
An Attempt to Improve Generalization
Performance in Reinforcement Learning with
Deterministic World Models and WGANs

Tianshuai Yu1,a) Yoshimasa Tsuruoka2

Abstract: Significant progress has been made in the field of Reinforcement Learning (RL) in recent years.
Using artificial neural networks, researchers are able to train agents that can play video games as well as
or even better than human experts. However, it is common that the same environments are used in both
training phases and testing phases, which results in agents’ failure to generalize to other environments. In
this work, we propose a method in which environment models and generative models are used to generate
virtual game levels so as to improve the generalization performance of RL agents. We conducted experiments
using a fully-observable deterministic discrete maze game in order to test the proposed method. However, the
proposed method failed to converge during training because our environmnet model was not able to predict
the future of unseen levels accurately.

1. Introduction

Deep Reinforcement Learning (RL) has been proved pow-

erful not only in board games like Go [1] but also in video

games like Atari [2]. However, generalization in RL is still

a serious problem. When trained agents encounter an new

level in a video game, they may fail catastrophically even

the new level is similiar to the training levels. In short, it

is common that RL agents overfit to the environments they

experienced during the training phase.

Justesen et al. used hard-coded procedural level genera-

tors in GVGAI framework to create game levels for agent

training [3]. However, there is no research using learned

genrators and learned simulators to improve the geneliza-

tion performance of RL agents.

In this work, we propose a new method to improve the

generalization performance of RL agents. Generative mod-

els are used to generate new initial frames of the game and

environment models are used to simulate the game frame by

frame recursively from the generated initial frames.

The rest of this paper consists of five sections. Section 2

introduces related work. Section 3 describes the proposed

method in detail. The conducted experiments are described

in section 4. Results and discussions are shown in section 5.

The last section is a conlclusion of this work.

1 Department of Information and Communication Engineering,
The University of Tokyo

2 Department of Information and Communication Engineering,
The School of Information Science and Technology, The Uni-
versity of Tokyo

a) tianshuai@logos.t.u-tokyo.ac.jp

2. Related work

2.1 Overfitting and Genelization in RL

Zhang et al. studied the overfitting problem in deep RL

using a maze environment [4]. They found that the general-

ization performances of RL agents are highly dependent on

the complexity of mazes and training set size. When trained

and tested in mazes of the same complexity, agents trained

with a larger set of training levels can generalize to unseen

levels better.

Cobbe et al. studied the generalization in RL using a 2D

platform game called CoinRun, which is designed by them

as a benchmark for generalization in RL [5]. Their experi-

mental results are similiar to Zhang et al.’s, which showed

that more traning levels lead to better generalization perfor-

mance. Cobbe et al. also tested several regularization tech-

niques that are widely used in supervised learning. They

found that dropout, L2 regularization, data augmentation,

batch normalization, introducing stochasticity are also use-

ful to the reduction of generalization gap in RL.

2.2 Model-Based RL

Our proposed method is inspired by model-based RL, es-

pecially by Kaiser et al.’s work in which they used model-

based RL to train agents that can play Atari 2600 games [6].

They used convolution networks and deconvolution networks

with input action embeddings to build their environment

model. The environment model takes four stacked frames

as well as the action selected by the agent as input and the

model is able to predict the next frame and the reward.

They collected observations from real environments to train

the environment model and then trained the agent in the

The 24th Game Programming Workshop 2019

© 2019 Information Processing Society of Japan - 150 -

environment model. By using environment models, their

agents were able to achieve the same level of gameplay as

model-free algorithms with much fewer samples from real

environments. One exciting result of the experiment is that

in some games like Pong, Freeway, Breakout, their environ-

ment models were able to predict the future pixel-perfectly

for up to 50 time-steps.

2.3 Generative Adversarial Networks (GANs)

Generative Adversarial Networks (GANs) were first in-

troduced by Goodfellow et al. [7]. The training process of

GANs can be regarded as a two-player mini-max game. The

first player is the generator whose input is a noise vector and

output is a generated image. The second player is the dis-

criminator which takes an image as input and outputs the

probability that the input image is in the training set. The

discriminator is trained to minimize the probability of mis-

judgement while the generator is trained to maximize this

probability. An ideal training process ends with the genera-

tor generating realistic images and the discriminator being

not able to judge the input image more accurately than ran-

dom guesses.

Wasserstein GANs (WGANs) are one variation of GAN

introduced by Arjovsky et al. [8]. WGANs minimize the

Wasserstein distance so that images generated by the gen-

erator have a distribution which is close to the real distri-

bution. WGANs are reported to have more stable training

process than standard GANs. WGANs also do not suffer

from model collapse, which is an occasionally encountered

problem when training original GANs.

WGANs can be used to generate not only pixel based im-

ages, but also data with more abstract structure. Volz et

al. [9] used a one-hot expression encoded according to the

type of tile at each position to express stages of Super Mario

Bros and trained WGANs with this expression. Their re-

sults showed that the trained WGANs were able to generate

playable Super Mario Bros stages. It is also amazing that

they only used 173 pieces training data to train the WGANs,

which showed that WGANs are capable of learning from a

relatively small data set.

2.4 Deep Q-Network (DQN)

In RL, the value of taking action a at state s under certain

policy π is given by the following equation:

Qπ(s, a) = E[R1 + γR2 + ...|S0 = s,A0 = a, π]

, where γ is the discount factor for delayed rewards. The

optimal Q-value is given by

Q∗(s, a) = max
π

Qπ(s, a)

. The optimal policy can be obtained easily by taking the

action with the highest Q-value at each time-step.

The optimal action value function can be approximated by

Q-Learning [10]. The Q-function is usually approximated by

a function with parameters θ. When the Q-funtion is deno-

tated by Q(s, a;θt) and Stochastic Gradient Descent (SGD)

is used for parameter updates, the parameters are updated

as the following equation:

θt+1 = θt + α(Y Q
t −Q(St, At;θt))∇θt

Q(St, At;θt)

, where α is the step size of parameter updates and the

target Y Q
t is defined by the following equation:

Y Q
t = Rt+1 + γ max

a
Q(St+1, a;θt)

.

Deep Q-Network (DQN) is introduced by Mnih et al. [2].

DQNs take states as input and output the value of each

action. Experience replay and target networks are the two

most characteristic techniques of DQNs. Experience replay

means that the transitions experienced by the agent are

stored in a replay buffer, and they are sampled from the

replay buffer to be used to update the parameters of the

network during the training phase. Target networks are the

networks only used to calculate the targets for parameter

updates. In contrast, the networks used for agent’s explo-

ration are called online networks. When parameter updates

are performed, only the parameters θ of online networks

are updated. The parameters of target networks are copied

from the online networks every τ time-steps. When the pa-

rameters of target networks are denoted by θ−, the target

of online networks’ parameter updates is defined by the fol-

lowing equation.

Y DQN
t = Rt+1 + γ max

a
Q(St+1, a;θ−

t)

Mnih et al.’s work showed that DQNs are able to play

certain Atari 2600 games at human-level [2]. In our work,

DQNs are used as the method of agent’s policy learning.

3. Proposed Method

According to Zhang et al.’s and Cobbe et al.’s work,

agents trained with a larger set of training levels can gener-

alize to unseen levels better [4] [5]. Based on this fact, we

propose a new method to improve the genelization perfor-

mance of RL agents.

Our method aims to create virtual levels using environ-

ment models and generative models and then train the agent

in both real levels and created levels. Ideally, the agent can

experience more levels in the training phase so that higher

generalization performance is expected.

There are generally four steps in our method:

(1) Use the given training level set to train an environment

model that can predict the next frame of the game, the

reward and whether the episode is done after this frame.

(2) Extract initial frames from given training levels and

train a generator with these initial frames.

(3) Generate new initial frames of the game and use these

generated frames as the input of the environment model,

so that we can create vitural levels by predicting upcom-

ing frames, rewards recursively.

(4) Train the agent using both real levels and created vir-

tual levels.

The 24th Game Programming Workshop 2019

© 2019 Information Processing Society of Japan - 151 -

Fig. 1: Proposed method

The procedure of our method is shown in Figure 1.

However there are some constraints to this method.

Firstly, the size of training level set cannot be too small.

It is difficult to train a useful generator using an extremely

small data set. Secondly, this method can only be used

in certain games. The game need to be fully observable;

otherwise it may be difficult for the environment model to

predict the next frame only using previous frames and in-

put actions. Finally, the game should have short episodes.

Because the virtual levels are recursively simulated by the

environment model, errors of the environment model will

accumulate as the episode becomes longer. To avoid catas-

trophically wrong predictions, each episode of the game need

to be short.

4. Experiments

4.1 Environment

We used a fully-observable deterministic discrete maze

game as the environment of our experiments. The mazes

are square-sized and they are generated using Kruskal’s al-

gorithm [11]. The environment can generate different mazes

according to given random seeds. The agent is always

spawned at the left-bottom corner and the goal is always

at the right-top corner of the maze. There are four available

actions, up, down, left and right for the agent. The agent

can move one block toward the selected direction at each

time-step. However, if there is a wall block at the destina-

tion block, the agent won’t be moved.

An observation of the environment is encoded as an image

consists of 4 channels. Each channel is the binary expres-

sion of the corresponding type of blocks. For example, if one

block is a wall block, there will be a 1 at that position in

wall blocks’ channel and there will be zeros at that position

in other channels. An example of observations from a 7 × 7

maze is shown in Figure 2.

The agent receives a reward of −1 at each time-step ex-

cept the step when the agent reaches the goal; a reward of

0 is given to the agent instead. In our experiments, we used

15 × 15 mazes and set the time limit to 200 time-steps.

4.2 DQN

We used DQN for agents’ policy learning. We followed

(a) Screenshot

(b) Empty blocks’ channel (c) Wall blocks’ channel

(d) Agent block’s channel (e) Goal block’s channel

Fig. 2: An example of observations: wall blocks are notated

as X, empty blocks are notated as , agent block is notated

as A, goal block is notated as 0 in the screenshot

Fig. 3: DQNs’ network structure

Mnih et al.’s network structure consisting of convolution lay-

ers and fully-connected layers [2]. Detailed network struc-

ture is illustrated in Figure 3.

4.3 Environment Model

We followed Kaiser et al.’s deterministic world model to

build our environment model [6]. Our environment model

is mainly constructed with convolution layers and deconvo-

lution layers. The input actions are embedded with fully-

connected layers and multiplied to the input of each de-

convolution layer. There are also skip connections between

convolution layers and deconvolution layers. Batch normal-

ization is applied between every two adjacent layers. The

network structure of our environment model is illustrated in

Figure 4.

Our environment model consists of three modules: a next

frame predictor, a reward predictor and a done predictor.

They share the same network structure except the output

part. However, the parameters of each module are not

shared. The inputs of these three predictors are the cur-

rent game frame and the action selected by the agent. The

The 24th Game Programming Workshop 2019

© 2019 Information Processing Society of Japan - 152 -

Fig. 4: Environment model’s network structure

(a) Generator

(b) Critic

Fig. 5: WGAN’s network structure

next frame predictor outputs the probabilities of each block

in each channel being 1 or 0. The reward predictor predicts

the probabilities of the reward being −1 or 0. The done

predictor predicted the probability that the episode ends at

this time-step.

However, it is impossible to predict the end of an episode

caused by out of time. Our done predictor only handle the

end of episodes caused by the agent reaching the goal. When

training the agent with the environment model, the number

of past time-step is counted and the episode is ended man-

ually when it reaches the time limit.

4.4 Generator

We used WGANs to train our initial frame generators.

The generator and the critic were implemented with deep

deconvolution networks and deep convolution networks. The

generator used ReLu activation for each layer and Tanh for

the output. The critic used Leaky ReLU activation in all

layers. Batch normalization is applied after each layer in

both the generator and the critic. The network structure of

our WGAN is illustrated in Figure 5.

4.5 Training

The environment model was trained by experience replay

which is similar to the training of DQNs in 100 given lev-

els. The parameters of the environment model were updated

every four time-steps and it was trained totally for 3M time-

steps with a learning rate of 0.001. In order to make sure

that small objects such as agent and goal can also be prop-

Table 1: Results of environment model

block-level accuracy frame-level accuracy
next frame (train) 100% 100%
next frame (test) 89.57% 0%
reward (train) — 100%
reward (test) — 100%
done (train) — 100%
done (test) — 100%

erly predicted, each value in the predicted frame was clipped

before the differentiation was performed. In our case, if the

confidence that a value was correctly predicted is over 97%,

the value would be clipped and the gradient from this value

would not be used in parameter updates.

The WGAN was trained with 100 given initial frames for

30K epochs. The learning rate was set to 0.00005 and the

clip values of the critic’s parameters were set to ± 0.01. The

parameters of the critic network were updated five times for

each update of the generator.

The baseline DQN was trained in 100 levels for 20M time-

steps. A level was selected randomly at the beginning of

an episode. The parameters were updated every four time-

steps. ϵ-greedy was used for exploration. ϵ decreased from 1

to 0.1 linearly in 10M time-steps. The size of replay buffer

was set to 50K and the learning rate was set to 0.00025.

The proposed method was trained with 100 real levels

and 100 unique generated vitural levels. At the beginning

of an episode one level is randomly chosen from all the 200

levels. All other settings, including network structure and

hyperparameters, are the same with the baseline DQN.

5. Results & Discussions

5.1 Environment Model

The environment model was able to predict next frame,

reward and whether the episode would be done perfectly

in training levels. However, it failed to predict the future

in unseen testing levels. The detailed results are shown in

Table 1.

5.2 WGAN

The genrator of WGAN was able to generate patterns of

The 24th Game Programming Workshop 2019

© 2019 Information Processing Society of Japan - 153 -

Fig. 6: Samples of generated initial frames

Table 2: Percentage of levels solved by DQN and proposed

method

train test
DQN (baseline) 100% 48.69%
proposed method 0% 0%

wall blocks and empty blocks which share the same char-

acteristics with real mazes. However, the generator always

failed to correctly generate the channel of agent and the

channel of goal. So that we only used generated blocks’

channel and emptys’ channel, the channel of agent and the

channel of goal were set manually.

Some initial frames generated by the generator of WGAN

are shown in Figure 6 (with manual replacement of agent’s

channel and goal’s channel).

5.3 Proposed Method

The proposed method failed to converge during training.

We tested the agents trained by the baseline DQN and the

proposed method in both training level set and testing level

set which consists of 10,000 mazes generated with unseen

random seeds. The solved rates are shown in table 2.

5.4 Discussion

The main reason for the failure of the proposed method is

the low accuracy of the environment model in unseen levels.

Because the environment couldn’t predict the future accu-

rately, the replay data gathered from vitural levels was likely

to be meaningless. As about 50% of the replay buffer was

filled with meaningless data, the stability of policy learning

was hurt, which made the policy fail to converge.

As environment models are trained by supervised learn-

ing, some widely used techniques to prevent overfitting in

supervised learning may be helpful when aiming to train an

environment model that can generalize to unseen levels. If

a environment model that can generalize well to new levels

is available, the proposed method should work much better.

6. Conclusion & Future Work

We proposed a method to improve the genelization per-

formance of RL agents. Environment models and genera-

tive models are used to generate virtual game levels in the

proposed method. However, the proposed method failed be-

cause our environment model was not able to predict the

future of unseen levels.

In the future, we will try to build an environment model

that can predict the next frame with a high accuracy and

test the proposed method again with the new environment

model.

References

[1] Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
Van Den Driessche, G., Schrittwieser, J., Antonoglou, I.,
Panneershelvam, V., Lanctot, M. et al.: Mastering the game
of Go with deep neural networks and tree search, nature,
Vol. 529, No. 7587, p. 484 (2016).

[2] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland,
A. K., Ostrovski, G. et al.: Human-level control through
deep reinforcement learning, Nature, Vol. 518, No. 7540, p.
529 (2015).

[3] Justesen, N., Torrado, R. R., Bontrager, P., Khalifa, A., To-
gelius, J. and Risi, S.: Illuminating generalization in deep
reinforcement learning through procedural level generation,
arXiv preprint arXiv:1806.10729 (2018).

[4] Zhang, C., Vinyals, O., Munos, R. and Bengio, S.: A study
on overfitting in deep reinforcement learning, arXiv preprint
arXiv:1804.06893 (2018).

[5] Cobbe, K., Klimov, O., Hesse, C., Kim, T. and Schulman,
J.: Quantifying Generalization in Reinforcement Learning,
International Conference on Machine Learning, pp. 1282–
1289 (2019).

[6] Kaiser, L., Babaeizadeh, M., Milos, P., Osinski, B., Camp-
bell, R. H., Czechowski, K., Erhan, D., Finn, C., Kozakowski,
P., Levine, S. et al.: Model-based reinforcement learning for
Atari, arXiv preprint arXiv:1903.00374 (2019).

[7] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-
Farley, D., Ozair, S., Courville, A. and Bengio, Y.: Gener-
ative adversarial nets, Advances in neural information pro-
cessing systems, pp. 2672–2680 (2014).

[8] Arjovsky, M., Chintala, S. and Bottou, L.: Wasserstein gan,
arXiv preprint arXiv:1701.07875 (2017).

[9] Volz, V., Schrum, J., Liu, J., Lucas, S. M., Smith, A. and
Risi, S.: Evolving mario levels in the latent space of a
deep convolutional generative adversarial network, Proceed-
ings of the Genetic and Evolutionary Computation Confer-
ence, ACM, pp. 221–228 (2018).

[10] Watkins, C. J. C. H.: Learning from delayed rewards, PhD
Thesis, King’s College, Cambridge (1989).

[11] Kruskal, J. B.: On the shortest spanning subtree of a
graph and the traveling salesman problem, Proceedings of
the American Mathematical society, Vol. 7, No. 1, pp. 48–50
(1956).

The 24th Game Programming Workshop 2019

© 2019 Information Processing Society of Japan - 154 -

