
IPSJ SIG Technical Report

Othello Font

Amanj Khorramian1,a) Tomoko Taniguchi3,b) Takeaki Uno2,c) Ryuhei Uehara3,d) 

Abstract: Othello, also known as Reversi, is a quite well known strategy board game for two players on a board of 
size 8 × 8. The set of all reachable patterns is not yet known for this game. In this paper, we finally obtain all reachable 
patterns on 5 × 6 board by developing nontrivial algorithm on a supercomputer. We observe the scale of complete 
search-tree is big even for a board of size 5 × 6 and parallelize a distributed frontier search using shared memory to 
reach the final depth of the tree. To reduce the memory requirement, the tree is horizontally compressed using a novel 
method, and the frontiers are maintained in a novel data-structure. Moreover, an efficient number system is proposed 
and utilized for representing the states of the game, and a symmetry of the states is applied during the search. We 
assume that the board and pattern are rotation symmetry, but we assume that the mirror symmetry gives the different 
pattern. Eventually, the whole tree is traversed in 2 hours by visiting 257,387,474,170 different states using random 
access memory shared among 576 processing cores. We aim to find specific font patterns among the states of the final 
depth. However, 83,175,694 of the states are located at the final depth, at which we start looking for font patterns. 
Before that, a set of 96 characters of size 6 × 6 is binarized, and their (5 × 6)-compatible patterns are taken for lookup 
by considering all possible symmetries. In this way, a font of 96 characters is designed. 

(a) (b) 

(c) (d) 

Fig. 1 Some examples of states for a 5 × 6 board of Othello. (a) An initial 
state of the board. (b) Choices of the player with black color in a 
state. (c) Choices of the player with white color in a state. (d) A state 
generated from (c), when the white player plays in such a way that 
maximizes the number of white disks. 

1. Introduction
Othello (also known as Reversi) is a game on an M × N board, 

played by two players with M×N disks. The disks are colored di­
versely on each side using two colors, and each player is assigned 
one of the colors. We consider the colors of black and white with 
binary representations of 1 and 0, respectively. Figure 1 shows 
some states of a board of 5 × 6 for this game. 

1 University of Kurdistan 
2 National Institute of Informatics 
3 Japan Advanced Institute of Science and Technology 
a) khorramian@gmail.com 
b) tomoko-t@jaist.ac.jp 
c) uno@nii.jp 
d) uehara@jaist.ac.jp 

Four of the disks are initially located at a center region of the 
board, as shown in Figure 1(a). Each player puts a new disk with 
his/her color faced up, on an empty spot such that a straight line 
of another color should be bounded by the new color in both 
endpoints. The checkmarks of Figure 1(b) show the choices of 
putting a new disk for the player with black color, and Figure 1(c) 
shows the choices of player with white color. The players act in 
turns, but if one player has no choice, then s/he skips her/his turn. 
As for the example of Figure 1(c), if the player selects the choice 
that maximizes the number of flips from black to white, then the 
state of the board would change to Figure 1(d). At the end of the 
game, the player who has more disks of her/his color upwards on 
the board wins the game. 

This game at this form with the original size of 8 × 8 was rein­
vented less than half a century ago. It has been popular so that 
some international tournaments are actively being held in several 
mainlands [10], [16]. There exist studies for a win-loss decision 
of the game [4], [16] as well as some experimental tricks and 
computational strategies [5], [12] of playing. We do not know 
any studies looking for specific patterns of the board, but it ap­
peared of interest to design typefaces based on open problems 
[2], [13], resulting in several puzzle fonts published on the web 
[3], [14]. Following this context as well as inspiring by a talk 
entitled “FUN with FONTS” [2] at the 7th FUN, 2014, we are 
inclined to a cooperative approach of the Othello game so that a 
complete breadth-first search is conducted towards reaching the 
final depth of the search tree. The original size of the game has 
a very large state space [1]. Our selection is a 5 × 6 board of the 
game, since it is somehow approaching the size of 6×6 which re­
mains challenging and possesses digital distributions in trending 
markets. 

ⓒ 2018 Information Processing Society of Japan 1

Vol.2018-AL-168 No.2
2018/5/25



IPSJ SIG Technical Report

From a theoretical point of view, given an arbitrary position 
of the Othello game played on an n × n board, from generalized 
geography played on bipartite graphs with maximum degree 3, 
the problem of determining the winner is shown to be PSPACE-
complete [6]. Othello computer programs have easily beaten the 
humans in the 1980s, and the human champion was lost in 1997, 
beaten by Logistello, which may have presented the strongest 
Othello player program, focused on several techniques and ap­
proaches [11]. In a strong Othello program, the key idea is prun­
ing of the search tree. Precisely, the algorithm estimates/evaluates 
each pattern and gets rid of it if it is not valuable anymore. Using 
this technique, 6 × 6 Othello was investigated, and it had been 
found that the second player wins on 6 × 6 Othello [15]. With 
this background, the number of possible states is approximately 
estimated, but not yet solved. This is our motivation for research. 

The initial pattern is determined in the official Othello game, 
and in our 5 ×6 board, we have two different choices by consider­
ing rotation symmetry. Assuming that the mirror symmetry gives 
different patterns, we fix an initial pattern. By this assumption, 
the states in the first three depths of the corresponding search tree 
(i.e., depths 0, 1, and 2) are shown in the first, the second, and the 
third rows of Figure 2, respectively. 

During the search, we maintain only the frontiers [8] in a data 
structure similar to a double-ended queue [7], which is being uti­
lized in both ends. For reducing the memory usage, we sort and 
store the difference values rather than the actual values of state 
representatives. This method dramatically compresses the search 
tree. To represent each state of the board, we invent a number 
system of mixed-base digits. This number system suits the in­
herent properties of Othello board and better fits primitive data 
types in common programming languages. In addition, this sys­
tem bounds the values of states from below and above, yield­
ing a high compression ratio in overall. We keep unchanged, the 
compressed structure of data while distributing and combining 
the states using 576 processing cores. Note that there are states 
that appear several times if the symmetry of the board is not con­
sidered. Moreover, for finding the font patterns, we consider both 
characters of white color with black background and vice versa. 
These considerations of symmetry reduce the size of the tree and 
benefits to search more rapidly, though it does not disaffect the 
final pattern search. The complete search tree is traversed in one 
pass, and the number of states as a function of depth is reported. 
If nobody can move, the game is over, and 5,811,761 such states 
are found. 

2. Shifted Queue
Frontier search [8] is originally proposed as a memory-efficient 

framework for breadth-first search. In this framework, the states 
which are already expanded do not need to be kept in memory 
anymore. The key point for efficient search is how to avoid gener­
ating redundant states. During the search procedure, after gener­
ating all possible states from a given state s by one operation, we 
say s is expanded. For example, after generating all four cases of 
the state shown in Figure 1(b), we say the state is expanded. In the 
Othello case of study, the representation of each state includes the 
necessary fields, thus there is no chance for a state in one depth 

to be regenerated in later depths. Therefore, we maintain only the 
generated nodes, called the frontiers in memory. For an efficient 
maintenance, we introduce a novel data structure named shifted
queue. 

The frontiers are stored in a simple array, called A. Inside the 
array, we consider a subarray S which holds only the frontiers of 
the current depth of the search. This means the rest of frontiers, 
i.e. the generated nodes corresponding to the next depth, are held 
outside S but still inside A. By an operation of dequeue(), the 
data items are taken and removed from the left side of S , which 
is kept as the rightmost subarray of A. Each generated node from 
the item would be inserted in the leftmost empty cell of A. See 
Figure 3. 

When all items are removed from S , it means the search of 
current depth is finished. At this point, before starting the search 
process of next depth, all inserted nodes are assigned to S , then 
right after that, S is shifted to the rightmost side of A. The op­
eration of shi f t() is done as follows. In the order of right to left, 
the first item of S moves to the first empty cell of A. Then, the 
second item moves to the second place, and so on. See Figure 4. 
Note that the moving of data items must be done from right to left 
to avoid data collisions. 

Initially, the search is started from the state shown in Figure 
1(a). At this starting point, it is the only state in S , located at the 
leftmost side of A. After that, the search procedure runs in the 
following loop of three repetitive steps while S is not empty: 
• The set S is shifted from the left to the right region of A. See 

Figure 4. 
• For each state s in S from left to right, all generated nodes 

from s are stored at the leftmost empty entry of A, and s is 
removed from S . See Figure 3. 

• Now S is empty, hence it is newly assigned to contain all 
states which are stored at the left side of A. 

By applying this structure of data, we guarantee no waste of 
memory. That is because by assigning the maximum number of 
necessary states needed to be kept in memory as the size of A, the 
array is capable to contain all of them without losing any data. 
We suggest naming shifted queue for this data structure since S
works as a simple queue, and it is obviously shifted in memory 
after each stage. 

During the second step of the procedure mentioned above, we 
apply an additional idea to save more memory as follows. If the 
entry index of memory for the leftmost empty cell of A equals 
to the index of the leftmost state in S , it means there is no space 
for maintaining additional generated stated in A. In this case, 
we relax A by removing redundant states (as well as symmetric 
states) of A before the next node expansion. Our data structure 
of shifted queue has no advantage in memory over the data struc­
ture of double-ended stack. But later in this paper, we discuss 
how to compress shifted queue for saving even more memory, so 
that our method of compression is not applicable to the double-
ended stack. In addition, we would distribute shifted queue for 
the purpose of parallelism to save also the time. 

3. Symmetry
We suppose the initial state of the game to be either in the 

ⓒ 2018 Information Processing Society of Japan 2

Vol.2018-AL-168 No.2
2018/5/25



IPSJ SIG Technical Report

Fig. 2 The first three depths of the search tree for Othello 5 × 6 

Fig. 3 An example to represent the data which is subject for dequeue() from a shifted-queue S . The 
dequeued item is expanded, and each one of its generated nodes is inserted in the leftmost empty 
cell of A as shown. 

original form as shown in Figure 1(a) or rotated by 180 degrees 
and mirrored. Considering this symmetry, each state may have 
two variants which are identical if we consider both transforma­
tions shown in Figure 5 (starting from the up-right corner and 
circularly reach the center region counterclockwise, or starting 
from the down-right corner and circularly reach the center region 
clockwise). This consideration helps to reduce the memory us­
age while searching the entire search tree. To serve this purpose, 
we map each state to integers by applying two transformations, 
but only the smallest integer is stored in memory. The choice of 
transformation is attached to the integer for the retrieval of the 
actual state. 

The reason for our circular choice of transformation has strong 
relation with our compression method, which is discussed later. 
Since the game starts from a center region of the board, the pos­
sibility of change in values of this region is more likely than the 
borders. For this intuitive reason, we assign higher positions to 
the farther cells from the center. The details of this mapping are 
discussed in the next section. 

In the final stage of pattern finding, we reconsider these sym­
metries in addition to their similar variants starting from up-left 
and down-left corners. During the search, we do not consider 
these two additional transformations, because of yielding less ra­
tio for our method of compression. Again, for the pattern lookup, 
it is also taken into account that anyone of the players can start 
the game in our consideration. 

4. Othello Number System
Each spot on the board is either vacant or filled by a white or 

black disk. Therefore, a ternary number system is trivial to rep­
resent each state [9]. We do not know a bijection for this prob­
lem, but the number of arrangements is reduced from 3M×N to 
24 × 3M×N−4, or even to 25 × 3M×N−5 in some cases, by utiliz­
ing specific properties of Othello. Therefore, rather than a 3-base 
system of numbering, we introduce a mixed-base number system 
of bits and trits. There are M × N spots, and four of the center re­
gion have only two variants in either white or black, and the other 
M × N − 4 spots have three variants in white, black, or vacant. In 
total, we have 24×3M×N−4 combinations. Firstly, the places of the 
digits are fixed. The choice of transformation is attached to the 
number for state retrieval. When the state is retrieved from the 
number, we need to know the transformations applied for map­
ping. It is considered as an additional single digit with a base 
equal to the number of different transformations. See Figure 6. 

Based on this mapping system, the digit corresponding to the 
corner spot gets the highest place of 30, the center spots get the 
places of 4, 3, 2, and 1, and the choice of transformation gets the 
lowest place of 0 for mapping. Consequently, each number oc­
cupies ⌈lg(2 × 24 × 326)⌉ = 46 bits to store in memory and better 
fits in primitive data types for programming purposes. Besides, 
this Othello number system makes the range of mapped numbers 
[0, T × 24 × 3M×N−4 − 1] tighter than [0, T × 3M×N − 1] of a simple 
ternary number system, where T is the number of transformations 
applied for symmetry. Furthermore, it is more efficient also for 
our next purpose of compression. Note that when M = N and 
M mod 2 = 0, the upper bound is improved to 25 × 3M×N−5, be­
cause there exists only one state in depth one by considering all 
symmetries of the board. 

ⓒ 2018 Information Processing Society of Japan 3

Vol.2018-AL-168 No.2
2018/5/25



IPSJ SIG Technical Report

Fig. 4 An example to show the operation shi f t() of a shifted-queue S inside an array A. 

Fig. 5 Two different ways of transformation for each state 

5. Gapkeep Compression
It is observed that the quotient obtained by dividing the upper 

bound of the range in Othello number system (i.e. d×24×3M×N−4) 
by the maximum number of frontiers in the search space, needs 
much less number of bits than ⌈lg(d × 24 × 3M×N−4)⌉, on aver­
age. Therefore, we maintain the frontiers in both A and S sorted 
increasingly and store the (non-negative) difference values (i.e. 
gaps) between each pair of neighbors, instead of storing the ac­
tual values. This is done for all states in an array other than the 
leftmost state. As for the leftmost state, we stick its actual value 
together with the total number of states to each array for the con­
struction of dequeue() operation from the shifted queue S . Al­
though the average number of bits needed for storing the differ­
ences is much less than the number of bits needed to store the 
actual values, there is no guarantee that all difference values fit 
in a fewer number of bits. For this issue, we establish a positive 
and variable-length integer data type povaleint, which is of n1 bits 
basically. 

Since there is no need to store identical states, we do not keep a 
difference of zero, so we store d, the difference subtracted by one, 
to narrow the range by one value for a (very tiny) memory saving. 
If d is less than 2n1 − 1, then d fits to be stored only in the n1 bits, 
and no more memory is needed for it. Otherwise, we break d into 
the couple of 2n1 −1 and d− (2n1 −1) parts. The first part is stored 
in the n1 bits and we try to store the second part in the next n2 bits 
of the memory, by dedicating n1 + n2 bits for d in total. If it still 
does not fit to store d, then we repeat the same procedure using 
the next n3, or n3 + n4, ..., or n3 + ... + nm bits of memory (see 
Figure 7). Therefore, the maximum number of bits to store a data 
element of type povaleint would be n1 + ... + nm. Here we open 
the optimization problem of assigning the most memory-efficient 
values for n1, n2, ..., and nm, and establish a hardware-friendly 
setting of ni = 8 × 2i−1 for m = 4, achieving a compression ratio 
of about 7.0 (above 85% of space saving). 

We call this technique gapkeep, which is useful in the fron­
tier search when the frontiers are represented in integers, and the 

upper bound of integers has a small-enough quotient to the max­
imum number of frontiers in the search space. Note that nm must ∑
fit the value of d− (2ni −1) for i = 1, ...,m−1. For an even better 
performance, we use an uncompressed buffer to temporarily store 
the generated states until it becomes full. The filled-up buffer is 
then compressed into A altogether. It is worth mentioning about 
this method of compression that, less uniform distribution of fron­
tiers to the range of integers leads to more ratio of compression 
since the difference values are stored in memory. Note that the 
mapping of Othello number system is not uniform at all, so that 
we next introduce a method to achieve a reasonable distribution 
of states while keeping the same ratio of compression. 

6. Basket Distribution and Parallelization
The availability of a big memory shared among many process­

ing cores, motivated us to parallelize the frontier search by dis­
tributing the states of the povaleint type in shifted queue towards 
speeding up the process. Othello number system is too far from a 
uniform distributing function. For such issue, we propose a near-
uniform distribution method, named basket distribution, that is 
suitable for applying to the mapping systems which are naturally 
non-uniform. This leads to a fair parallelism among processing 
cores. In our method of distribution, we separately make t queues 
maintained by t threads. At each stage of the search process, after 
expanding all states and before shifting the queues, we distribute 
all frontiers as follows. Local frontiers of each queue are split into 
k parts according to their values, such that the ith part consists of 
the local states with values in the range [(i − 1) × U/k, i × U/k) 
where U is the upper bound of the state values (e.g. 2×24×326 for 
our study case of Othello 5 × 6 number system). See the example 
of Figure 8. 

After that, the number of states in the ith part of all queues 
is accumulated to a j to determine t breakpoints for distribu­
tion. For example, the first breakpoint j1 is set to collect and 
merge a1 + a2 + ... + a j1 states from the first j1 parts of all 
queues for assigning them to the first shifted queue in the next 
stage of the search process. The second breakpoint is to collect 
aj1+1+aj1+2+...+aj2 states, and so on. Since the nature of Othello 
number system provides a quite non-uniform distribution of the 
states, we set k large enough and use a basket for making the size 
of collections nearly equal to reach a near-uniform distribution of 
states. Each time, we replete the basket by collecting all states 
of the j parts, such that rather choosing j − 1 does not fill up the 
basket. Note that the basket size is the number of all frontiers 

ⓒ 2018 Information Processing Society of Japan 4

Vol.2018-AL-168 No.2
2018/5/25



IPSJ SIG Technical Report

Fig. 6 Representation of the Othello number. The lowest position of 0 is dedicated for the digit cor­
responding to the transformation. ti is the digit’s position which corresponds to the ith spot of 
the board in the transformation, decreasingly. T is the number of transformations, applied for 
symmetry. 

Fig. 7 In this example, each number of povaleint type may be stored in n1, n1 + n2, or n1 + n2 + n3 bits of 
memory. 

over t. This approach of choosing breakpoints provides a satisfy­
ing distribution based on the quite non-uniform mapping of Oth­
ello number system. In this way, our technique of parallelization 
needs twice the memory size of the sequential approach. That 
is because we use temporary queues of the povaleint type for fi­
nal distribution to avoid overlapping of data. All modules in this 
method work almost fair in parallel, other than the small and very 
rapid module of accumulation that needs a tiny portion of time for 
completion at each round. The technique is novel and general so 
that it can be utilized in every frontier search with a non-uniform 
distribution of mapping. 

7. Binarization and Pattern Lookup
Here, we aim to import image files into boolean matrices. 

That is because we look for patterns of a font (see Figure 9) with 
a set of 96 characters of 6×6 pixels, which is found on the web in 
image format, arranged in 3 rows and 32 columns [17]. We first 
convert the image into a portable bitmap file. Then the file is read 
into 6 × 6 boolean matrices, each representing a character of the 
font. The characters have their last column unfilled and proper 
to look for on a 5 × 6 board. We look for all patterns while con­
sidering the symmetric patterns as well as color-negating of each 
character. 

8. Result
We have used the interface of Open Multi Processing in C++

programming language, executed on a supercomputer. In this en­
vironment, 96 processors of Intel Xeon E5-4655 v3, each com­
prising 6 cores was fully utilized. Each core was assigned to a 
thread, so that totally 576 cores are used in parallel for two hours 
to complete the search of the tree. Note that we did set the size 229 

for arrays of byte data type to handle distributed shifted queues 
by the threads, accompanied by long buffers of size 220. The 
number of parts is set to k = 24 × 312 in our method of distribu­
tion. 

The number of states as a function of depth, together with the 
number of states at which the turn is skipped, and the opponent 
continues are shown in Figure 10. Depth 20 of the search is the 
widest depth. For this depth, the minimum number of bits to 
represent each state in gapkeep compression is calculated. The 
percentage of necessary bits among the entire nodes is shown in 

Figure 11. Furthermore, the result of basket distribution for depth 
20 is shown in Figure 12. 

The states of final depth are stored on disk. In the stage of font 
lookup, 66 exact patterns of characters and 30 similar patterns 
to the other characters are found as illustrated in Figure 13. In 
this figure, the necessary transformations for each character are 
specified. Note that only one pattern is reported even if more pat­
terns are found for a specific character. In addition to the exact 
patterns, we find similar patterns to the characters which have no 
precise pattern on this board. 

9. Remarks
In this paper, we introduce algorithmic methods of compres­

sion and parallelization, as well as data structural techniques of 
representation and mapping. These methods and techniques are 
implemented for conducting frontier search towards reaching the 
final depth of a massive state-space graph. We eventually gener­
ate the set of goal patterns and find several patterns of a character­
set among them. Our method of compression suggests an opti­
mization problem, which is left open to solve. A fun application 
for the gapkeep compression would be exploring a time-memory 
tradeoff. The proposed method of distribution is not perfectly 
uniform, so that one may improve it for the purpose of more ac­
curate parallelization. It looks fun to invent a number system for 
a game. Note that the Othello number system is not a bijection, 
hence a more efficient function might be possible for the board 
of this game. In addition, for square boards with even side, the 
upper bound of Othello number system can be improved from 
24 × 3M×N−4 to 25 × 3M×N−5, because there would be only one 
state in depth 1 by considering all symmetries. Although the 
data structure of shifted-queue is optimized for memory, the time 
needed to shift might be an area of improvement to work. Dur­
ing the search, we take only two transformations into account for 
the symmetry because the consideration of more transformations 
leads less ratio of compression. Hence, it would be fun to present 
a tradeoff between them. By the enlargement of the board (e.g., 
6 × 6), the space would become much bigger so that we suggest 
establishing a phase-based search. The initial phase is done in 
one pass and generates the states until a reachable depth by all 
threads. Then, the frontiers of each individual thread are carried 
on by all threads in a pass to reach a higher reachable depth. After 

ⓒ 2018 Information Processing Society of Japan 5

Vol.2018-AL-168 No.2
2018/5/25



IPSJ SIG Technical Report

Fig. 8 An example of partitioning the local queue for four splits. 

Fig. 9 The character set found [17] and used as a reference font for pattern-
lookup. Characters are arranged in 3 rows and 32 columns of pat­
terns. Each row and column includes six pixels. From left to right, 
row by row up to down, the patterns represent the characters ‘ ’, ‘!’, 
‘”’, ‘#’, ‘$’, ‘%’, ‘&’, ‘”, ‘(’, ‘)’, ‘*’, ‘+’, ’,’, ‘-’, ‘.’, ‘/’, ‘0’, ‘1’, ‘2’, 
‘3’, ‘4’, ‘5’, ‘6’, ‘7’, ‘8’, ‘9’, ‘:’, ‘;’, ‘¡’, ‘=’, ‘¿’, ‘?’, ‘@’, ‘A’, ‘B’, 
‘C’, ‘D’, ‘E’, ‘F’, ‘G’, ‘H’, ‘I’, ‘J’, ‘K’, ‘L’, ‘M’, ‘N’, ‘O’, ‘P’, ‘Q’, 
‘R’, ‘S’, ‘T’, ‘U’, ‘V’, ‘W’, ‘X’, ‘Y’, ‘Z’, ‘[’, ‘\’, ‘]’, ‘ˆ’, ‘ ’, “’, ‘a’, 
‘b’, ‘c’, ‘d’, ‘e’, ‘f’, ‘g’, ‘h’, ‘i’, ‘j’, ‘k’, ‘l’, ‘m’, ‘n’, ‘o’, ‘p’, ‘q’, 
‘r’, ‘s’, ‘t’, ‘u’, ‘v’, ‘w’, ‘x’, ‘y’, ‘z’, ‘’, ‘—’, ‘’, ‘˜’, and ‘ ⃝c ’, respec­
tively. Note that we ignore the last column of all patterns to adapt 
with our 5 × 6 board for looking up, since it is not filled up. 

Depth States Turn Skips Rival Plays 
0 1 0 0 
1 4 0 0 
2 12 0 0 
3 51 0 0 
4 204 0 0 
5 993 1 1 
6 4,629 0 0 
7 22,880 4 4 
8 114,395 7 7 
9 557,539 106 106 
10 2,733,070 359 329 
11 12,396,346 2,791 2,754 
12 54,972,198 10,331 9,873 
13 213,892,489 61,982 61,121 
14 783,658,713 211,950 206,406 
15 2,399,717,094 1,001,948 991,410 
16 6,649,274,013 2,841,158 2,801,993 
17 14,842,465,438 10,027,682 9,962,281 
18 28,711,051,982 22,927,812 22,787,926 
19 43,297,039,709 58,079,834 57,897,571 
20 53,516,410,536 104,874,332 104,646,686 
21 49,327,239,781 188,837,063 188,618,642 
22 34,458,121,325 261,947,202 261,744,466 
23 16,656,788,055 333,070,297 332,859,774 
24 5,373,298,808 339,160,512 338,932,289 
25 1,004,538,211 291,725,986 291,194,066 
26 83,175,694 190,658,093 186,909,984 

Fig. 10 The numbers of states are shown in the second column as a function 
of depth. The number of states, at which the turn is skipped to the 
opponent, is shown in the third column. The fourth column shows 
the number of states, at which the opponent continues the game. 
Therefore, before reaching the final depth, at 5,811,761 states of 
the board, no player can continue the game. 

the accomplishment of all passes, the second phase is done, and 
the next phase starts in a similar way. At the end of each pass, 
the nodes must be stored on disk according to our suggestion. In 
this way, the set of patterns in the final depth would be finally 
reached. 

Acknowledgements
The first author expresses thanks to Japan Advanced Insti­

tute of Science and Technology for providing a visiting position 
and giving him access to its powerful supercomputers during the 
course of this project. 

References
[1] Buro, M., Ontanon, S. and Preuss, M.: Guest Editorial Real-

Time Strategy Games, IEEE Transactions on Computational Intelli-
gence and AI in Games, Vol. 8, No. 4, pp. 317–318 (online), DOI: 
10.1109/TCIAIG.2016.2601116 (2016). 

[2] Demaine, E. D. and Demaine, M. L.: Fun with fonts: Algorithmic ty­
pography, Theoretical Computer Science, Vol. 586, pp. 111–119 (on­
line), DOI: 10.1016/J.TCS.2015.01.054 (2015 (It was also given as 
an invited talk at the 7th International Conference on Fun with Algo­
rithms (FUN 2014); Lipari Island; Italy; July 13; 2014; pages 1627.)). 

[3] Erik D. Demaine: Mathematical and Puzzle Fonts/Typefaces. 
[4] Federation, B. O.: Forty Billion Nodes Under The Tree (1993). 
[5] Frankland, C. and Pillay, N.: Evolving game playing strategies for 

othello, Evolutionary Computation (CEC), 2015 IEEE Congress on, 
IEEE, pp. 1498–1504 (2015). 

[6] Iwata, S. and Kasai, T.: The Othello game on an n n board is PSPACE­
complete, Theoretical Computer Science, Vol. 123, No. 2, pp. 329– 
340 (online), DOI: 10.1016/0304-3975(94)90131-7 (1994). 

[7] Knuth, D.: The Art of Computer Programming, Volume 1: Fundamen-
tal Algorithms, Addison-Wesley, third edition (1997). 

[8] Korf, R. E., Zhang, W., Thayer, I. and Hohwald, H.: Frontier search, 
Journal of the ACM (JACM), Vol. 52, No. 5, pp. 715–748 (2005). 

[9] Lucas, S. M.: Learning to play Othello with n-tuple systems, Aus-
tralian Journal of Intelligent Information Processing, Vol. 4, pp. 1–20 
(2008). 

[10] Members, U. S. O. A. C.: Upcoming OTHELLO Tournaments (2018). 
[11] Michael Buro: LOGISTELLO’s Homepage (2011). 
[12] Nijssen, J.: Playing Othello Using Monte Carlo, Strategies, pp. 1–9 

(2007). 
[13] Oikawa, T., Yamazaki, K., Taniguchi, T. and Uehara, R.: A Peg Soli­

taire Font, Proceedings of Bridges 2017: Mathematics, Art, Music,
Architecture, Education, Culture (David Swart Carlo H. Séquin and 
Fenyvesi, K., eds.), Phoenix, Arizona, Tessellations Publishing, pp. 
183–188 (2017). 

[14] Ryuhei Uehara: Peg Solitaire Font 5x7. 
[15] Takeshita, Y., Sakamoto, M., Ito, T. and Ikeda, S.: Perfect Play in 

Miniature Othello, International Conference on Genetic and Evolu-
tionary Computing (GEC 2015), Springer, Cham, pp. 281–290 (on­
line), DOI: 10.1007/978-3-319-23207-2 28 (2016). 

[16] Takeshita, Y., Sakamoto, M., Ito, T., Ito, T. and Ikeda, S.: Reduction 
of the search space to find perfect play of 6 6 board Othello (2017). 

[17] Wiki, U.: File:Charset 6x6 192x18.png - Uzebox Wiki (2012). 

ⓒ 2018 Information Processing Society of Japan 6

Vol.2018-AL-168 No.2
2018/5/25



IPSJ SIG Technical Report

1 bit 2 bits 3 bits 4 bits 5 bits 6 bits 7 bits 8 bits 9-16 bits 17-32 bits 
6.01% 42.62% 21.81% 10.92% 3.61% 2.01% 4.47% 2.15% 6.33% 0.06% 

Fig. 11 The minimum number of bits needed for each state to be stored as difference values and the 
percentage of such states in the widest depth of the search tree, i.e., depth 20, for Othello 5 × 6. 
For example, 42.6% of the states need only 2 bits for storage, and more than 93.6% of states 
can be stored using only one byte for each. Such data would be an essential input for our open 
optimization problem of setting memory-efficient parameters. Note that less than 0.000004% of 
the states need more than 32 bits for storage. This shows the power of gapkeep compression. 

Fig. 12 The basket distribution of states among 576 threads in the widest depth of search space. The 
heaviest thread (i.e., 7th thread) manages 0.32% of the expanded states in this depth. Note that 
the original mapping of Othello number system is quite non-uniform. 

ⓒ 2018 Information Processing Society of Japan 7

Vol.2018-AL-168 No.2
2018/5/25



IPSJ SIG Technical Report

‘ ’ 

��

‘!’ 

�

‘”’ 

.h..

‘#’ 

�� h.. 

‘$’ 

���

‘%’ 

�

‘&’ 

�

‘” ��

‘(’ 

���

‘)’ 

�� h.. 

‘*’ 

��

‘+’ 

�

‘,’ 

���

‘-’ ‘.’ 

���

‘/’ 
��� h. 

‘0’ ‘1’ 

�� h.. 

‘2’ 

.�� h..

‘3’ 

���

‘4’ 

� h.. 

‘5’ 

��� h.. 

‘6’ 

��

‘7’ .h..

‘8’ 

h.. 

‘9’ ‘:’ 

�

‘;’ ‘¡’ 

.� h..

‘=’ 

�

‘¿’ 

��� h. 

‘?’ 
� h.. 

‘@’ 

��� h. 

‘A’ 

� h.. 

‘B’ 

�� h.. 

‘C’ 

����

‘D’ 

��� h. 

‘E’ 

�

‘F’ 

���� h.. 

‘G’ ��

‘H’ ‘I’ 

���

‘J’ 

����

‘K’ 

����

‘L’ 

���

‘M’ 

����

‘N’ 

��� h.. 

‘O’ 
����

‘P’ 

���� h. 

‘Q’ 

���� h. 

‘R’ 

�� h.. 

‘S’ 

��

‘T’ ‘U’ 

��

‘V’ 

��

‘W’ 
h. 

‘X’ ‘Y’ 

��

‘Z’ ‘[’ 

����

‘\’ 

�

‘]’ 

�

‘ˆ’ 

���

‘ ’ 
�

“’ 

�� h. 

‘a’ 

���

‘b’ ‘c’ 

��

‘d’ 

�� h. 

‘e’ 

��

‘f’ 

����

‘g’ 
����

‘h’ 

���

‘i’ 

���

‘j’ 

����

‘k’ ‘l’ 

����

‘m’ ‘n’ ‘o’ 
���

‘p’ ‘q’ 

����

‘r’ 

� h. 

‘s’ 

�

‘t’ ‘u’ 

��

‘v’ ‘w’ 
��� h.. 

‘x’ 

����

‘y’ 

� h. 

‘z’ 

�� ��

‘—’ 

� ���� h. 

‘˜’ 

�� h. 

‘ c⃝’‘{’ ‘}’ 
Fig. 13 Othello Font based on a character set [17]. Above each pattern, the necessary transformation(s) 

are shown by symbols to reach the intended character, aligned right beside. ≪�≫ stands for 
a rotation of 180 degrees, ≪�≫ stands for a mirror transformation, and ≪��≫ stands for the 
color exchange. In addition to 96 exact patterns, 13 patterns with the hamming distance of 1, 
13 patterns with the distance of 2, and 4 patterns with the distance of 3 are found for the rest of 
characters. Hamming distances of 1, 2, and 3, are shown using the symbols ≪h.≫, ≪h..≫, and 
≪h..≫, respectively..

ⓒ 2018 Information Processing Society of Japan 8

Vol.2018-AL-168 No.2
2018/5/25


