EHMMIPFSHYFE J0J53>% Vol.10 No.6 1 (Dec. 2017)
HREIE

~ 7 aMBEDFEIEITEH L 722Ny 7 Ty N —H —
3V G — 2 DR YR

AR BALY) fEAE Dyt
201746 ABARE

Xy 7y MESURNT T LALR(L) &0 b5a) 2230 Ch % Parsing Exprebﬂon Grammar (LT
PEG) 12X o THSURNT 2479 . PEG IZ X 2 CEBANZIEER E 3%, 7077 I Y VI EEOHLO
FLIl R 2 DIEADIERIZEE LI ICHEHTH 5. %ﬁ@PEGN~Z@%Yﬁﬁ%TdE%Y$W%k
TELTZTRT 205, TR LSRN 2 00 72 WIBEICZ20F FTREHICHE S 2w, 728 21,
FRNR—ADOI 7 URIRTH S C 7Y TH & FL 3“% XU UERBEOI— FICHEY 7 R
BH DL IR HA T bﬂ?%.%@ﬁ%,77Dﬁﬁ@uﬁfﬁtv7VAKﬁLTi@%ﬁ%@ﬁ@%ﬁ?%
WEh b, TNERT D20 PEG N— 2D 2 TR L w3 5 &, AR R HE SCRAT
I PEG DDA 2 FAZ) ZOMIERAELEA L) §5LEDNH L. £ T TLFHNETTHL
TN E R A TEBLINY I Ty b= H =TV F—F % C++TEEL, ABEETIIEEDEMIC
OWTHET A, ZOFEREE W TAER L 72 U1 char #1721 T7% < Ti%fﬂﬁ!%l’i?ﬁﬂﬁﬁ@?
(Forward Iterator) % AJJ & LTS 5. #5F 1 tuple - variant - optional - expected 7% & % #A &
HEZT—yEEE LTHLN, BERBEHNCE s THRICEIRT 2 Z LD THETH 5.

Presentation Abstract

Design and Implementation of Packrat Parser Combinator
for Implementing Macro Processor

YosHIKI IMAIZUMIY®) ISAO SASANO!

Presented: June 8, 2017

Packrat parsing is based on Parsing Expression Grammar (PEG), which is more expressive than LALR(1)
and is not ambiguous. So it is useful on describing the syntax of a programming language and implementing
the language. However, it is not suitable to use PEG-based parser generators when we separately implement
lexical analysis and syntax analysis, since existing PEG-based parsers receive only a string. For example,
since a C preprocessor, which is a token-based macro processor, may expand a code fragment that is obtained
by expanding macros, a lexer may process same lexemes more than once in macro expansion. When we do
not use PEG-based parser for avoiding unnecessary lexical analysis, we need to study and use another lexer
and parser. In this presentation we report a packrat parser combinator, implemented in C++, that receives
not only strings but also sequences of tokens. The parser described by the combinator can receive as its input
a Forward Iterator that returns not only characters but also values of any type. The output of the parser is
obtained as a data structure that consists of tuples, variants, optionals and expecteds. We can process the
result by describing semantic actions.

This is the abstract of an unrefereed presentation, and it
should not preclude subsequent publication.

OISR R R B T AR

Graduate School of Engineering and Science, Shibaura In-
stitute of Technology, Koto, Tokyo 135-8548, Japan
2) mal7019@shibaura-it.ac.jp

© 2017 Information Processing Society of Japan

