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Abstract: In this paper we propose a method for constructing a Gray map for a group. In an earlier paper, we sug-
gested a new design principle of Gray maps for groups and tried to apply it to several concrete groups. Though the
trial had some success, the method is not very constructive. In this paper we try to design a more constructive method
based on the semidirect-product structure of the target group.
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1. Introduction

Reza Sobhani [1] designed two methods for constructing Gray
maps for finite p-groups and called them Type 1 and Type 2. Both
methods construct a Gray map as an extension of one for a smaller
group. Type 1 method constructs a Gray map from one for a max-
imal subgroup of the target group naturally, but it doubles the
length of the resulting code. Type 2 method in contrast, generally
constructs a shorter code than Type 1. However, the application
of Type 2 is limited to groups with specific structure, and indeed
our trial [8] on Type 2 construction succeeded for only 6 groups
among all the groups of order 16.

So, we proposed a new design policy for an arbitrary finite
group (not necessary to be a p-group) in Ref. [9]. Our idea for
constructing an n-bit Gray code for group G is to search in the
group of affine permutation of degree n for a subgroup isomor-
phic to G with a suitable property. This method is different from
both Type 1 and Type 2.

In Ref. [9], we showed that our method can reconstruct 4-bit
Gray maps for G2, G3, G7, G8, G9, G12 and G13 *1. Also we
showed that our method is effective for several non-p-groups of
simple type, namely, C2n, C2n+1, D6, D10 and D12. However,
since our construction in Ref. [9] is somewhat ad hoc, we pro-
pose a more constructive method in this paper. After mathemati-
cal preparation in Section 2, we give a rough idea of the method
theoretically in Section 3 and a systematic procedure in Section 4.
We try to apply it to several groups of order 16 in Section 5.

2. Preliminaries

2.1 Hamming-distance, Hamming-weight and Gray Map
In this section we assume that G is a finite 2-group of order 2m.

We review some key definitions and a lemma on a Gray map in
Refs. [1], [5].
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Definition 1 For any two elements u = (u1, u2, . . . , un) and
v = (v1, v2, . . . , vn) in Zn

2, the Hamming-distance between u and v
is defined by

d(u, v)
def.
= |{i | 1 ≤ i ≤ n, ui � vi}|.

The Hamming-distance is indeed a distance on Zn
2 [5].

Definition 2 The Hamming-weight of an element u ∈ Zn
2 is

defined by

w(u)
def.
= |{i | 1 ≤ i ≤ n, ui � 0}|.

Definition 3 A map φ : G → Zn
2 is said to be a Gray map, if

it is an injection and

w(φ(a−1b)) = d(φ(a), φ(b))

holds for all a, b in G.
Lemma 1 (Sobhani [1]) Let φ : G → Zn

2 be a Gray map.
Then,
(1) For g ∈ G we have w(φ(g)) = 0 iff g = e, where e stands for

the identity of G,
(2) For all g in G we have w(φ(g)) = w(φ(g−1)),
(3) For all x, y in G we have w(φ(xy)) ≤ w(φ(x)) + w(φ(y)).
Refer to Ref. [9] for the proof of Lemma 1.

We define a map dφ : G × G → N ∪ {0} by dφ(a, b) =
d(φ(a), φ(b)). Then, dφ is a distance on G clearly.

2.2 Cyclic Extensions
For notational convenience, we use the standard presentation

〈X | Δ〉 of groups by generator X and relation Δ [4].
For example, the cyclic group Cn of order n is represented

as 〈x | xn = e〉, the Klein four group K4 = C2 × C2 as
〈x, y | x2 = y2 = e, xy = yx〉, and C3

2 = C2 × C2 × C2 is repre-
sented as 〈x, y, z | x2 = y2 = z2 = e, yx = xy, zx = xz, yz = zy〉.
The direct product of C4 and C2 is represented as 〈x, y | x4 =

y2 = e, yx = xy〉. Since group C4 ×C2 appears frequently in this
paper we denote it by K8 as in Ref. [2].

Similarly, we denote the dihedral group 〈x, y | xn = y2 =

*1 We follow Wild [2] for the name of groups of order 16. Refer to Re-
mark 3 for each group Gi.
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e, yx = xn−1y〉 of order 2n by D2n, and the quaternion group
〈x, y | x4 = e, y2 = x2, yx = x3y〉 of order 8 by Q8.

Let N be a normal subgroup of G (in symbol N � G). We
denote by ψa the conjugation automorphism of N defined by ele-
ment a ∈ G (namely ψa(x)

def.
= axa−1 for element x ∈ N).

Suppose that G/N 	 Cn and pick any a in G such that the
coset Na has order n in G/N. If we put v = an and τ = ψa, then
v ∈ N, τ(v) = ψa(v) = aana−1 = an = v, and τn = ψa

n = ψan = ψv.
Definition 4 A quadruple (N, n, τ, v) is said to be an extension

type if N is a group, v is an element in N, and τ is an automor-
phism of N such that τ(v) = v and τn = ψv.

Remark 1 An extension type determines the structure of
group G = 〈N, a〉 uniquely.

Remark 2 The set Aut(G) of all automorphisms of a group
G forms a group under composition of mappings. Let X generate
G. Then each θ : G → G in Aut(G) is determined by its values on
X. In particular Aut(C4), Aut(C8), Aut(K8) and Aut(D8) consist
of the following respective functions [2], [9]:

Aut(C4) and Aut(C8) 	 K4

Aut(C4) effect on x Aut(C8) effect on x

ϕ1 x σ1 x

ϕ2 x3 σ2 x3

σ3 x5

σ4 x7

Aut(K8) 	 D8

Aut(K8) effect on x effect on y order of automorphism

ψ1 x y 1
ψ2 x3y x2y 4
ψ3 x3 y 2
ψ4 xy x2y 4
ψ5 xy y 2
ψ6 x3 x2y 2
ψ7 x3y y 2
ψ8 x x2y 2

Aut(D8) 	 D8

Aut(D8) effect on x effect on y order of automorphism

α1 x y 1
α2 x xy 4
α3 x x2y 2
α4 x x3y 4
α5 x3 y 2
α6 x3 xy 2
α7 x3 x2y 2
α8 x3 x3y 2

The group Aut(Q8) is isomorphic to symmetric group S 4 and
the group Aut(C3

2) consists of 7 × 6 × 4 = 168 elements.
Remark 3 In Ref. [2], Marcel Wild denotes the 14 groups of

order 16 (besides the outsider G0 = C2 × C2 × C2 × C2) as fol-
lows (we add the last column to show extension types *2 of each
group.):

*2 An extension type determines the group structure, but a group can have
several extension types even if the base group is fixed. We select a few
of the specific extension types for the reason described later.

G1 = C8 ×C2 (C8, 2, σ1, e), (K8, 2, ψ1, x)

G2 = C8 �σ2 C2 (C8, 2, σ2, e), (D8, 2, α8, x
2), (Q8, 2, β1, e)

G3 = C8 �σ3 C2 (C8, 2, σ3, e), (K8, 2, ψ8, x)

G4 = C8 �σ4 C2 (C8, 2, σ4, e), (D8, 2, α6, e)

G5 = Q16 (C8, 2, σ4, x4), (Q8, 2, β1, x
2)

G6 = C16 (C8, 2, σ1, x)

G7 = C4 × K4 (K8, 2, ψ1, e), (C3
2 , 2, γ1, z), (C4, 4, ϕ1, e)

G8 = D8 ×C2 (K8, 2, ψ3, e), (D8, 2, α1, e), (C3
2 , 2, γ2, e)

G9 = K4 �σ C4 (K8, 2, ψ7, e), (C3
2 , 2, γ3, yz), (K4, 4, σ, e)

G10 = Q8 �τ6 C2 (K8, 2, ψ6, e), (D8, 2, α3, e), (Q8, 2, β2, e)

G11 = Q8 ×C2 (K8, 2, ψ3, x2), (Q8, 2, β3, e)

G12 = C4 �ϕ2 C4 (K8, 2, ψ5, x2), (C4, 4, ϕ2, e)

G13 = C4 ×C4 (K8, 2, ψ1, y), (C4, 4, ϕ1, e),

where the automorphisms of Q8 and C3
2 in the table above are as

follows:

β1 : Q8 → Q8 (x 
→ x3, y 
→ xy),

β2 : Q8 → Q8 (x 
→ x, y 
→ x2y),

β3 : Q8 → Q8 (x 
→ x, y 
→ y),

γ1 : C3
2 → C3

2 (x 
→ x, y 
→ y, z 
→ z),

γ2 : C3
2 → C3

2 (x 
→ x, y 
→ xy, z 
→ z),

γ3 : C3
2 → C3

2 (x 
→ x, y 
→ xy, z 
→ xz).

2.3 Type 2 Gray Maps
In this subsection, we assume that G is isomorphic to the

semidirect product K �ψ H of two finite 2-groups K and H where
ψ : H → Aut(K) is the conjugation homomorphism, i.e., ψh is
the automorphism on K defined by ψh(k) = hkh−1. Suppose fur-
ther that both H and K accept Gray maps θ1 : H → Zn1

2 and
θ2 : K → Zn2

2 , where θ2 is compatible with ψ in the sense that for
all h ∈ H and k ∈ K

w(θ2(k)) = w(θ2(ψh(k))).

Every element g ∈ G can be written uniquely in form kh by an
element k ∈ K and an element h ∈ H. Then, define a map θ from
G to Zn1+n2

2 as

θ(g) = θ(kh) = (θ2(k) | θ1(h)),

where we denote the usual concatenation of vectors by ( | ).
Theorem 1 (Sobhani [1]) The map θ defined above is a Gray

map.
Proof: Let a = kh, b = k′h′ be elements of G. Then

w(θ(a−1b)) = w(θ(h−1k−1k′h′)) = w(θ(ψh−1 (k−1k′)h−1h′))

= w(θ2(ψh−1 (k−1k′)) | θ1(h−1h′))

= w(θ2(ψh−1 (k−1k′))) + w(θ1(h−1h′))

= w(θ2(k−1k′)) + w(θ1(h−1h′))

= d(θ2(k), θ2(k′)) + d(θ1(h), θ1(h′))

= d((θ2(k) | θ1(h)), (θ2(k′) | θ1(h′)))

= d(θ(kh), θ(k′h′)) = d(θ(a), θ(b)).
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Since θ1 and θ2 are injections, θ is clearly an injection.
Remark 4 In Ref. [8], we constructed Type 2 Gray maps for

G0, G7, G8, G9, G12 and G13.
However, compatible map θ2 may not exist and, even if one

exists, it is not very easy to find.

2.4 Embedding to the Group of Affine Permutations and the
Induced Gray Map

In this subsection, we assume that G is an arbitrary finite group
(not necessary to be a p-group).

Define the mapping g : Zn
2 → Zn

2 as g(u) = uP + c for all u

in Zn
2, where c is a fixed element in Zn

2 and P is a fixed permuta-
tion matrix of degree n. (A permutation matrix of degree n is a
n×n-matrix which has exactly one 1 in each row and column and
whose other entries are all 0. As is well known, a permutation
matrix represents just a replacement of coordinates of vectors.)
Since mapping g above is an affine transformation over Zn

2, we
call a mapping of this form an affine permutation [5] of degree n.

Our ideas for constructing a Gray map for an arbitrary group
are to embed the target group in the group of affine permutations.
The key points are that the set of all affine permutations forms a
group with respect to the composition as a transformation from
Z

n
2 to itself and that every affine permutation is an isometry with

respect to the Hamming-distance.
In fact, let g(u) = uP + c and h(u) = uQ + d (we denote them

by [P, c] and [Q, d], respectively) be two affine permutations of
degree n. Then, the composition h ◦ g = [Q, d] ◦ [P, c] is denoted
by [PQ, cQ+d] and is itself an affine permutation. Moreover, the
identity permutation is [E, 0], where we denote by 0 the vector
whose components are all 0, and the inverse permutation of [P, c]
is [P−1, cP−1]. Thus, the set of all affine permutations of degree n

forms a group, which we denote byAP(n).
Next, let us confirm that every affine permutation g = [P, c] is

an isometry. Since P is a permutation matrix and c is a constant
vector, clearly from the definition of the Hamming-distance, for
any u and v in Zn

2

d(g(u), g(v)) = d(uP + c, vP + c) = d(uP, vP) = d(u, v)

holds.
Suppose that G is isomorphic to a subgroup G′ of AP(n). For

simplicity, in what follows, we regard G as identical with G′.
Therefore, an element g ∈ G can be written in form [P, c] by a
permutation matrix P and a constant c ∈ Zn

2. We call c the code-

part of an affine permutation [P, c]. The idea is that we employ
the code-part c as the codeword for element [P, c] in G.

Theorem 2 Let G be a subgroup of AP(n) and consider the
function φ : G → Zn

2 that maps each element [P, c] ∈ G to its
code-part c. Then, φ is a Gray map, if and only if it is an injec-
tion.
Refer to Ref. [9] for the proof of Theorem 2.

Thus, in order to construct an n-bit Gray code for group G, we
only need to search in the group of affine permutation of degree n

for a subgroup isomorphic to G such that map φ is injective.
Remark 5 A permutation matrix is denoted by the symbol

Pπ, where π is a permutation of n elements, namely Pπ is the ma-
trix in which the (i, π(i)) entries are 1 and all the other entries are

0. Henceforth, we mainly employ this notation for permutation
matrices. Note that multiplying a row vector by Pπ permutes the
components of the vector in the following way:

(a1, a2, . . . , an)Pπ = (aπ−1(1), aπ−1(2), . . . , aπ−1(n)),

and that PT
π = P−1

π = Pπ−1 , so

(a1, a2, . . . , an)PT
π = (aπ(1), aπ(2), . . . , aπ(n)).

3. Extension of Embedding Based on
Semidirect-product Structures

In this section we assume that G is isomorphic to the semidi-
rect product G 	 K �ψ H of a normal subgroup K and a subgroup
H where ψ is the conjugation homomorphism. Suppose further
that both K and H can be embedded to the group of affine per-
mutations (described in Section 2.4), namely, there exist embed-
dings φK : K → AP(m), φH : H → AP(n). Assuming that
φK(k) = [Pk, ck] for k ∈ K and φH(h) = [Qh, dh] for h ∈ H, we try
to define an embedding φG : G → AP(m + n).

Any element g in G can be written in form kh by an element
k ∈ K and an element h ∈ H uniquely. We want to embed g = kh

in form φG(kh) =

⎡⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎝
Pkh O

O Qh

⎞⎟⎟⎟⎟⎠ , (ckh | dh)

⎤⎥⎥⎥⎥⎦, where Pkh is some per-

mutation matrix of degree m. In particular, assume that k ∈ K is

embedded in form φG(ke) =

⎡⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎝
Pk O

O E

⎞⎟⎟⎟⎟⎠ , (ck | 0)

⎤⎥⎥⎥⎥⎦ as an element ke

in G. Select an element a ∈ G \ K and let us embed it in form

φG(a) =

⎡⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎝
Pa O

O Qh

⎞⎟⎟⎟⎟⎠ , (ca | dh)

⎤⎥⎥⎥⎥⎦ where a is written as kh by k ∈ K

and h ∈ H . Then, the element ψa(k) = aka−1 is embedded to

⎡⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎝
P−1

a PkPa O

O E

⎞⎟⎟⎟⎟⎠ , (caP−1
a PkPa + ckPa + ca | 0)

⎤⎥⎥⎥⎥⎦ .

So, in order for such an embedding to be successful, it is neces-
sary that

P−1
a PkPa = Paka−1 , (A)

caP−1
a PkPa + ckPa + ca = caka−1 . (B)

If we put ca = 0, then the latter condition (B) reduces to

ckPa = caka−1 . (B’)

In this case, since Pa is a permutation, we have w(ck) =
w(caka−1 ) and Theorem 1 guarantees that the embedding induces
a Gray map. Therefore, a promising candidate for φG(a) is⎡⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎝
Pa O

O Qh

⎞⎟⎟⎟⎟⎠ , (0 | dh)

⎤⎥⎥⎥⎥⎦ with Pa satisfying conditions (A) and (B’).

Moreover, if an element g ∈ G has a code-part of form (0 | dh)
and the coset Ka has order n in H 	 G/K, then φG(an) is written

as

⎡⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎝
Pa

n O

O E

⎞⎟⎟⎟⎟⎠ , (0 | 0)

⎤⎥⎥⎥⎥⎦. So, in order the code part to be injective,

a must have order n also in G and Pa
n must be E. Therefore, if we

want to give a code of form (0 | dh) to element a, we can further
limit the candidate a and Pa as described above.
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4. A Recipe of Semidirect-product Construc-
tion of Gray Maps for Groups of Order 16

Guided by the previous section, here we describe a design
method of Gray maps for groups of order 16 based on the
semidirect-product structure. Our recipe is as follows:
(1) If G has extension type (K, 2, τ, e) and K is embedded in
AP(n) by φK , then:

(1-1) For any k ∈ K define φG(k) =

⎡⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎝
Pk O

O 1

⎞⎟⎟⎟⎟⎠ , (ck | 0)

⎤⎥⎥⎥⎥⎦,

where φK(k) = [Pk, ck].
(1-2) Select an element a of order 2 in G \ K.
(1-3) Search for a permutation matrix Pa of degree n sat-

isfying Pa
2 = E, (A), (B’) and define φG(a) =⎡⎢⎢⎢⎢⎣

⎛⎜⎜⎜⎜⎝
Pa O

O 1

⎞⎟⎟⎟⎟⎠ , (0 | 1)

⎤⎥⎥⎥⎥⎦,

(1-4) Since the other values of φG are automatically deter-
mined, check if φG successfully embeds G toAP(n+1).

(2) If G has extension type (K, 4, τ, e) and K is embedded in
AP(n) by φK , then:

(2-1) For any k ∈ K define φG(k) =

⎡⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎝
Pk O

O E

⎞⎟⎟⎟⎟⎠ , (ck | 00)

⎤⎥⎥⎥⎥⎦,

where φK(k) = [Pk, ck].
(2-2) Select an arbitrary element a of order 4 in G \ K.
(2-3) Search for a permutation matrix Pa of degree n sat-

isfying Pa
4 = E, (A), (B’) and define φG(a) =⎡⎢⎢⎢⎢⎣

⎛⎜⎜⎜⎜⎝
Pa O

O P

⎞⎟⎟⎟⎟⎠ , (0 | 10)

⎤⎥⎥⎥⎥⎦, where P is the permutation matrix

⎛⎜⎜⎜⎜⎝
0 1
1 0

⎞⎟⎟⎟⎟⎠.

(2-4) Since the other values of φG are automatically deter-
mined, check if φG successfully embeds G toAP(n+2).

5. Construction Examples of Gray Maps for
Groups of Order 16

(1) G1 = 〈x, a | x8 = a2 = e, xa = ax〉 	 〈[PT
π1
, c1], [PT

π2
, c2]〉,

where c1 = 10000, c2 = 00001, π1 =
(

1 2 3 4 5
4 1 2 3 5

)
and π2 is the

identity permutation.
(2) G4 = 〈x, a | x8 = a2 = e, xa = ax7〉 	 〈[PT

π1
, c1], [PT

π2
, c2]〉,

where c1 = 10000, c2 = 00001, π1 =
(

1 2 3 4 5
4 1 2 3 5

)
and

π2 =
(

1 2 3 4 5
4 3 2 1 5

)
.

(3) G7 = 〈x, y, a | x4 = y2 = a2 = e, xy = yx, xa = ax, ya =

ay〉 	 〈[PT
π1
, c1], [PT

π2
, c2], [PT

π3
, c3]〉, where c1 = 1000,

c2 = 0010, c3 = 0001, π1 =
(

1 2 3 4
2 1 3 4

)
and π2, π3 are the

identity permutations.
(4) G8 = 〈x, y, a | x4 = y2 = a2 = e, xy = yx, xa = ax3, ya =

ay〉 	 〈[PT
π1
, c1], [PT

π2
, c2], [PT

π3
, c3]〉, where c1 = 1000,

c2 = 0010, c3 = 0001, π1 = π3 =
(

1 2 3 4
2 1 3 4

)
and π2 is the

identity permutation.
(5) G8 = 〈x, y, a | x4 = y2 = a2 = e, xy = yx3, xa = ax, ya =

ay〉 	 〈[PT
π1
, c1], [PT

π2
, c2], [PT

π3
, c3]〉, where c1 = 1000,

c2 = 0010, c3 = 0001, π1 = π2 =
(

1 2 3 4
2 1 3 4

)
and π3 is the

identity permutation.
(6) G9 = 〈x, y, a | x2 = y2 = a4 = e, xy = yx, ax = ya, ay =

xa〉 	 〈[PT
π1
, c1], [PT

π2
, c2], [PT

π3
, c3]〉, where c1 = 1000,

c2 = 0100, c3 = 0010, π3 =
(

1 2 3 4
2 1 4 3

)
and π1, π2 are the

identity permutations.
(7) G10 = 〈x, y, a | x4 = e, y2 = x2, xy = yx3, xa =

ax, ay = x2ya〉 	 〈[PT
π1
, c1], [PT

π2
, c2], [PT

π3
, c3]〉, where

c1 = 11000, c2 = 01100, c3 = 00001, π1 =
(

1 2 3 4 5
3 4 1 2 5

)
and

π2 = π3 =
(

1 2 3 4 5
2 1 4 3 5

)
.

(8) G11 = 〈x, y, a | x4 = e, y2 = x2, xy = yx3, xa = ax, ay =

ya〉 	 〈[PT
π1
, c1], [PT

π2
, c2], [PT

π3
, c3]〉, where c1 = 11000,

c2 = 01100, c3 = 00001, π1 =
(

1 2 3 4 5
3 4 1 2 5

)
, π2 =

(
1 2 3 4 5
2 1 4 3 5

)

and π3 is the identity permutation.
(9) G12 = 〈x, a | x4 = a4 = e, xa = ax3〉 	 〈[PT

π1
, c1], [PT

π2
, c2]〉,

where c1 = 1000, c2 = 0010, π1 =
(

1 2 3 4
2 1 3 4

)
, and π2 =(

1 2 3 4
2 1 4 3

)
.

(10) G13 = 〈x, a | x4 = a4 = e, xa = ax〉 	 〈[PT
π1
, c1], [PT

π2
, c2]〉,

where c1 = 1000, c2 = 0010, π1 =
(

1 2 3 4
2 1 3 4

)
, and π2 =(

1 2 3 4
1 2 4 3

)
.

6. Summary

We propose a constructive method to design Gray maps for
groups of order 16 in this paper.

We have shown that our method can construct Gray maps for
several groups of order 16, namely, G1, G4, G7, G8, G9, G10, G11,
G12 and G13. This method required less time and effort to design
a Gray map than that in the previous paper [9].

However, our recipe failed to construct Gray maps for G5 =

Q16 and G6 = C16 because the groups do not have an exten-
sion type of form (K, 2, τ, e) and so does it for G2 = (C8, 2, σ2, e)
and G3 = (C8, 2, σ3, e) because w(cx) � w(cσ2(x)) and w(cx) �
w(cσ3(x)).

Our next theme is to find a new recipe effective for the failed
groups.
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