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Abstract: Counterfactual Regret Minimization (CFR) is an effective method to compute approximated Nash
Equilibria for large zero-sum, imperfect information games. With the help of deep neural networks, tabular
CFR has been extended to Deep CFR, which is capable to be applied to larger games. In this paper, we
propose a variant of Deep CFR algorithm and evaluate its performance on the board game Geister. We train
the agents with and without history information and compare their performance.
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1. Introduction

Counterfactual Regret Minimization (CFR) is an effective

method to compute Nash Equilibria for large zero-sum ex-

tensive games with imperfect information. CFR has been

proven to be effective in solving large poker games [1]. In

the study [2] by Bowling et al., the game of heads-up limit

hold’em is weakly solved by a variant of CFR called CFR+.

While most CFR variants remain tabular representation,

deep neural networks provide function approximation, which

enables CFR to be extended to Deep CFR so as to solve

larger games [3]. While CFR variants have made great con-

tributions to card games, there is little research on applying

CFR to board games. In this paper, we propose a variant

of Deep CFR and apply it to the board game Geister to

train game agents. We train the agents with and without

history information and evaluate them by self-play against

the random player and other agents. We show that our al-

gorithm is able to acquire an appropriate strategy for the

game Geister.

2. Background

2.1 Extensive Games

In a finite extensive game with imperfect information,

• N is a finite set of players, and c stands for a chance

player. For player i, −i stands for all other players.

• H is a finite set of possible histories h, and Z ⊆ H is

a finite set of all terminal histories. A(h) denotes avail-

able actions for a non-terminal history h. A prefix h′ of

history h means that h begins with h′.
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• Ii is a finite set of information sets I for player i. An

information set is a set of histories that player cannot

distinguish one from another. Available actions at in-

formation set I is denoted as A(I).

• σ is a strategy profile consisting of a strategy σi for each

player i. Σi is all strategies for player i. σI→a repre-

sents a strategy profile identical to σ except that action

a is always chosen when in information set I.

• u is a utility function. ui(z) is player i’s utility on ter-

minal history z ∈ Z.

• πσ(I) stands for the probability of reaching information

set I if players act according to σ. πσi (I) is player i’s

contribution to the probability.

2.2 Nash Equilibrium

Nash equilibrium is a solution concept of an extensive

game. In a Nash Equilibrium, if each player is informed of

the equilibrium strategies of other players, no player is able

to improve his utility by altering his strategy alone.

For a two-player extensive game, a Nash equilibrium can

be represented as a strategy profile σ that satisfies
u1(σ) ≥ max

σ′1∈Σ1

u1(σ′1, σ2)

u2(σ) ≥ max
σ′2∈Σ2

u2(σ1, σ
′
2)

ε-Nash equilibrium is an approximation of a Nash equi-

librium, which is a strategy profile σ that satisfies
u1(σ) + ε ≥ max

σ′1∈Σ1

u1(σ′1, σ2)

u2(σ) + ε ≥ max
σ′2∈Σ2

u2(σ1, σ
′
2)

For a two-player game, making decisions according to

a Nash equilibrium will not lose the game in expectation.

A game can be regarded as solved if its Nash equilibrium

strategies are achieved.
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2.3 The Game of Geister

Geister is a board game with imperfect information de-

signed by Alex Randolph for two players [4]. It is also re-

ferred to as Ghosts or Phantoms vs Phantoms.

Geister is a two-player game on a 6×6 game board. Each

player has four good ghosts and four evil ghosts assembled in

two rows. The good ghosts are represented in blue and the

evil ones are represented in red. The types of the player’s

ghosts are not revealed to the opponent player [4].

Players may assemble their ghosts as they wish at the be-

ginning of the game. Then, in each turn, a player can move

one of his ghosts one step vertically or horizontally. Moving

into a square containing an opponent’s ghost will capture

the opponent’s ghost. Moving into a square containing an

ally ghost is not allowed. A player’s good ghosts can escape

from the opponent player’s corner squares. A player will win

if one of the three constraints is satisfied [5]:

• All the player’s evil ghosts are captured.

• All the opponent’s good ghosts are captured.

• One of the player’s good ghosts escapes from one of the

opponent’s corner squares.

Figure 1 shows a sample board of the game Geister.

Fig. 1 A Sample Board of the Game Geister

3. Related Research

3.1 CFR

Counterfactual Regret Minimization was first developed

by Zinkevich et al. to approximate a Nash equilibrium

for very large instances of imperfect information extensive

games [1].

CFR is an iterative method that conducts self-play repeat-

edly. The algorithm keeps track of the cumulative counter-

factual regret for each action a in each information set I and

calculates the average strategy over all iterations.

Define counterfactual value vi(σ, I) as

vi(σ, I) =
∑
z∈ZI

ui(z)πσ−i(z[I])πσ(z[I], z)

where ZI is the set of terminal histories with a prefix in I

and z[I] is the particular prefix contained in I.

Let σti be the strategy used by player i on iteration t. The

counterfactual regret on iteration t is defined as

rti(I, a) = vi(σ
t
I→a, I)− vi(σt, I)

and the cumulative conterfactual regret is

RTi =

T∑
t=1

rti(I, a)

Denote the probability that action a is chosen at informa-

tion set I by σ(I, a). With regret matching, the strategy on

iteration T + 1 is

σT+1
i (I, a) =


RT,+

i (I,a)∑
a∈A(I) R

T,+
i (I,a)

if
∑
a∈A(I)R

T,+
i (I, a) > 0

1
|A(I)| otherwise

where RT,+i (I, a) = max(RTi (I, a), 0).

Now, player i’s average strategy σ̄Ti for information set I

is defined as

σ̄Ti (I, a) =

∑T
t=1 π

σt

i (I)σt(I, a)∑T
t=1 π

σt

i (I)

Zinkevich et al. applied counterfactual regret minimiza-

tion to the game of Poker. With abstraction and chance-

sampling, which samples a deterministic action at chance

nodes, the resulting strategy has outperformed all of the

competitors from the bankroll portion of the 2006 AAAI

Computer Poker Competition [1].

3.2 Monte Carlo Sampling CFR

Lanctot et al. described Monte Carlo counterfactual re-

gret minimization (MCCFR) based on CFR [6]. This work

focuses on avoiding traversing the entire game tree on each

iteration while the regret values are kept unchanged in ex-

pectation.

On each iteration, the terminal histories to be considered

is restricted. Define Q = {Q1, Q2, . . . , Qr} as a number of

subsets of Z, and the union of these subsets spans the set of

all terminal histories Z. Each subset is called a block. On

each iteration, only one of these blocks Qj is sampled and

only terminal histories in that block are considered. On the

current iteration, we denote the probability of sampling Qj

as qj > 0 where
∑r
j=1 qj = 1.

Define q(z) =
∑
j:z∈Qj

qj as the probability that the ter-

minal history z is considered on this iteration. When up-

dating block j, the sampled counterfactual value is defined

as

ṽi(σ, I|j) =
∑

z∈Qj∩ZI

1

q(z)
ui(z)πσ−i(z[I])πσ(z[I], z).

According to Lemma 1 in the study [6], the sampled coun-

terfactual value equals the counterfactual value in expecta-

tion:

Ej∼qj [ṽi(σ, I|j)] = vi(σ, I).

Using the Lemma above, MCCFR algorithm can be per-

formed as follows:

For iteration t:

• Sample a block Qj from Q;

• For each information set I that contains a prefix in Qj ,

calculate the sampled counterfactual regret values as
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r̃(I, a) = ṽi(σ
t
I→a, I)− ṽi(σt, I) and update them;

• Calculate the strategy according to regret matching for

the next iteration t+ 1.

Obviously, if we have Q = Z, then q1 = 1, the resulting

MCCFR algorithm is identical to vanilla CFR.

Two efficient MCCFR sampling schemes are proposed in

the study of [6]: outcome-sampling and external-sampling.

3.2.1 Outcome-Sampling MCCFR

In outcome-sampling MCCFR, each block contains a sin-

gle terminal history, and on each iteration, only this termi-

nal history and information sets along this history will be

updated, which means ∀Q ∈ Q, |Q| = 1 [6]. The sampling

probability satisfies a specific sampling profile σ′, so that

q(z) = πσ
′
(z). Terminal histories z are sampled according

to σ′, and πσ
′
(z) is stored to compute the sampled counter-

factual regret values as

r̃(I, a) =

{
W · (πσ(z[I]a, z)− πσ(z[I], z)) if(z[I]a) v z
−W · πσ(z[I], z) otherwise,

where

W =
ui(z)πσ−i(z[I])

πσ′(z)
.

When choosing a sampling profile σ′, the most straight-

forward way is called epsilon-on-policy exploration [7]. At

information set I, when traversing the game tree, sampling

profile has a probability of ε to be a uniform distribution,

otherwise, it will be the player’s current strategy σt(I).

As there is only one action sampled at each information

set, each iteration takes linear time in the depth of the game

tree regardless of the number of actions at each information

set. However, due to the practice of sampling, exploring is

always needed and some actions may never be chosen [7].

3.2.2 External-Sampling MCCFR

In external-sampling MCCFR, only the actions of the op-

ponent and chance player are sampled. We choose the sam-

pling profile that satisfies: for the information sets belonging

to the player, every action is explored while in opponent’s

information sets, a single action is sampled according to the

opponent’s current strategy σt−i(I). This sampling profile

results in that the sampling probability q(z) for terminal

history z is q(z) = πσ−i(z), which cancels out the reaching

probability of the opponent’s player. So the sampled coun-

terfactual regret value can be calculated as

r̃(I, a) =
∑

z∈Q∩ZI

ui(z) (πσi (z[I]a, z)− πσi (z[I], z)) .

Since the sampled values don’t include terms related to

opponent’s reaching probabilities, there is no need for pass-

ing probabilities to the recursive function, which makes the

implementation simple and elegant. However, the sampling

only occurs in opponent information sets, so each iteration

still takes exponential time to the number of actions. Com-

paring to vanilla CFR, if each player acts alternately, the

exponent will be reduced by half [7].

Empirically, MCCFR requires more iterations, but each

iteration has a lower computational cost so that it converges

dramatically faster than CFR in various

3.3 Deep CFR

Brown at el. proposed Deep Counterfactual Regret Min-

imization (Deep CFR) in the study [3]. Deep CFR is pro-

posed to be the first non-tabular CFR variant to be success-

ful in large games [3].

Deep CFR uses deep neural networks to approximate the

behavior of a variant of CFR called Linear CFR [3]. Lin-

ear CFR does similar iterations with CFR, except that the

counterfactual values and strategies generated on iteration t

are weighed by t. Empirically, Linear CFR results in faster

convergence than CFR and tolerates approximation error

well so that it can be approximated by neural networks [3].

In the study [3], Deep CFR with external sampling is in-

troduced. The neural network approximates the advantage

rather than regret values. Advantage is the difference in ex-

pected payoff between playing a and playing according to

σti(I) at information set I.

Deep CFR algorithm keeps reservoir sampling buffers for

players’ advantage and strategy. On each iteration t, Deep

CFR conducts K times of traversals of the game tree ac-

cording to external-sampling MCCFR. The network approx-

imates the advantage value for information set I and gener-

ate a strategy by a slight different way of regret matching,

which will choose the action with the greatest advantage

when the sum of positive advantages is nonpositive [3].

During the traversal, the traverser’s advantages will be

added to his advantage buffer and the opponent’s strate-

gies will be added into the strategy buffer, with all samples

weighed by current iteration t. After all traversals on each

iteration, a value network is trained from scratch using the

advantage buffer of the traverser. After all iterations, a new

policy network, which has the same architecture as the value

network except that the last layer applies softmax activa-

tion, is trained from scratch using the strategy buffer. A

loss function that satisfies Bregman divergence can be used

for the networks, such as mean squared error loss [3].

Without relying on advanced domain knowledge, Deep

CFR shows strong performance in large poker games rela-

tive to domain-specific abstraction techniques [3].

4. Proposed Methods

CFR algorithms have made great contributions to solving

games such as Poker and Bluff [1], [8]. However, there is lit-

tle research on applying CFR algorithms to board games. In

our former research, it is proposed that tabular CFR is able

to generate an appropriate strategy for a simplified version

of Geister [9]. In this research, we apply CFR algorithms to

the full game of Geister. Since Geister is an infinite game,

instead of approximating the exact Nash equilibrium solu-

tion to the game of Geister, we empirically observe whether

the algorithm is able to acquire an appropriate strategy.

The full game of Geister is a large game with at most 1018

game states, which is impractical for tabular CFR variants

to be applied to the game. While using neural networks
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is preferable for large games, DeepStack relies on tabular

CFR+ to generate training data for the network, which is

also difficult to implement. Therefore, we believe that Deep

CFR is the most preferable method.

4.1 Sampling Schemes and Sampling Weight

While Deep CFR uses external-sampling when collect-

ing samples, we found it impractical to conduct external-

sampling in Geister due to computational cost. In Geister,

each player has 4 good ghosts and 4 evil ghosts which can be

moved vertically or horizontally, resulting in at most 32 pos-

sible actions. At a non-terminal state, the minimal number

of possible actions is 3. With a length limit of 100, traversing

the game according to external-sampling will result in com-

putational complexity of at least 350 = 7.18 × 1023, which

is far beyond the ability of our computational resources.

Therefore, we have to consider other sampling schemes.

Outcome-sampling MCCFR has computational complex-

ity linear in the depth of the game tree, which means linear

time in the move length. While Deep CFR uses external-

sampling, it is also proposed that as long as the samples are

weighed properly, almost any sampling scheme is accept-

able [3]. External-sampling takes advantage by avoiding

the weights of reaching probabilities and sampling proba-

bilities, such that the weights of the samples only contain

terms about iteration t. In contrast, samples from outcome-

sampling have to be weighed by reaching probabilities and

sampling probabilities appropriately so that the sampled

values approximate the true values in expectation.

We propose that as long as we train the neural network

using mean square error loss, we can either contain the prob-

abilities in the value or the training loss weight. Similar

to Deep CFR, we use softmax activation on the last layer

of the policy network [3], so it is better to contain all the

probabilities in the training loss weight. For consistency,

for the value network, we also want to contain the reaching

probabilities and sampling probabilities in the training loss

weight. However, only reaching probabilities are contained

in the loss weight and the sampling probabilities are con-

tained in the value for a simpler implementation. Besides

probabilities, samples from iteration t are weighed by b t+1
2 c

and the weight is rescaled by 1
T when training the network

on iteration T . In outcome-sampling, we use an ε = 0.6,

which is the same value as the one in the study [6]. Similar

to Deep CFR, we also conduct K partial traversals on each

iteration.

As the neural networks are trained to approximate the

weighted average of the training data, the scale of the loss

has little practical meaning. However, we observe that if

actions with a low probability are sampled multiple times

along a single traversal, the probability becomes so low that

the loss value becomes NaN and makes the network untrain-

able. We clip the values if the absolute values get over 106,

and clip the weights into a range between 10−6 and 106 to

avoid numerical instability.

4.2 Network Architecture

While CFR algorithms generally iterate over information

sets with perfect recall, containing the full history of a board

game will lead to a huge number of information sets, which

is difficult to handle. Therefore, we decide to deal with in-

formation sets without perfect recall. We make a similar

assumption to the one in our former research [9]. For an

experienced board game player, he is able to obtain enough

information from the current board. To observe how history

information affects the training, we also add a part of his-

tory information. As we are using Deep CFR variants, we

input the information of the current board and history into

the neural network.

Geister is a board game, and the information from the

board can be easily processed by a convolutional layer. We

extract a five-channel structure to represent the board infor-

mation. The detail of the structure is presented in Table 1.

Table 1 The Structure of the Extracted Board Information

Channel No. Contents
1 The good ghosts of the player.
2 The evil ghosts of the player.
3 The ghosts of the opponent player.
4 The status of the opponent’s taken good ghosts.
5 The status of the opponent’s taken evil ghosts.

In channel 1, 2 and 3, if there is a ghost on the board,

the corresponding cell will be filled with 1, otherwise 0. In

channel 4 and 5, every cell is filled with the number of taken

ghosts divided by 3. Both the current board and history

information are represented by this structure. The input of

the network consists of 11 channels: a 5-channel structure

for current board information, 5-channel structure for the

one-step previous board, and a channel for playing progress,

whose every cell is filled with move length divided by length

limit, which will be described in the Section 4.3. To observe

the effectiveness of the history information, we also train

agents without the history board, whose input only consists

of a 5-channel current board structure and a channel for

playing progress, a total of 6 channels.

We build our network architecture with some similar fea-

tures to that of Deep CFR [3]. The input data first goes

through a 2×2 and a 1×1 kernel convolutional layers, both

containing 16 channels, and then a flatten layer, and after

that 3 fully connected layers are applied. Before the output

layer, there is a batch normalization layer. The convolu-

tional layers are activated by tanh and the fully connected

layers consist of xi+1 = ReLU(Ax[+x]), where the optional

skip connection [+x] is applied when layers have the same

input and output dimension. The output layer is activated

by linear activation for the value network and by softmax

for the policy network, which outputs the approximated ad-

vantage for each of the 32 possible actions or the average

strategy. As it may contain illegal moves, we renormalize

the values over legal moves when generating a strategy. A

sketch of the network architecture is shown in Figure 2.
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Fig. 2 The Neural Network Architecture

4.3 Bootstrap

Geister is a board game, which means there is a proba-

bility that the game never ends. While all CFR variants

need to search until the end of the game, for a game with

a long history, the number of information sets will explode.

Therefore, we have to make efforts to solve the problem.

We consider using the similar way as that in our former

research [9], which is to limit the total moves of players and

terminate the game to avoid endless games when training the

agents. The number of total moves is called move length or

history length. When move length reaches the preset length

limitation, the game is forcibly terminated with a draw. Al-

though the agents are trained under the length limitation,

they are able to play the game with or without it.

We also make other efforts to train the agents more ef-

ficiently. Geister is a game without chance players where

players arrange their ghosts at the beginning of the game.

However, in our Geister version, players will be designated

an arrangement of ghosts randomly as a chance node at the

beginning of the game. In addition, if a player is able to es-

cape his good ghost from the opponent’s corner, his available

action is only escaping, making him the winner.

In our implementation, the length limitation is set as 100.

We perform self-plays to evaluate the trained agents. The

self-play environment limits the number of moves to 300,

which is the same value as the one in GPW Geister AI com-

petitions. We only count the wins, losses and draws.

4.4 Proposed Algorithm

Now we propose the algorithm Deep Counterfactual Re-

gret Minimization with Outcome-Sampling. The pseu-

docode is described in Algorithm 1, 2, 3 and 4. We im-

plement the algorithm and conduct several experiments on

the board game Geister, whose details are introduced in the

next section.

5. Experiments and Results

5.1 Preconditions

We implemented Deep Counterfactual Regret Minimiza-

tion with Outcome-Sampling and applied to the full game

of Geister. Our implementation is written in Python 3 lan-

guage. Neural networks are implemented using Keras with

Algorithm 1 Deep Counterfactual Regret Minimization

with Outcome-Sampling

Initialize reservoir-sampled advantage buffer B1 = ∅, B2 = ∅ and

strategy buffer Bs = ∅
Initialize value networks V1, V2 and policy networks Vs randomly

for t = 1, 2, . . . , Niter do

p← 2− t%2

for n = 1, 2, . . . ,K do

CollectSamples(∅, p, t, 1, 1, 1)

end for

TrainNetwork(p, t)

if t%Ncheckpoint iterval = 0 then

TrainNetwork(−1, t)

end if

end for

return Vs

Algorithm 2 Sample Collection Traversal with Outcome-

Sampling

Require: CollectSamples(h, p, t, πi, π−i, πsample)

if h ∈ Z then

return (up(h)/πsample, 1)

end if

if L(h) ≥ Llimit then

return (0, 1)

end if

σ(I)←CalculateStrategy(I(h), p)

if P (h) = p then

σ′(I)← (1− ε)σ(I) + ε ·Unif(I)

else

σ′(I)← σ(I)

end if

a ∼ σ′(I)
if P (h) = p then

(u, πtail)←
CollectSamples (h · a, p, t, πi · σ(I, a), π−i, πsample · σ′(I, a))

for i ∈ A(h) do

if i = a then

ṽ(I, i) = u− u · σ(I, a)

else

ṽ(I, i) = −u · σ(I, a)

end if

end for

Add{(I, ṽ(I), b t+1
2
c · π−i · πtail)} to Bp

else if P (h) = 3− p then

(u, πtail)←
CollectSamples (h · a, p, t, πi, π−i · σ(I, a), πsample · σ′(I, a))

Add{(I, σ(I), b t+1
2
c · π−i/πsample)} to Bs

end if

return (u, πtail · σ(I, a))
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Algorithm 3 Strategy Calculation

Require: CalculateStrategy(I, p)

Calculate σlegal(I)

if Network Vp has not been trained for even once then

sum← 0

for a ∈ A(I) do

if σlegal(I, a) = True then

sum← sum+ 1

end if

end for

for a ∈ A(I) do

σ(I, a)← σlegal(I, a)/sum

end for

return σ(I)

end if

R̂(I)← Vp(I)

for a ∈ A(I) do

if σlegal(I, a) = False then

R̂(I, a)← −inf

end if

end for

sum← 0

for a ∈ A(I) do

sum← sum+ max{R̂(I, a), 0}
end for

if sum > 0 then

for a ∈ A(I) do

σ(I, a)← max{R̂(I, a), 0}/sum
end for

else

for a ∈ A(I) do

σ(I, a)← 0

end for

σ(I, argmaxa{R̂(I, a)})← 1

end if

return σ(I)

Algorithm 4 Network Training

Require: TrainNetwork(p, T )

if p = −1 then

for n = 1, 2, . . . , Ntrain do

Sample Nbatch samples {(Ii, σi, wi)i=1,2,...Nbatch} from

the buffer Bs.

Rescale the weight wi by 1
T

and train the policy network

Vs.

end for

else

for n = 1, 2, . . . , Ntrain do

SampleNbatch samples {(Ii, vi, wi)i=1,2,...Nbatch} from the

buffer Bp.

Rescale the weight wi by 1
T

and train the value network

Vp.

end for

end if

Tensorflow backend. Our training programs are run on an

Intelr CoreTM i7-6950X CPU machine with an NVIDIAr

TITAN X or a GeForce GTX 1080 GPU. The Python 3

interpreter version is 3.6.8 and the Keras version is 2.2.4.

We choose a batch size of 3 584, and for advantage buffers

and the strategy buffer, we set the capacity to be 1 075 200,

which is exactly 300 batches. Once the buffer is full, it will

be updated according to reservoir sampling. On each iter-

ation, the game tree is traversed 384 times and the length

limitation is 100. For agents with and without moving con-

straint, we run the algorithm for 1 000 iterations and save

the checkpoint every 100 iterations respectively. However,

these hyperparameters are not finely tuned. When train-

ing the networks, we use a mean square error loss function

and update the parameters using the Adam optimizer with

a learning rate of 0.01 and gradient norm clipping to 1., the

same as the settings in Deep CFR [3].

The strategy used by our agents is generated by the policy

network models saved at the checkpoints. When the agent

needs to make a move, a 6- (or 11-) channel structure is gen-

erated from the board (and the history), and is input into

the policy network to predict the average strategy, which is

then renormalized over the legal move vector to eliminate

illegal moves. After that, an action is sampled according to

the strategy and the agent makes the move.

5.2 Self-play against the Random Player

We trained two agents with and without history infor-

mation, and evaluated them by self-play against the ran-

dom player. The self-play is performed via the Geister AI

Competition server released in Github [10]. The self-play

is also performed on an Intelr CoreTM i7-6950X CPU ma-

chine with an NVIDIAr TITAN X or a GeForce GTX 1080

GPU.

For every agent, we conducted 2 000 battles between the

10 saved checkpoints and the random player to observe the

performance, in which our agents play 1 000 battles as the

first-hand player and 1 000 as the second. Our agents as well

as the random player obey the constraints in Section 4.3. We

executed the program from scratch to train the agents for 6

times and collected the average win rate of our agents. The

results are shown in Figure 3.

100 200 300 400 500 600 700 800 900 1000
Iterations

0.62
0.64
0.66
0.68
0.70
0.72
0.74
0.76
0.78

W
in

 ra
te

Average win rate against random
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Fig. 3 Average Win Rate against Random Player
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As is shown in the figure, both the agents trained with or

without history are able to beat the random player by a win

rate of over 75%. We can also observe from the figure that

the agents are performing better when training continues.

While we imagine that training the agent with history in-

formation will obtain more information from the board and

lead to a more robust and stable learning, the result turns

out that the agent without history information outperforms

the one with history.

Although we provide the average data, we observe that

the win rates from independent executions are quite unsta-

ble, which may be caused by insufficient traversal brought

by outcome-sampling. The result is shown in Figure 4. As

Geister is a huge game with 1018 game states, we only ex-

plore at most 3.84 × 107 states in each execution, which is

a quite small proportion compared to the scale of the game.

As a result, due to the randomness, every time the agent

only learns a tiny part of the full game and every time the

agent may learn a different partition of the full game. There-

fore, it is quite possible for the agent to fall into local optima

of the explored states or learn a strong overall strategy, bas-

ing on the part of the game it traversed. We observe that

there is an agent without history from execution earned an

unusual high win rate, which greatly affected the average

win rate. We infer that the effectiveness of training with

history may depend on other constraints. As we still believe

there is high possibility for training with history informa-

tion to bring more benefits, we will investigate more on the

reason of unstablity and conduct more experiments to verify

the effectiveness of adding history information.
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Fig. 4 Win Rate against Random Player - without history

5.3 Self-play against Other Agents

In order to evaluate the true strength of our agents,

we conducted self-play with agents developed by other re-

searchers of Geister. Our agents battled with a program

called PurpleAI. This program was kindly borrowed from

Mr. Kawakami from JAIST Ikeda Laboratory. The tech-

niques of this agent are introduced in the study [11], how-

ever, we have no access to the source code so it might contain

other unknown techniques.

According to the study of Mr. Kawakami [11], PurpleAI

adopted Geister-specific evaluation functions and meta-

heuristic calculation methods to perform MinMax search in

the game tree. The search is performed under a perfect in-

formation situation where the enemy’s ghosts are considered

as purple ghosts, the ghosts can escape but will become red if

taken. It is proposed that the PurpleAI outperforms the first

place program of Geister AI Competition in GPW 2017 [11]

and has also won second place in Geister AI Competition

held in GPW 2018 [12].

Using the agents trained in Section 5.2, we also performed

self-play via the Geister AI Competition server. We run the

PurpleAI program on Linux using a tool called Wine. The

self-play is also performed on an Intelr CoreTM i7-6950X

CPU machine with an NVIDIAr TITAN X or a GeForce

GTX 1080 GPU.

We set the searching depth of PurpleAI to 1 and observed

the performance of our agents. For every agent, we also con-

ducted 2 000 battles between the 10 saved checkpoints and

the PurpleAI, in which our agents played 1 000 battles as the

first-hand player and 1 000 as the second. Our agents obey

the constraints in Section 4.3. We also collected average win

rate of our agents. The results are shown in Figure 3.
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Fig. 5 Average Win Rate against PurpleAI - Depth 1

Unfortunately, our agents failed to compete with Pur-

pleAI, even with the least searching depth 1. Our agents

are only able to win about 1 out of 3 battles. This may

be caused by the insufficient training problem discussed in

Section 5.2.

Although our agents are weak against PurpleAI, we can

still observe from the figure that both our agents are grad-

ually learning the correct way to play the game when the

training process goes on. The agent trained with history

performs slightly better than the one without history in the

first stage of training process, but is soon surpassed. Besides

the fact that the average result is affected by the unusual

data introduced in Section 5.2, we suggest that adding his-

tory information in training expands the number of infor-

mation sets, which leads to a more accurate learning at the

beginning, but the buffer size becomes insufficient when the

training proceeds and slows down the learning.

To let the good ghosts escape is an important technique

for the game Geister. In order to further analyze the result
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of self-play, we investigated the details of the results and

counted the percentage of our wins by letting good ghosts

escape. The result is shown in Figure 6.
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Fig. 6 Percentage of Wins by Escaping against PurpleAI - Depth
1

For comparison, we also performed self-play between the

random player and the PurpleAI depth 1. The random

player will also certainly let his good ghost escape once pos-

sible. We performed 2 000 battles for each searching depth,

with the random player playing 1 000 as the first-hand player

and 1 000 as the second. The random player wins 399 out

of 2 000 battles, in which only 63 wins are letting the good

ghost escape.

Comparing with the random player, our agents performed

much better. The figure shows that our agents managed to

let good ghosts escape, resulting in most of the wins. We

can clearly observe from the figure that our agents gradually

master the technique of escaping, with a increasing percent-

age of wins by escaping. We believe that our agents are able

to acquire this important skill.

From the results, we can conclude that our agents have

learned at least some of the valuable understanding of the

game and our algorithm is able to acquire an appropriate

strategy for the game Geister. Whether including history

information in training board games will enhance the train-

ing process remains to be investigate in our future work.

6. Conclusion and Future Works

In this paper, we investigated on applying Counterfactual

Regret Minimization algorithms to board games. We pro-

posed an algorithm called Deep Counterfactual Regret Min-

imization with Outcome-Sampling which makes it possible

for traversing the game tree in a deep and wide game that is

impractical to be traversed by external-sampling. We made

bootstrap to train the agents efficiently, and applied the pro-

posed algorithm to the full game of Geister. We trained

two agents with and without history information, and eval-

uated them by self-play with random and other agents. Our

agents are able to beat the random player by a win rate of

over 75%. However, a strong agent against random player is

not necessarily a desirable agent. Our agents failed to com-

pete with the leading Geister agent, PurpleAI, even with the

least searching depth of 1. Nevertheless, analysis shows that

they are able to gradually manage the correct technique of

playing the game, and most of the wins are earned using the

learned technique. We predicted that the agent trained with

history information should have a stabler learning process

and learn the technique better, however, the result was not

enough to convince this opinion. We will do future work to

investigate on it.

By applying our algorithm, our agents are able to have im-

portant understanding and learn correct techniques of the

game. There is room for improvements in our implementa-

tion. We propose that our algorithm is able to acquire an

appropriate strategy for the game Geister.

For future work, as our agents are still very weak, we plan

to enhance our agents. As the effectiveness of adding history

information is not proved, we would like to add more history

moves and do more experiments. Also, our network archi-

tecture and hyperparameters are not finely tuned, we plan to

tune them to improve the performance. To solve the prob-

lem of insufficient traversal caused by outcome-sampling, we

would like to have a try on other practical sampling schemes.
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