
IPSJ SIG Technical Report

Towards Portable High Performance in Python:
Transpilation, High-Level IR,

Code Transformations and Compiler Directives
(Unrefereed Workshop Manuscript)

Mateusz Bysiek1,2,a) Mohamed Wahib2 Aleksandr Drozd1,2

Satoshi Matsuoka3,1,2

Abstract:
We present a method for accelerating the execution of Python programs. We rely on just-in-time automatic
code translation and compilation with Python itself being used as a high-level intermediate representation.
We also employ performance-oriented code transformations and compiler directives to achieve high perform-
ance portability while enabling end users to keep their codebase in pure Python. To evaluate our method, we
implement an open-source transpilation framework with an easy-to-use interface that achieves performance
better than state-of-the-art methods for accelerating Python.

Keywords: abstract syntax tree, gradual typing, high performance computing, transpilation.

1. Introduction

Transpilation, i.e. translation between programming lan-

guages at similar levels of abstraction, has been gaining mo-

mentum in computing in recent years. Transpilers rely on

an intermediate representation (IR) to translate from source

to target language in analogy to how compilers rely on an

IR to translate source code into machine code.

The level of abstraction of the IR is very important. On

one hand it is supposed to hide details about the target

platform for execution. On the other hand it is supposed

to not be too abstract. All necessary information provided

in the source code should be preserved to enable a faith-

ful translation from the source language to target language,

irrespective of their specific levels of abstraction.

1.1 IR Abstraction Level

One of the de facto standard intermediate representations

used these days in compilers and transpilers is the LLVM

Intermediate Representation [15], used by LLVM compiler

infrastructure [8]. LLVM IR is a static, strongly typed and

relatively low-level language. It preserves all necessary in-

formation from the original source code so that the compiler

can convert it to machine code correctly.

1 Tokyo Institute of Technology
2 National Institute of Advanced Industrial Science and Techno-

logy
3 RIKEN Center for Computational Science
a) bysiek.m.aa@m.titech.ac.jp

Due to some very desirable characteristics such as verifiab-

ility and quality of the specification, LLVM IR was adopted

by many tools, including those meant for more high-level op-

timizations such as polyhedral loop transformations aimed

at enhancing performance [6].

However, LLVM IR lacks high-level constructs which soft-

ware authors are used to, therefore it is impractical for do-

main experts to write LLVM IR manually. Additionally, al-

though it’s perfectly natural to generate machine code from

human-written source code through LLVM IR, it is not prac-

tical to generate source code intended for human consump-

tion from LLVM IR.

In this paper, we argue for using a more high-level IR.

The main reason is that LLVM IR is too low-level in many

cases. In this paper we present and evaluate those cases and

elaborate on our approach of using a high-level intermedi-

ate representation to address those cases missed by low-level

IRs (such as LLVM IR).

Finally, we are working towards creating a high-level IR to

enable a new approach for automated code transformations

to optimizing to target architectures.

2. Python as a High-level IR

The IR we are proposing in this paper is Python itself.

In the next few paragraphs we explain the reasons behind

choosing Python as an IR. The standard Python imple-

mentation provided by the Python Software Foundation,

the CPython, includes its own abstract syntax tree (AST)

format. This AST is used throughout Python for many pur-

c© 2018 Information Processing Society of Japan 1

Vol.2018-HPC-165 No.38
2018/8/1

IPSJ SIG Technical Report

poses. In the context of transpilation, this AST preserves

all information needed by Python’s interpreter to correctly

interpret Python code. It is also used by the CPython com-

piler as intermediate representation for compiling Python

code into Python bytecode. Next, the bytecode is fed into

the CPython interpreter.

One remarkable feature of the CPython AST is that one

can access and alter the AST of the executed program at

runtime. Additionally, one can create an entirely synthetic

AST. Regardless of the way it was created, the CPython

AST can also be compiled and executed while the program it

represents is running. This makes dynamic instruction gen-

eration as well as dynamic software self-alteration at runtime

a possibility.

Another remarkable feature of the CPython AST is that

it is very high-level. It does not preserve details about the

source code formatting, however it preserves all high-level

structures such as loops, branching . . . etc. This makes it

in essence an object-oriented representation of the code. As

a result, it is relatively simple to generate the code from

the AST, i.e. unparse the AST, and in fact Python code

generation is one of the things already available in Python.

2.1 Python and Type Information

CPython’s AST is originally designed for a fully dynam-

ically typed language (i.e. Python), therefore it did not con-

tain any way to store type information of variables and other

constructs. This characteristic of being dynamic remains at

the core of Python today and there are no signs that the

Python will transform into a statically typed language.

However, in recent years, Python’s syntax has been chan-

ging to accommodate the popular demand to be able to

convey type information in source code. Although Python

is not without performance issues, the demand was driven

by the need to document and debug the code rather than

by any performance-related reasons. Even if providing this

information is completely optional and unnecessary as far as

the Python interpreter execution is concerned, the concept

of type hints [13,14] emerged in Python 3.5 and is being re-

fined further in each new version including the most recent

Python 3.7 [7].

The AST, as now observed in Python 3, reflects those on-

going changes, and thus in recent Python versions the type

information hints in the source code are preserved in the

AST.

2.2 Python Type Hints

The type hints are a way to convey static type information

in Python. Although they were first introduced in Python

3.5, they are backwards-compatible even with Python 2.

Type hints can be applied in three forms.

(1) type comments: even in Python 2,

spam = 0 # type: int

def ham(eggs):

type: (float) -> str

pass

(2) type annotations for functions: in any Python 3 code,

def ham(eggs: float) -> str:

pass

(3) type annotations for locals: since Python 3.6.

spam: int = 0

Although type hints can aid in optimization, to our know-

ledge, they have not yet been adopted by any performance-

oriented packages except in our framework (we describe the

implementation in Section 4). Type hints are a fundamental

concept we base our approach on.

2.3 IR in Multilingual Transpilation

Python code

C++ code Fortran code

code in
another language

extended
Python AST

Figure 1 Two-way transformation between the extended Python
AST and each of supported languages has to be imple-
mented

In this work, we use CPython AST as the IR for transpil-

ation between more than two programming languages.

The basic requirement for an AST to be practically usable

in transpilation is for it to have the capability to convey all

necessary information required to faithfully preserving the

functionality of the code.

This requirement is already an restrictive, specially if we

consider that this requirement has to be satisfied for more

than one programming language at the same time. The

amount of details needed to be preserved for Python alone

may not be so large. However, if we consider the diversity

of syntactic structures and idioms in C++, Fortran, CUDA,

and possibly other languages we would like to support, it

might seem infeasible to try to represent all of the languages

using a single IR.

2.4 Transpiler with Human-readable Output

On top of the above requirement we impose on ourselves

the requirement of preserving high-level structure of the

code, as well as most of the human-required properties of

it, such as the naming of variables and comments. With re-

gards to code formatting, we decided to take the approach

of generating code that is as readable as possible. How-

ever, because what is considered a reasonable indentation

and recommended code style changes between programming

languages, we did not make an effort to preserve original in-

dentation style. Instead, our approach is to generate code

which is objectively readable in a given programming lan-

guage.

Most notably, Python has very strict rules about indenta-

tion. The indentation itself affects control flow, therefore if

we would generate code while preserving the original format-

ting, we might end up with a completely different software.

c© 2018 Information Processing Society of Japan 2

Vol.2018-HPC-165 No.38
2018/8/1

IPSJ SIG Technical Report

Conversely, although we assume that the syntax of the

input code is correct, we do not assume that its format-

ting is ideal. Therefore, we are of the opinion that by not

preserving the original formatting we avoid some problems

while not introducing any new ones, including any possible

negative impact on readability.

2.5 Need for Lightweight and Dynamic Tool

The most notable framework for multi-language transpila-

tion is ROSE compiler [11]. The ROSE compiler framework

has a very large toolkit [12]. It defines its own abstract

syntax tree format. Using this format as the intermediate

representation, ROSE provides various tools for inlining and

outlining code, as well as tools for generating control flow

graphs and call graphs.

Moreover, there are more advanced tools for automatic

parallelization using directives [9, 10], as well as loop trans-

formations.

Although comprehensive, ROSE is a complex framework,

and has a steep learning curve. In addition, as ROSE is

dealing with statically typed compiled languages, its tools

are static in nature. ROSE would take the complete applic-

ation code as input, analyse and transform it, and output

the result.

Python, on the other hand, has potential to be very light-

weight and still powerful enough to enable multi-language

transpilation for relevant subsets of the language. In addi-

tion, in Python one can restrict the code analysis even to

a single expression, which gives a very fine-grained control

over what is analysed and transformed.

It is important to mention that Python can perform the

analysis of the code statically, before execution, as well as

at any point during the execution. This gives the ability to

dynamically adapt the analysis according to the character-

istics of the data: floating point precision and value ranges,

observed simulation error, or effectiveness of given set of

hyper-parameters in deep learning applications.

2.6 Conveying Directives

C++ #pragma omp parallel for

Fortran !£omp parallel do

Python # omp parallel for

In most notable HPC programming languages, Fortran

and C/C++, the OpenMP directives [2] are conveyed by

comments and pragma directives, respectively. Therefore,

in our AST, we preserve comments as well as any direct-

ives such as macros or include directives without expanding

them.

Perform a complete type analysis requires the expansion

of the macros and including directives. However, it can be

done in such a way as to not expose the expanded code to

the user, as long as no transformations occur in the expan-

ded code. Not expanding the macros or include directives is

also essential to preserve the clarity of the code.

3. Defining Language Subsets

P
yt

ho
n

C
+
+

Fortran
another

language

Figure 2 Each distinct area of the above illustration contains
some constructs from given programming languages,
and presents different challenges when attempting to
translate

It is important to note that transpilation is not without its

challenges. The most notable challenges, which can some-

times prohibit transpilation almost entirely, is dependency

on external libraries which are not open source, as well as

extensive use of custom user-defined types.

The dependency on external libraries, however, is only

a critical problem when translating between different lan-

guages. When performing transformations without trans-

lating to a different language, it can diminish the positive

effects of optimization, however in principle the code can

still be analysed and transformed without issues.

Such dependencies occur mainly outside of kernels in case

of numerical applications, which as we show below, is a very

favourable condition for the success of our approach.

Custom user-defined types provide a convenient abstrac-

tion for users of a given application or library, however they

are a challenge for performance-oriented transpilers. That

is because each abstraction has different assumptions about

how data is handled and processed. When those assump-

tions lead to sub-optimal operations on data, such as lack

of data locality, excessive data movement and such, it be-

comes prohibitive to improve upon those properties of the

application without stripping out the abstraction entirely.

This, of course, might not be an issue for a transpiler that

does not aim to generate code intended for human use. As

long as no one will read the generated code, all abstractions

can be stripped away at will. For those transpilers that seek

to generate human-readable code, as in our approach, we

make an assumption that only the specifically allowed data

types can be used in the areas which are transformed, be-

cause only for those types we can know what transformations

can and cannot be performed.

We came to the conclusion that such two assumptions: (1)

lack of or transparent dependence on external libraries, as

well as (2) usage of predictable data types, are correct pre-

conditions for the transpilation of performance-critical parts

of scientific applications.

c© 2018 Information Processing Society of Japan 3

Vol.2018-HPC-165 No.38
2018/8/1

IPSJ SIG Technical Report

3.1 Mapping Between Fortran and Python

We explored this topic already in previous work [1],

in which we presented the idea of two-way transpilation

between Python and Fortran.

In that work we define the mapping between selected sub-

sets of Python 3 and Fortran 77/95, in order to improve

performance of numerical kernels written in pure Python

beyond what is achievable using any state-of-the-art tools.

In addition, this provides a means to migrate legacy Fortran

applications to Python while preserving their performance.

Encouraged by promising results on a set of small bench-

mark problems, we have decided to apply our approach in

more complex scenarios. We adapted our approach to a

wider audience by relying on extensions of tje Python AST

instead of our own custom AST. We do this by delegating

as much basic operations as possible to open-source external

tools and libraries. Finally, the whole framework is released

as open-source to the community.

3.2 Mapping Between C++ and Python

To translate between C++ and Python, we need to define

the mapping between Python and C++. Very similarly to

the discussion in our previous paper, we focus on the follow-

ing areas: (1) data types, (2) basic syntactic structures, (3)

selected common idioms.

3.2.1 Data Types Mapping

First, we introduce the type mapping we adopted in our

framework.

Python 3 C++
str std::string

int int

np.int32 int32_t

np.int64 int64_t

float float

np.double double

Table 1 Excerpt of mapping of types between Python and C++

There are many more types we have mapped, such as dif-

ferent precisions of floating point numbers as well as various

container types (lists, sets, dictionaries) and arrays types.

We are however still experimenting with many of the details

of the mapping.

3.2.2 Basic Syntactic Structures

Second, we describe the basic syntax that we consider for

transpilation. The list below, as the list of types above, is

not exhaustive.

Function declarations

Python def add(a: int, b: int) -> int:

...

C++ int add(int a, int b);

In Python, it is syntactically valid to use an ellipsis (three

dots) as an expression. It is also valid to make a statement

out of any expression.

Therefore, the ellipsis symbol, when used as a function

body, can very well denote that the body of the function is

missing, and such do-nothing function becomes the declar-

ation.

Function definitions

Python def add(a: int, b: int) -> int:

return a + b

C++ int add(int a, int b) {

return a + b;

}

The function definitions in basic form are trivial to trans-

late.

Loops

Python while True:

continue

C++ while (true)

continue;

The while loops can be translated as-is.

Python for i in range(0, 10): # type: int

pass

C++ for (int i=0; i < 10; ++i) { }

On the other hand, the for loops have certain limitations.

In C++, the for loop condition can be arbitrary and so can

be the expression evaluated at the end of the iteration, as

well as the loop initialization. Therefore, when looping over

numbers we restrict the allowed form of the loop to the basic

form.

Python for number in list_of_floats: # type: float

pass

C++ for (float my_number : list_of_floats) { }

In the case of iterating over lists or other containers, the

translation is more straightforward.

3.2.3 Selected idioms

Below, we briefly introduce some of the idioms in Python

and C++.

Printing

Python print('error:', message, file=sys.stderr)

C++ std::cerr << "error: " << message << std::endl;

Pointer arithmetic

As pointers do not exist in Python, the pointer arithmetic

can be preserved in extended CPython AST but unpars-

ing such AST into Python is not feasible. Therefore using

bare pointers in C++ prevents the transpiler from operat-

ing. However, C++ managed pointers are allowed as these

behave similarly to Python references in many contexts.

Python x = MyType(5)

print(x)

C++ std::shared_ptr<MyType> x =

std::make_shared<MyType>(5);

std::cout << *x << std::endl;

c© 2018 Information Processing Society of Japan 4

Vol.2018-HPC-165 No.38
2018/8/1

IPSJ SIG Technical Report

4. Implementation

We implement a framework which demonstrates all the

concepts described above. It’s called transpyle. The im-

plementation is fully open source, and is available on Git-

Hub*1. The basic design of transpyle is that the framework

is responsible for transforming the Python AST. It is also

orchestrating the work of parsing source code from various

languages into Python AST, as well as unparsing the Py-

thon AST into various languages. Each language other than

Python has a language-specific AST format, which needs to

be converted into the Python AST. However the work re-

quired to parse/unparse languages is delegated to libraries

that perform the actual work. We have selected modules

that offer access to ASTs very close to parse trees, where all

details, even comments, are preserved.

All the dependencies necessary to run the framework are

also free and open source.

4.1 Dependencies

C++ code

C++ AST

Fortran code

Fortran AST

Python code

extended
Python AST

CastXML Open Fortran

Parser

horast

transpyle transpyle

transpyle

transpyle

Figure 3 Diagram showing responsibilities of various modules
used in our transpilation framework

To enable Fortran support, we rely on Open Fortran

Parser for parsing Fortran into an XML representation and

we use f2py for creating Python interface for compiled For-

tran code. To enable C++ support we use CastXML for

parsing C++ into an XML parse tree, and we utilize SWIG

for making an interface between compiled C++ code and

Python. We rely on GNU Compiler Collection to com-

pile both C++ and Fortran, however in principle any mod-

ern compiler of those languages can be used. Addition-

ally, we use several supporting Python modules, some of

which we implemented ourselves: typed-ast, horast, typed-

astunparse, static-typing, pcpp, pycparser, and others. Due

to significant amount of dependencies we provide a Docker

image where all the dependencies are preconfigured.

4.2 Gradual Performance

generic code

type information

instrumentation

low performance

enhanced performance

high performance

Figure 4 Simple diagram showing performance levels achievable
while gradually building upon the original generic code.

*1 https://github.com/mbdevpl/transpyle

We introduce the concept of gradual performance, as

a way of non-intrusive performance improvement of code.

Gradual performance is a kind of step-by-step improvement

of the performance of the code. In this kind of improvement,

one can instrument the existing code with performance-

enabling instructions in a way that can be parametrized

depending on any data available statically or dynamically.

Static data can be the current execution architecture, and

dynamic data can be the array size in array operations.

We illustrate the concept of gradual performance using a

motivating example. Let us consider a naive pure Python

implementation of a element-wise vector summation.

def add(arr1, arr2):

assert len(arr1) == len(arr2)

arr3 = np.ndarray((arr1.size,), dtype=float)

for i in range(0, arr1.size):

arr3[i] = arr1[i] + arr2[i]

return arr3

How can we improve the performance of the code without

rewriting it?

4.2.1 Providing Static Type Information

First, we annotate types in the above code. This type

information, although parsed by the parser of the Python

interpreter, will be ignored by the interpreter at execution

time.

def add(arr1: st.ndarray[1, float],

arr2: st.ndarray[1, float]

) -> st.ndarray[1, float]:

assert len(arr1) == len(arr2)

arr3 = np.ndarray((arr1.size,), dtype=float

) # type: st.ndarray[1, float]

for i in range(0, arr1.size): # type: int

arr3[i] = arr1[i] + arr2[i]

return arr3

4.2.2 Transforming and Transpiling

Second, we add the decorator

@transpyle.vectorize('i', 4) to our function

which will vectorize the loop indexed with ‘i‘ at

the granularity of four, an additional decorator

@transpyle.transpile('Fortran') which will trans-

late the vectorized code of the function into Fortran 95,

compile it, and substitute the Python version with the

compiled Fortran version.

Finally, we also add a comment # omp parallel for . It

is a basic OpenMP directive which lets the loop workload

to be automatically distributed across all processor cores.

This directive will be dormant unless the code is transpiled,

therefore the top-most decorator is necessary for the direct-

ive to have any effect.

The final code will be as follows:

@transpyle.transpile('Fortran')

@transpyle.vectorize('i', 4)

def add(arr1: st.ndarray[1, float],

c© 2018 Information Processing Society of Japan 5

Vol.2018-HPC-165 No.38
2018/8/1

IPSJ SIG Technical Report

arr2: st.ndarray[1, float]

) -> st.ndarray[1, float]:

assert len(arr1) == len(arr2)

arr3 = np.ndarray((arr1.size,), dtype=float

) # type: st.ndarray[1, float]

opm parallel for

for i in range(0, arr1.size): # type: int

arr3[i] = arr1[i] + arr2[i]

return arr3

4.3 Transformations

We present details about the transformations available in

our framework.

4.3.1 Inlining

Inlining is a basic optimization. Below example is an

illustration of inlining with basic addition operation in a

element-wise vector addition function.

def add(a, b):

return a + b

def elementwise_add(arr1, arr2):

assert len(arr1) == len(arr2)

arr3 = np.array()

for i in range(len(arr1)):

arr3[i] = add(arr1[i], arr2[i])

return arr3

elementwise_add_inlined = \

trasnpyle.inline(elementwise_add, add)

As a result of inlining of add, the following function is

obtained:

def elementwise_add_inlined(arr1, arr2):

assert len(arr1) == len(arr2)

arr3 = np.array()

for i in range(len(arr1)):

arr3[i] = arr1[i] + arr2[i]

return arr3

However, the true benefits of this operation show them-

selves only when we consider additional transformation. In-

stead of a naive addition operation, we could, at runtime in-

line a call to architecture-specific and precision-specific im-

plementation. Such specialized implementations are avail-

able on most modern platforms for a multitude of specific

data types and provide highest performance.

4.3.2 Loop unrolling

Loop unrolling reduces the overhead of iteration and can

be beneficial even for pure Python codes.

Let us consider again the code for element-wise vector

addition.

@transpyle.unroll('i', 4)

def elementwise_add(arr1, arr2):

assert len(arr1) == len(arr2)

arr3 = np.array((arr1.size,), dtype=float)

for i in range(0, len(arr1)):

arr3[i] = arr1[i] + arr2[i]

return arr3

This result of unrolling the loop at granularity four is

shown below.

def elementwise_add_unrolled(arr1, arr2):

assert len(arr1) == len(arr2)

arr3 = np.array((arr1.size,), dtype=float)

for i in range(0, len(arr1), 4):

arr3[i] = arr1[i] + arr2[i]

arr3[i + 1] = arr1[i + 1] + arr2[i + 1]

arr3[i + 2] = arr1[i + 2] + arr2[i + 2]

arr3[i + 3] = arr1[i + 3] + arr2[i + 3]

return arr3

The unrolled loop body can be also further refined. We

can substitute it with a call to a routine that takes advantage

of vector extensions to the instruction sets of modern pro-

cessors. We can do it provided that the aim is to transpile

the function to C++ or Fortran.

5. Use Cases

In this section, we summarize some of the use cases we

identified for our approach.

5.1 Use Case 1: High-performing HPC proto-

types

The readability of code achieved in transpyle framework

is useful in its own right. Because the code generated by our

framework is readable and preserves the original structure,

naming and comments, it can be further hand-tuned with

relative ease.

In certain cases, relying on automatic optimizations per-

formed by the compiler does not yield satisfying performance

results. In such cases, having a low-level implementation is

an advantage, because hand-tuning can be only performed if

the final C, C++ or Fortran code to be compiled is available.

As our framework generates such low-level code, and the

code can be inspected and modified at any time, the altered

low-level implementation can used instead of the one gener-

ated by our transpiler.

5.2 Use Case 2: Legacy Fortran CFD Optimiza-

tion

legacy
Fortran

code

critical
parts

Python
AST

optimized
Python

AST

unparsed
parts

modern
Fortran

code

identify

hotspots

parse

transform

unparse to

Fortran

inject back

into original

application

Figure 5 High-level overview of optimization process of the
FLASH code.

c© 2018 Information Processing Society of Japan 6

Vol.2018-HPC-165 No.38
2018/8/1

IPSJ SIG Technical Report

A scientific simulation framework FLASH [5] is a mature

scientific library being developed at The Flash Center for

Computational Science established in 1997 at the Univer-

sity of Chicago. It is implemented in Fortran and suffers

from what is a common condition of legacy code: outdated

code that does not work well on modern architectures.

FLASH is a computational fluid dynamics framework de-

signed for simulating thermonuclear flashes and is used by

scientists in fields related to cosmology around the globe.

Several efforts has been made already to port the FLASH

code partially to CUDA, or add OpenMP support in certain

modules.

Although designed to be modular and massively paral-

lel [4], currently the FLASH framework still relies entirely on

Message Passing Interface (MPI) for its parallelism, which

becomes a bottleneck on many-core architectures.

Our transpilation framework enables legacy codebases like

FLASH framework to be automatically adapted to new

multi- and many-core architectures.

5.3 Use Case 3: Deep Learning Auto-tuning

Python

annotated
Python

instru-
mented
Python

actionable
results

pick variables

to track

and auto-tune

run

automatic

data collection

Figure 6 High-level overview of how data collection in protoNN
works

The framework protoNN [3] is being currently implemen-

ted. It will enable auto-tuning of Python-based deep learn-

ing models, as well as transparent and elastic scheduling of

deep neural network (DNN) training jobs on modern HPC

systems.

One of the features enabling this auto-tuning is ability

to dynamically alter the running code originally implemen-

ted for the transpyle framework. protoNN uses Python type

hints to specify which parameters need to be tracked or mod-

ified, and our transpiler framework picks up those hints and

dynamically instruments the code as necessary.

6. Conclusion

We introduced the concept of using a abstract syntax tree

(AST) format provided in Python as high-level intermediate

representation (IR) for multi-language dynamic transpila-

tion enabling code transformations. We presented a detailed

account of our approach, and contrasted it with current ap-

proaches exhibited in LLVM IR and ROSE compiler.

We also described selected details of implementation of

the framework transpyle, which is a demonstration of the

concepts we introduced and is an ongoing open-source pro-

ject that can be found on GitHub.

Finally, we discussed the benefits of having high-level IR

with presented characteristics in multitude of scenarios, in-

cluding writing HPC code prototypes which are simpler to

hand-tune, optimization of legacy Fortran computational

fluid dynamics codes and last but not least auto-tuning of

deep learning codes.

References

[1] Bysiek, M., Drozd, A. and Matsuoka, S.: Migrating Leg-
acy Fortran to Python While Retaining Fortran-Level Per-
formance Through Transpilation and Type Hints, Proceed-
ings of 6th Workshop on Python for High-Performance and
Scientific Computing, Piscataway, NJ, USA, IEEE Press, pp.
9–18 (online), DOI: 10.1109/PyHPC.2016.12 (2016).

[2] Dagum, L. and Menon, R.: OpenMP: an industry standard
API for shared-memory programming, IEEE computational
science and engineering, Vol. 5, No. 1, pp. 46–55 (1998).

[3] Drozd, A., Wahib, M., Bysiek, M. and Shpakovich, M.: pro-
toNN (2018).

[4] Dubey, A., Antypas, K., Ganapathy, M. K., Reid, L. B.,
Riley, K., Sheeler, D., Siegel, A. and Weide, K.: Extens-
ible component-based architecture for FLASH, a massively
parallel, multiphysics simulation code, Parallel Computing,
Vol. 35, No. 10-11, pp. 512–522 (2009).

[5] Fryxell, B., Olson, K., Ricker, P., Timmes, F., Zingale, M.,
Lamb, D., MacNeice, P., Rosner, R., Truran, J. and Tufo, H.:
FLASH: An adaptive mesh hydrodynamics code for model-
ing astrophysical thermonuclear flashes, The Astrophysical
Journal Supplement Series, Vol. 131, No. 1, p. 273 (2000).

[6] Grosser, T., Zheng, H., Aloor, R., Simbürger, A., Größlinger,
A. and Pouchet, L.-N.: Polly-Polyhedral optimization in
LLVM, Proceedings of the First International Workshop on
Polyhedral Compilation Techniques (IMPACT), Vol. 2011,
p. 1 (2011).

[7] Langa, .: PEP 563 – Postponed Evaluation of Annotations
(2017).

[8] Lattner, C. and Adve, V.: LLVM: A compilation frame-
work for lifelong program analysis & transformation, Pro-
ceedings of the international symposium on Code generation
and optimization: feedback-directed and runtime optimiza-
tion, IEEE Computer Society, p. 75 (2004).

[9] Liao, C., Quinlan, D. J., Willcock, J. J. and Panas,
T.: Extending automatic parallelization to optimize high-
level abstractions for multicore, International Workshop on
OpenMP, Springer, pp. 28–41 (2009).

[10] Liao, C., Quinlan, D. J., Willcock, J. J. and Panas, T.:
Semantic-aware automatic parallelization of modern applica-
tions using high-level abstractions, International Journal of
Parallel Programming, Vol. 38, No. 5-6, pp. 361–378 (2010).

[11] Quinlan, D.: ROSE: Compiler support for object-oriented
frameworks, Parallel Processing Letters, Vol. 10, No. 02n03,
pp. 215–226 (2000).

[12] Quinlan, D., Liao, C., Too, J., Matzke, R. P., Schordan, M.
and Lin, P.: ROSE compiler infrastructure (2012).

[13] van Rossum, G., Lehtosalo, J. and Langa, .: PEP 484 – Type
Hints (2014).

[14] van Rossum, G. and Levkivskyi, I.: PEP 483 – The Theory
of Type Hints (2014).

[15] Zhao, J., Nagarakatte, S., Martin, M. M. and Zdancewic, S.:
Formalizing the LLVM intermediate representation for veri-
fied program transformations, Acm sigplan notices, Vol. 47,
No. 1, ACM, pp. 427–440 (2012).

c© 2018 Information Processing Society of Japan 7

Vol.2018-HPC-165 No.38
2018/8/1

