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Presentation Abstract

Design and Implementation of Packrat Parser Combinator
for Implementing Macro Processor
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Packrat parsing is based on Parsing Expression Grammar (PEG), which is more expressive than LALR(1)
and is not ambiguous. So it is useful on describing the syntax of a programming language and implementing
the language. However, it is not suitable to use PEG-based parser generators when we separately implement
lexical analysis and syntax analysis, since existing PEG-based parsers receive only a string. For example,
since a C preprocessor, which is a token-based macro processor, may expand a code fragment that is obtained
by expanding macros, a lexer may process same lexemes more than once in macro expansion. When we do
not use PEG-based parser for avoiding unnecessary lexical analysis, we need to study and use another lexer
and parser. In this presentation we report a packrat parser combinator, implemented in C++, that receives
not only strings but also sequences of tokens. The parser described by the combinator can receive as its input
a Forward Iterator that returns not only characters but also values of any type. The output of the parser is
obtained as a data structure that consists of tuples, variants, optionals and expecteds. We can process the
result by describing semantic actions.
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