
情報処理学会研究報告
IPSJ SIG Technical Report

彼はクラウドを愛したが、
クラウドは彼を愛さなかった

柏崎 礼生1,a)

概要：クラウドコンピューティングの登場により人々は強大な計算機資源を手に入れることができるよう
になった。クラウドコンピューティングをクラウドコンピューティングたらしめる属性の一つに従量課
金がある。人々が強大な計算機資源を手に入れることと、その代償となる資本は等価交換される。一方で
人々は時として意図せず強大な資源を利用し、意図しない代償の請求に苦悩することがある。本稿では意
図しない利用によりクラウドコンピューティングプロバイダから 1ヶ月で約 580万円を請求された哀れな
一個人の事例を紹介するとともに、その原因を説明し、意図と資本の齟齬を解消し得るモデルを提案する。

He loved the cloud, but the cloud did not love him.

Hiroki Kashiwazaki1,a)

Abstract: People can obtain a huge and a strong power of computing resources by a raise of cloud com-
puting environments. Pay as you go is one of the identical definition of cloud computing environments. If a
person uses the large amount of cloud computing resources, then he must be charged. Meanwhile a person
sometimes can meet the great amount of bill and then be embarrassed. This paper shows a pitiful person
who were charged more than 50 thousands dollars as one month usage fee by a certain cloud computing
provider. And then also the paper explains the reason of the incident, and proposes the model that can be
solve this sort of contradiction between users and providers.

Keywords: cloud computing environment, pay as you go, security, API, design

1. Background

According NIST Special Publication 800-145 [1], “mea-

sured service” is one of essential characteristics of cloud

computing. In the publication, measured service is ex-

plained as follows: “Cloud systems automatically control

and optimize resource use by leveraging a metering capa-

bility at some level of abstraction appropriate to the type

of service (e.g., storage, processing, bandwidth, and active

user accounts)”. And as the footnote of the “capability”

explain it as “Typically this is done on a pay-per-use or

charge-per-use basis”. “Pay-per-use” also known as “Pay

1 大阪大学
Osaka University

a) reo@cmc.osaka-u.ac.jp

as you go” is one of the identical definition of cloud com-

puting. “If you use it, a bill will come*1.” But sometimes

users can meet an unexpected amount of billing state-

ment. Reasons of absence of expectation can be various.

If the billing is unintended, the contradiction of intention

between users and providers make both of them unhappy.

Fortunately (or unfortunately), the author of this pa-

per met an unexpected amount of billing statement from

Amazon Web Service (AWS) on 3rd, February, 2017.

When he got a mail of the statement at that time, he

could not understand the numerical value described in

the mail. He usually utilized only Amazon Elastic Block

Store (EBS) Service and an usual monthly amount of

billing statement was less than 1 U.S. dollar. At that time,

*1 Phil Alden Robinson: Field of Dreams (1989)

1ⓒ 2017 Information Processing Society of Japan

Vol.2017-CSEC-77 No.13
Vol.2017-IOT-37 No.13

2017/5/26

情報処理学会研究報告
IPSJ SIG Technical Report

in that mail, there was an unrealistic numerical number

“JPY 5,797,028”. It was equal to USD 51,125 and also

approximately equal to his annual earnings. At first, he

considered the statement was some kinds of mistakes of

AWS beacause he has not used AWS, especially charged

services, for a long time. Soon after the consideration, he

noticed that he wrote some codes using Amazon Product

Advertising API during a new year holidays. But he also

reminded that he enabled his AWS Multi-Factor Authen-

tication (MFA) and AWS Identity and Access Manage-

ment (IAM) at that time. So he foolishly turned to feel

easy because he could not find any other vulnerabilities of

his AWS account at all and he had proudly confidence in

no fault of him.

Can clever readers guess or infer causation of the

billing? In the next section, this paper show causation

in chronological order.

2. Causation

The causation date back to 2009. The author have writ-

ten a tiny code using Amazon E-Commerce Service (Ama-

zon ECS) to manage his tons of books and motion picture

contents. Though the origin of Amazon ECS can not be

found clearly, according to GitHub repository, a first com-

mit of amazon-ecs rubygems package*2 have committed in

June 2009. Also according to RubyGems, a first version

of amazon-ecs was 0.5.0, published in December, 2006.

A book written by Jason Levitt was published in 2005,

whose title includes “Amazon E-Commerce Service” [2].

It is a probable thing that Amazon ECS launched before

2005.

2.1 amazon-ecs

According to amazon-ecs 0.5.0, users can only set

their :aWS_access_key_id as Amazon::Ecs.options and

query words. Then users can get the result from Ama-

zon.com. The identification of access_key_id was unique

to a user and was used to the associate program of Ama-

zon.com. If users publish the ID (and other users can use

the ID), the users can earn more rewards from the asso-

ciate program. In 2009, Amazon.com changed their ser-

vices and name of the services. Amazon ECS, also known

as Amazon Associate Web Service was altered to “Prod-

uct Advertising API”. Product Advertise API turned to

need a digital signature of users to authenticate per a re-

quest since 15 August, 2009. The package of amazon-ecs

*2 https://github.com/jugend/amazon-ecs

was also updated in keeping with the change since version

0.5.5 on 17 July, 2009 (図 1, 2).� �
Amazon::Ecs.options =

{:aWS_access_key_id => [your developer token]}

res =

Amazon::Ecs.item_search(

’ruby’,

{:response_group => ’Medium’,

:sort => ’salesrank’})� �
図 1 an example code of amazon-ecs 0.5.0

� �
Amazon::Ecs.configure do |options|

options[:aWS_access_key_id] = [your access key]

options[:aWS_secret_key] = [you secret key]

end

res =

Amazon::Ecs.item_search(

’ruby’,

{:response_group => ’Medium’,

:sort => ’salesrank’})� �
図 2 an example code of amazon-ecs 0.5.5

Accidentally, the author lost his interest to manage his

library and felt a loss of motivation to maintain his tiny

code. So he stopped to continue to update his code since

18 February, 2009, according a log of git. The next time

when he turned to maintain his old code was on 1 January,

2017. During his new year holidays in 2017, he started

to renew his code. He found that there were a lot of

changes around Amazon Product Advertising API. First

of all, Multi-Factor Authentication (MFA) was introduced

to login to a console of AWS.

2.2 Multi-Factor Authentication

Generally, a multi-factor authentication is a method of

computer access control in which a user is granted access

only after successfully presenting several separate pieces of

evidence to an authentication mechanism. And typically

at least two of the following categories is needed. Knowl-

edge (something they know), possession (something they

have), and inherence (something they are). A purpose of

MFA was to provide a simple best practice that can add

an extra layer of protection on top of users’ credentials.

With MFA enabled, when a user signs in to an AWS web-

site, they will be prompted for their user name and pass-

word (the first factor―what they know), as well as for

2ⓒ 2017 Information Processing Society of Japan

Vol.2017-CSEC-77 No.13
Vol.2017-IOT-37 No.13

2017/5/26

情報処理学会研究報告
IPSJ SIG Technical Report

図 3 A diagram of Amazon Multi-Factor Authentication (MFA) form factors

an authentication code from their AWS MFA device (the

second factor―what they have). Taken together, these

multiple factors provide increased security for your AWS

account settings and resources. Users can enable MFA

for their AWS account and for individual IAM users that

they have created under their account. MFA can be also

be used to control access to AWS service APIs*3.

According to a first post concerning to MFA to AWS

Security Blog, MFA was launched before at least 30 April,

2013. Four kinds of form factors of MFA is provided

(Virtual MFA Device, Hardware Key Fob MFA Device,

Hardware Display Card MFA Device, and SMS MFA De-

vice). Virtual MFA Device is the only way to use MFA

completely freely (SMS MFA Device may cost SMS or

data charges). Virtual MFA Applications are provided

on several platforms including Android, iPhone, Windows

Phone and Blackberry (Fig.3).

2.3 Identity and Access Management

AWS Identity and Access Management (IAM) was also

introduced at the nearly same time. According to a first

post concerning to IAM to the security blog, IAM was

launched before at least 6 May 2013. And also according

to Japanese AmazonWeb Service Blog, IAM was launched

on 3 May, 2011. IAM is an implementation to separate

privileges and enable user to securely control access to

AWS services and resources. Using IAM, users can create

and manage AWS users and groups, and use permissions

to allow and deny their access to AWS resources*4. With

IAM, users can create multiple IAM users under the um-

brella of their AWS account or enable temporary access

through identity federation with their corporate directory.

In some cases, users can also enable access to resources

*3 https://aws.amazon.com/iam/details/mfa/
*4 https://aws.amazon.com/iam/

across AWS accounts. Without IAM, users must either

create multiple AWS accounts, each with its own billing

and subscriptions to AWS products, or their employees

must share the security credentials of a single AWS ac-

count. In addition, without IAM, users cannot control

the tasks a particular user or system can do and what

AWS resources they might use*5.

The following enumeration describes the canonical use

case for creating an IAM user*6.

(1) create user

(2) give user security credentials

(3) put user into one or more groups

(4) give user a login profile (optional)

To enable IAM to use Amazon Product Advertise API,

users must make a specific user for its use, then al-

low access with using API, CLI and developers tools

including SDK to enable both of access_key_id and

secret_access_key. Then set privileges to the user. At

the time of 1 Jan. 2017, there were no documents con-

cerning to suitable setting of policies to use Product Ad-

vertise API. So users had no candidates without using

the role “AdministratorAccess” or “PowerUserAccess” at

that time. After setting policies to the IAM user, users

can get the credential information of access_key_id and

secret_access_key.

2.4 GitHub

GitHub*7 is a web-based Git or version control repos-

itory and Internet hosting service. It offers all of the

distributed version control and source code management

functionality of Git as well as adding its own features.

*5 http://docs.aws.amazon.com/IAM/latest/UserGuide/

getting-setup.html
*6 https://aws.amazon.com/iam/details/manage-users/
*7 https://github.com/

3ⓒ 2017 Information Processing Society of Japan

Vol.2017-CSEC-77 No.13
Vol.2017-IOT-37 No.13

2017/5/26

情報処理学会研究報告
IPSJ SIG Technical Report

It provides access control and several collaboration fea-

tures such as bug tracking, feature requests, task man-

agement, and wikis for every project*8. Because the au-

thor have managed the tiny code using Amazon Product

Advertise API, he created new repository on his account

on GitHub, then he push the altered code to GitHub on

Jan 1 13:35:09 (GMT). The code included all the infor-

mation of :AWS_access_key_id, :AWS_secret_key, and

:associate_tag. But he found that the code was not se-

cure. Two days ago, he altered his code. Then he commit-

ted and pushed to GitHub on Jan 3 7:32:16 2017 (GMT).

This version of code concealed the credentials to an exter-

nal local file. The main part of the code shows below.

� �
OPTS = Hash.new

OPTS[:configfile] = "conf.yaml"

CONF = YAML.load_file(OPTS[:configfile])

Amazon::Ecs.configure do |options|

options[:aWS_access_key_id]

= CONF[:AWS_accesss_key_id]

options[:aWS_secret_key] = CONF[:AWS_secret_key]

options[:associate_tag] = CONF[:associate_tag]

options[:country] = CONF[:country]

end� �
図 4 a part of code with the latest amazon-ecs

One month later since the push to GitHub, the author

got the billing statement of January 2017 from AWS. Then

and only then, he was sure to be fault of AWS and have

never find his fault because he enforce strength of his ac-

count by enabling MFA. He could not find his fault of

IAM at that time.

3. Response

Firstly, the author called to the customer support of

AWS and he claim his justice and injustice of the billing.

A staff of the support searched Elastic Compute Cloud

(EC2) usage report of the author and the staff made sure

of authentic usage history of EC2 instances whether acci-

dental or intentional. The staff told the author to make

sure the usage report and to stop the active instances.

The author followed the instruction and made sure the

usage and existence of EC2 instances. A number of the

instance was 12 and all of the instance was c3.8xlarge and

c4.8xlarge. c3.8xlarge instance consists of 32 vCPUs, 60

GiB memory and two 320 GB SSD Storage. c4.8xlarge in-

stance consists of 36 vCPUs, 60 GiB memory and 4 Gbps

*8 https://en.wikipedia.org/wiki/GitHub

dedicated Elastic Block Store (EBS) Bandwidth. C3 and

C4 instance are compute optimized instant types. C4 in-

stances are the latest generation of Compute-optimized in-

stances, featuring the highest performing processors and

the lowest price/compute performance in EC2*9. All of

instances were locked and not deleted collectively. The

author deleted all of the instance manually.

3.1 EC2 usage report

Even at that time, the author could not find reasons of

illegal use. He was engaged at that time, he reported the

incident to his fiancée. Then she showed him an URI con-

cerning to illegal use of AWS and billing 6,000 USD*10.

Firstly, he laughed off the information, but immediately

after the laughing, he found that the information was

quite correspond to his incident. He apologized her and

told the staff the reason of illegal accesses. On the repos-

itory of GitHub, the code including secret key was still

there in the “history” of the repository. He deleted the

repository and also deleted the IAM user correspond to

the key.

According to the EC2 usage report of the author, be-

tween 30 and 90 minutes after his pushing to GitHub,

secret key was used by malicious users. As previously

mentioned, the commitment was done on Jan 1 13:35:09

(GMT). Figure 5 shows usage log of Amazon EC2 around

the illegal usage. Until 1 Jan. 2017 14:00:00 (GMT),

the log only shows “CreateVolume” operation that means

only (legal uses of) EBS were there. After 14:00:00, 3

SportUsages of c4.8xlarge, 3 SpotUsages of c3.8xlarge and

1 BoxUsage of c4.8xlarge was started for the first 1 hour.

SpotUsages of c4.8xlarge and c3.8xlarge was finished by

00:00:00 2 Jan. 2017 (GMT).

3.2 billing statement

Figure 6 shows the billing statement of AWS in Jan.

2017. A dominant share of EC2 usage (92.6%) can be

found as a characteristics of the billing. Billing of data

transfer can be negligible (0.007%). Some research col-

league supposed that the illegal usage of EC2 may be

worked to Bitcoin mining. If the author would not delete

and would save the instances just after instruction from

the staff of AWS, the author could search the instances in

detail (but he could not).

*9 https://aws.amazon.com/ec2/instance-types/
*10 http://qiita.com/mochizukikotaro/items/

a0e98ff0063a77e7b694

4ⓒ 2017 Information Processing Society of Japan

Vol.2017-CSEC-77 No.13
Vol.2017-IOT-37 No.13

2017/5/26

情報処理学会研究報告
IPSJ SIG Technical Report

図 5 usage log of Amazon Elastic Comput Cloud (EC2)

図 6 a billing statement of Amazon Web Service in January 2017

4. Reflection

The main causation of the incident and the worst fault

of the author was to upload credentials to public space

(GitHub). That is all. Meanwhile, a lack of documents

can be pointed out. AWS have never provide sufficient

documents concerning to suitable setting of IAM poli-

cies to Productive Advertise API. So some user found

that “AdministratorAccess” or “PowerUserAccess” poli-

cies were only way to use Productive Advertise API and

they wrote the information to their public document such

as technical blogs. Though the information was propa-

gated around world wide web, AWS have never updated

the documents concerning to Product Advertising API.

After the incident, AWS updated the document “Becom-

ing a Product Advertising API Developer”*11 on 10 Feb.

2017. According to the document, users must write the

policy document manually, not by selecting a policy type.

Until a publication of the document, no users on the earth

has any way to know such kind of detail description of pol-

icy document.

AWS also provide “CloudTrail” service to log applica-

tion programming interfaces (APIs) call. The service en-

ables governance, compliance, operational auditing, and

risk auditing of users’ AWS account. With the service,

users can log, continuously monitor, and retain events re-

*11 http://docs.aws.amazon.com/AWSECommerceService/

latest/DG/becomingDev.html

5ⓒ 2017 Information Processing Society of Japan

Vol.2017-CSEC-77 No.13
Vol.2017-IOT-37 No.13

2017/5/26

情報処理学会研究報告
IPSJ SIG Technical Report

lated to API calls across their AWS infrastructure. The

service provides a history of AWS API calls for their ac-

count, including API calls made through the AWS Man-

agement Console, AWS SDKs, command line tools, and

other AWS services. This history simplifies security analy-

sis, resource change tracking, and troubleshooting*12. The

worst point of CloudTrail for Amazon Advertising API is

that the service can not log and monitor Amazon Prod-

uct Advertising API at all. The service can observe other

API calls and to observe all API calls can be help to no-

tify illegal usage of AWS to users. But who can enable

the monitor service that can not monitor the main use of

the users? Though CloudTrail is not expensive service, it

cost, is not free*13.

AWS also provides git-secrets*14. This implementation

prevent users from committing passwords and other sen-

sitive information to a git repository. The implementa-

tion can easily obtain from GitHub and also install with

a package manager Homebrew*15. Though the resolution

seems to be useful, so many users do not have informed

about it.

Sometimes, an integrated consolidation of APIs can

cause such a lack of documentation, interface design, and

collaborations with other services. Finally, AWS rejected

the billing of these EC2 usage on 6 Mar. 2017. Some

accused the author as the lack of thought. That is true.

Meanwhile only to accuse the failure does not make any

productive discussion. The author insists that sufficient

amount and quality of documents may prevent such inci-

dents because victims by a trap of Amazon Product Ad-

vertising API was not only the author.

5. Conclusion

This paper document a record concerning to the illegal

use of AWS secret keys. The paper also warn a huge and

prompt danger to publish the keys on public spaces such

as GitHub.

参考文献
[1] Peter Mell, Timothy Grance: National Institute of

Standards and Technology, U.S. Department of Com-
merce, Special Publication 800-145, The NIST Def-
inition of Cloud Computing, Recommendations of
the National Institute of Standards and Technology,
DOI:10.6028/NIST.SP.800-145 (2011).

[2] Jason Levitt: The Web Developer’s Guide To Amazon

*12 https://aws.amazon.com/cloudtrail/
*13 https://aws.amazon.com/cloudtrail/pricing/
*14 https://github.com/awslabs/git-secrets
*15 https://brew.sh

E-Commerce Service: Developing Web Applications Us-
ing Amazon Web Services And PHP, Lulu.Com, ISBN:
978-1411625518 (2005).

6ⓒ 2017 Information Processing Society of Japan

Vol.2017-CSEC-77 No.13
Vol.2017-IOT-37 No.13

2017/5/26

