takes a

random action among the available legal actions. It is also

very fast, and has the feature of being stochastic.

Placing tiles directly on the floor is almost always bad, as

it decreases score without making progress on the pyramid

or wall. However, theses actions can represent a significant

proportion of legal actions. Thus, we added a “smart” vari-

ation of the random agent that prioritizes actions placing

tiles on the pyramid, abbreviated as “rand-smart”. This

new agent plays significantly better than the “naive” ran-

dom agent (c.f. Section 6.2) while taking the same amount

of time (c.f. Section 6.1).

5.3 Monte-Carlo Players

The Monte-Carlo player is based on Monte-Carlo tree

search and UCT described in Section 3. The first action

to explore is chosen according to UCT (with c =
√

2), and

the rest of the roll-out continues as if played by rand-smart

(i.e. “smart” random players).

Since the game tree can be a little deep, we implemented

two alternatives:

• One that stops roll-outs after the end of the round, and

estimates the win-rate with a hand-coded heuristic that

takes into account its score and its wall configuration

relative to the other players.

• Another one that plays roll-outs until the end of the

game, and returns 1 if the player won and 0 otherwise.

These two agents are respectively abbreviated as “mc-n”

and “mc*-n”, with n the number of roll-outs. The higher

the amount of roll-outs, the stronger the Monte-Carlo Play-

ers become, at the expense of more processing time.

6. Experiments and Results

All experience were conducted one at a time, on a server

with an AMD Ryzen Threadripper 2990WX (a 3GHz, 32-

core/64 processes CPU) and 64 GB of RAM.

6.1 Environment Bench-marking

The first set of experiences focuses on the performance

of the environment. For Figure 5, 10 rand-smart agents

played in an arena in “all” groups (which amount to 705

4-player groups, see Section 6.2 for explanations) with 1000

games per group (705 000 games in total). The values in Ta-

ble 2 were collected during the experiments of Section 6.2:

un-marked values correspond to measurements made during

the experiments of Table 4, and those marked with † to the

ones of Table 3.

1 2 4 8 16 32 64
thread count

0

50

100

150

200

250

re
al

 d
ur

at
io

n 
(s

)

0

200

400

600

800

1000

du
ra

tio
n 

× 
th

re
ad

 c
ou

nt
 (s

)

Fig. 5 Execution time of 10-rand-smart 1000-games 4-player
“all” arena depending on the number of threads

Table 2 Average processing times

duration (in µs)
Play full game 4.944× 107

† Play full game 4.900× 102

Process action 2.700× 100

† Process action 9.588× 10−1

† f-legal 3.047× 100

† rand-naive 4.731× 100

† rand-smart 4.602× 100

rand-naive 7.399× 100

rand-smart 6.837× 100

mc-100 7.646× 103

mc-1 000 7.543× 104

mc-10 000 7.207× 105

mc*-100 3.876× 104

mc*-1 000 3.821× 105

mc*-10 000 3.387× 106

We can see on Table 2 that the environment is very fast

to process an action (less than 10µs), and that most of the

time is taken by the agents making a decision. Unsurpris-

ingly, the Monte-Carlo players are the slowest to play, taking

around seconds to play with 10 000 samples. We decided to

not go further than this, as it would be too slow to actually

use for training or evaluation.
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6.2 Performance between agents

The following two tables compare the different agents’

performance by opposing them in several groups, each group

playing a certain amount of games, and taking the average

win-rate, score, and moves for each player. We call this a

n-game “type” p-player arena, with n the number of games

for each group, and “type” a value that can be either “sub-

sets” or “all”. A “subsets” arena takes all p-subsets of the

available players as groups, and the “all” arena takes all p-

combinations allowing copies of the same agent (but with at

least two different types). *2

Since the games are 4-players, the average win-rate is 25%.

The column sstd stands for “score standard deviation”.

Table 3 Results of simplest agents in a 100 000-game
4-player “all” arena
Each agents played 1 600 000 games

win-rate score sstd moves
f-legal 27.54% 20.0 11.2 25.7

rand-naive 2.39% 3.6 5.7 24.2
rand-smart 45.07% 25.0 13.8 23.0

Table 4 Results of various agents in a 1000-game
4-player “subsets” arena
Each agents played 35 000 games

win-rate score sstd moves
rand-naive 0.01% 2.4 4.4 21.3
rand-smart 3.25% 18.6 11.7 21.1

mc-100 9.84% 21.0 13.6 21.2
mc-1 000 15.04% 23.5 15.1 21.2

mc-10 000 16.59% 24.9 15.7 21.2
mc*-100 13.55% 27.1 15.3 21.0

mc*-1 000 49.67% 46.8 19.2 21.1
mc*-10 000 92.05% 67.7 17.2 21.5

As it can be seen on Table 4, mc* are clearly the strongest

agents, mc*-10 000 even reaching 92.05% win-rate. How-

ever, as mentioned in Section 6.1, they are also the agents

that take the longest time to play: mc*-10 000 takes more

than 3 seconds on average (c.f. Table 2). This means that

mc agents with less roll-outs or the smart random agent

rand-smart might be better alternatives in situations where

experiences must be generated quickly.

6.3 Performance against humans

The agent mc*-10 000 seems very strong in comparison to

the other players. However, we do not know about its perfor-

mance against human players. For this, one of us (Quentin

Gendre) played 50 games against 3 mc*-10 000 agents. The

results are given in Table 5.

Although 50 games is too few to give a precise win-rate,

the difference of games won and score is significant enough

to conclude that humans still out-perform mc*-10 000, and

thus all currently available AI-players.

*2 For example, with p = 3, if players A, B, C and D are available:
“subsets” arena would generate groups ABC, ABD, ACD, and
BCD ; whereas “all” arena would generate groups AAB, AAC,
AAD, ABB, ABC, ABD, ACC, ACD, ADD, BBC, BBD, BCC,
BCD, BDD, CCD, and CDD

Table 5 Results of 50 games of human vs 3 mc*-10 000

games won score
human 45 98.2

3×mc*-10 000 5 54.2

games won by score score of 2nd player
human 101.7 65.8

mc*-10 000 74.6 70.0

6.4 Statistics

Finally, in order to have various statistics on a typical

game of Ceramic, we had 4 mc*-10 000 play 10 000 games

and analyzed their behavior.

Table 6 Statistics of 10 000 games of 4 mc*-10 000

average
Round per game 5.06
Moves per game 82.2

Penalty per round 3.51
Legal actions 44.7

Smart legal actions 31.6
Tiles taken 2.22

Score of winner 63.6
Score of 2nd player 50.4
Score of 3rd player 36.5
Score of last player 21.9

Tiles on wall 13.0
Filled lines 0.625

Filled columns 0.165
Filled colors 0.384
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Fig. 6 Distribution of smart legal action count in 10 000 games
of 4 mc*-10 000

We can see in Table 6 that, on average, a player will have

access to 44.7 legal actions, or 31.6 actions if we ignore the

ones that place the tiles directly in the floor when placing

them on the pyramid is possible. However, agents may have

to choose among larger sets. Empirically, mc*-10 000 has

more than 5% chance to encounter more that 100 smart legal

actions (c.f. Fig. 6).

Furthermore, a game with good players will almost al-

ways end in 5 rounds, the minimum, meaning players are

able to place tiles on the same line at each round without

interruption.

We can note that mc*-10 000 rarely use the filled

line/column/color bonuses: on average, they have only

around one.
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7. Conclusion and Future Works

In this paper we present Ceramic, a game environment

and framework for Artificial Intelligence research. A game

of Ceramic has interesting multi-player dynamics that AIs

should properly take into account to maximize their win-

rate. We implemented several base-line players, ranging

from very fast (< 10µs per action) random agents to slower

but stronger Monte-Carlo agents.

Although the best player implemented, mc*-10 000, is sig-

nificantly better than the random agents, it is still very weak

in comparison to humans. It illustrates how making agents

that play Ceramic is very challenging, because of multi-

player, randomness, and large game space. Therefore, we

strongly believe doing research on this environment would

give valuable insights on real world problems with similar

difficulties. Ceramic is open-source to encourage such initia-

tives, and we hope to see researchers make RL-based agents

for it.
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