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Abstract: Cloud computing has revolutionized information technology, in that It allows enterprises and users to lower
computing expenses by outsourcing their needs to a cloud service provider. However, despite all the benefits it brings,
cloud computing raises several security concerns that have not yet been fully addressed to a satisfactory note. Indeed,
by outsourcing its operations, a client surrenders control to the service provider and needs assurance that data is dealt
with in an appropriate manner. Furthermore, the most inherent security issue of cloud computing is multi-tenancy.
Cloud computing is a shared platform where users’ data are hosted in the same physical infrastructure. A malicious
user can exploit this fact to steal the data of the users whom he or she is sharing the platform with. To address the
aforementioned security issues, we propose a security risk quantification method that will allow users and cloud com-
puting administrators to measure the security level of a given cloud ecosystem. Our risk quantification method is an
adaptation of the fault tree analysis, which is a modeling tool that has proven to be highly effective in mission-critical
systems. We replaced the faults by the probable vulnerabilities in a cloud system, and with the help of the common
vulnerability scoring system, we were able to generate the risk formula. In addition to addressing the previously men-
tioned issues, we were also able to quantify the security risks of a popular cloud management stack, and propose an
architecture where users can evaluate and rank different cloud service providers.
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1. Introduction

Cloud computing is revolutionizing the way society uses com-
puting resources. It promises a new economic model, which is
profitable for both cloud computing service providers and cus-
tomers. Although many industry and academic definitions exist
for cloud computing, the most widely accepted definition origi-
nates from the National Institute of Standards and Technology [1]
(NIST) that defines cloud computing as “a new model for en-
abling convenient, on-demand network access to a shared pool of
configurable computing resources (e.g., networks, servers, stor-
age, applications, and services) that can be rapidly provisioned
and released with minimal management effort or service provider
interaction.” The cloud computing business model permits non-
IT-related companies to focus more on their specialties rather than
their IT infrastructures. However, while cloud computing has nu-
merous benefits, especially in regards to infrastructure costs, it
also has some disadvantages that must be addressed.

In order to reap the stated benefits of cloud computing, it is
necessary to investigate its disadvantages. Indeed, despite all
the benefits, users are still reluctant to adopt cloud computing
because of its security issues identified in numerous survey pa-
pers [2], [3], [4], [5], [6], [7]. These security issues range from
the security of the multi-tenant aspect of cloud computing [8] to
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the loss of control [9].
The current cloud computing model is based on an outsourcing

strategy. Essentially, customers are generally hesitant to entrust
the management of their data to a third party. The issue of trust is
magnified in this case and Cloud Service Providers (CSPs) must
provide the necessary guarantees to convince the customers that
their data will be safe and secure. Furthermore, the fact that the
cloud environment is a shared platform (i.e., all the users’ data are
pooled up and stored in the same physical infrastructure) makes
it a nightmare for CSPs in their endeavor to attract potential cus-
tomers. It is this inherent multi-tenancy aspect of cloud comput-
ing that also dissuades customers from utilizing the cloud.

In this paper, we are exploring the fact that any kind of attack
that can happen in the cloud is the result of an exploitation of
unpatched vulnerabilities. In practice, many vulnerabilities re-
main in a cloud environment after they are discovered. This is-
sue is due to environmental factors (latency in releasing vulner-
ability patches), cost factors (such as money and administrative
efforts required for deploying patches), or mission factors (orga-
nizational preference for availability and usability over security).
Therefore, addressing the problem of security in cloud computing
is a huge challenge.

Cloud computing is widely accepted as having three preem-
inent service models: Infrastructure as a Service (IaaS), Plat-
form as a Service (PaaS), and Software as a Service (SaaS). In
summary, the IaaS service model provides the virtual infrastruc-
ture (networks, bandwidth, virtual machines, volumes, etc.). The
PaaS service model contains the middleware services. The SaaS
service model provides software features that are used by end-
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users via a thin-client. Each of these service models has its inher-
ent security issues but, in this paper, we have decided to validate
this research over the IaaS service model. IaaS is the foundation
of any cloud infrastructure and presents the highest level of multi-
tenancy with the different tenants sharing storage, CPU, network
bandwidth, and memory.

On the other hand, cloud computing has burgeoned to become
the dominant paradigm in information technology (IT). The rapid
development of cloud computing has permitted the emergence
of other important paradigms like cloud management stacks. A
cloud management stack is a set of components that work to-
gether to facilitate the management of a cloud infrastructure sys-
tem. A cloud management stack is, at least, composed of the fol-
lowing components: an external application programming inter-
face (API) that assures the communication between the cloud ser-
vices and external users; a compute service which makes charge
the management of the virtual machines (VMs) on the host ma-
chines in terms of features like creation, deletion or suspension of
VMs; an image service for managing the deployment or registra-
tion of VM images; a volume service that maps persistent storage
used by the VMs; and a network service that helps with the man-
agement of the networks used by the VMs. In addition to the
intrinsic aforementioned components, cloud management stacks
rely on some external services that are critical for its functioning.
Among those external services, the hypervisor is regarded as the
most important. Popular cloud computing management stacks
include OpenStack [10], OpenNebula [11], CloudStack [12], or
Eucalyptus [13]. In this paper, our focus is on OpenStack be-
cause it is the most deployed cloud management software, plus
it has a vibrant community that provides all the necessary doc-
umentation. Since its inception, OpenStack has had numerous
releases; this research considers the HAVANA edition. People
in academia and industry often use OpenStack to deploy their
private clouds. However, with its rapid adoption, OpenStack is
also rapidly beginning to garner attention in the National Vul-
nerability Database (NVD) [14]. Indeed, OpenStack has a total
of 101 vulnerabilities (as of September 2014) that have scores
ranging from 9.0 to 1.9 in the Common Vulnerability Scoring
System (CVSS) [15]. Figure 1 gives a visual description of the
former statement. Furthermore, the logical architecture of Open-
Stack [16] reveals a deep level of interconnectedness between its
different components (services) and subcomponents. We contend
that these two situations, mixed together, could jeopardize the
security of the cloud systems of the different adopters of Open-

Fig. 1 OpenStack presence in the NVD.

Stack. Due to this level of interconnectedness, a successful attack
in one component can turn out to be a successful attack on the en-
tire architecture.

In order to prevent the issues mentioned above, we contend that
the best solution is to quantify security risks in cloud computing.
Our main contribution is a novel approach for quantifying secu-
rity in cloud computing, inspired by Fault Tree Analysis (FTA),
which is commonly used in Probabilistic Risk Analysis (PRA)
(which in turn is used to quantify the risk of failure in highly
mission-critical systems like those of a nuclear power plant). In
FTA, a fault tree is built out of the probable faults that could oc-
cur in the system. A further analysis of the fault tree concludes
in a quantified result that could help decision makers to plan their
future strategy. Our security quantification method consists of the
vulnerabilities of an IaaS that we use to build a Boolean vulner-
ability tree while conforming to FTA rules. The analysis of the
vulnerability tree leads to the extraction of the quantification for-
mula. Risk (R) is generally defined as the likelihood (L) of an
unwanted event to occur multiplied by the impact (I) that partic-
ular event would cause: R = LxI. Using the Common Vulnerabil-
ity Scoring System (CVSS), we were able to generate an impact
sub-formula and a likelihood sub-formula for any single vulner-
ability. We then use the vulnerability tree to generate the Impact
and Likelihood formulas. The final risk value is calculated by
using the traditional risk definition. We were able to prove how
our solution works in a multi-tenant platform, and also presented
a unique architecture for ranking cloud service providers. We fi-
nally used the security risk to perform an analysis of OpenStack
logical architecture. We were able to generate the different secu-
rity vulnerability trees of the components that compose the archi-
tecture, and we were also able to make some recommendations
on a better nomenclature of OpenStack vulnerabilities.

The remainder of the paper is structured as follows. Section 2
is about the related work. In Section 3, we detail our proposal.
Section 4 contains a proof-of-concept of how our method works
in a multi-tenant system. Section 5 is entirely dedicated to the
ranking platform. In Section 6, we showcase the security anal-
ysis of the logical architecture of OpenStack. In Section 7, we
propose a discussion of our findings and give a hint of our future
work. Section 8 concludes the paper.

2. Related Work

Most of the work related to this study comes from reliability
system analysis. Indeed, we make use of the fault tree to perform
our security analysis, which is similar to applying fault tree in
a highly critical system like nuclear power plant systems. To the
best of our knowledge, besides Fall et al. [17], we are not aware of
a similar work that has been conducted in cloud computing, par-
ticularly in OpenStack architecture. Nevertheless, there is some
work related to the security of OpenStack that we can cite as ref-
erence.

Zhai el al. [18] produced the closest work to this research. They
proposed a structural reliability auditing (SRA) technique that
permits the quantification of the vulnerabilities of interdependent
infrastructures in a cloud platform. The operating of the system is
divided in three steps: infrastructure dependency data collection,

c© 2015 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.23 No.4

construction of a fault tree based on the gathered data, and anal-
ysis of the fault tree to estimate the probability of failure of the
top event. They demonstrated the practicality of their system by
implementing it, which also showed the lack of privacy measures
for the data that is being used. Xiao et al. [19] fixed the issue by
adding a privacy aspect to the SRA system. They re-engineered
the 3-step process of Ref. [18]’s work by adding privacy to each
step and using Secure Multi-Party Computation (SMPC). They
were able to evaluate an implemented version of their proposal
on the Sharemind SecretC platform.

Khan et al. [20] proposed an OpenId authentication mechanism
for OpenStack. In their system, OpenId provides authentication
for the user solely while the cloud provider manages the access
control policies. Sasko et al. [21] performed an OpenStack secu-
rity assessment. They set up a system running OpenStack with
virtual machines that separately have Ubuntu, CentOS, Fedora
and Windows operating systems. After running a vulnerability
scan, they concluded that the latter operating system was more
subject to vulnerabilities than the others.

In the same spirit, Donevski et al. [22] proposed a security as-
sessment for virtual machines in open source clouds. They also
used OpenStack and performed their assessment in two different
network situations for the virtual machines: same IP addresses
for floating and fixed IPs, and two different IPs for both. They
were able to label out different test cases that gave different re-
sults that they classified qualitatively and quantitatively by using
the CVSS. Aryan et al. [23] evaluated the degree of compromise
of a cloud environment knowing that, at least one of the compo-
nents is compromised.

A body of work that is similar to our initiative in the cloud
level exists in the enterprise network domain and is called Attack
graph [24]. An attack graph elucidates how multiple vulnerabil-
ities may be combined to launch an attack in an enterprise net-
work. Usually, an attack graph makes use of vulnerability on a
host and evaluates the possibility of propagation towards different
hosts. Different tools have been developed to automatically gen-
erate attack graphs. MulVAL [25] (Multihost, multistage Vulner-
ability Analysis) is a scalable attack graph generator that models
the interaction of the constituents of an enterprise network (soft-
ware bugs, system and network configuration). MULVAL uses
Datalogs as modeling language contrarily to most of the other
tools in this domain; they use model checking. NETSPA [26] (A
Network Security Planning Architecture) is an attack graph tool
that has a primarily preventive role. From the network topology
of an enterprise, NETSPA generates an attack graph of all the
possible paths an attacker can use, which permits network admin-
istrators to take necessary measures for plausible attacks. Topo-
logical Vulnerability Analysis (TVA) [27] is a tool that combines
simulated attacker exploits on a network to discover attack paths
that are used to assess the overall vulnerability of the network.
There also exist commercial tools for vulnerability analysis and
attack graph generation. As instances, Nessus [28], Retina [29]
and Tripwire IP360 [30] are well-known network vulnerability
scanners that provide vulnerability management, vulnerability
analysis and network protection. Skybox security [31] and Red
Seal Systems [32] propose attack graph generators where risk is

calculated in the traditional way: likelihood multiplied by the im-
pact.

On the other hand, despite the fact that it is out of the scope
of this research, we wanted to mention that Failure Mode and Ef-
fects Analysis (FMEA) [33] and Root Cause Analysis (RCA) [34]
compete with Fault Tree Analysis (FTA) [35] on modeling fail-
ures in a given system. We prefer FTA because we contend that
it is more suitable for our research.

3. Proposal: Cloud Computing Security Risk
Quantification

The concept of risk is very complex and the available defini-
tions are sources of ambiguity. Indeed, risk is considered as “the
probability that a particular adverse event occurs during a stated
period of time, or results from a particular challenge” [36]. An-
other definition of risk considers it as “a combination of the prob-
ability or frequency of occurrence of a defined hazard and the
magnitude of the consequences of the occurrence” [37]. These
definitions seem different yet similar as they convey the idea of
an undesired event linked with its consequences. In Information
Technology (IT), risk is defined as “the net negative impact of the
exercise of a vulnerability, considering both the probability and
the impact of the occurrence” [38].

In this research, the concept of risk revolves around the concept
of security vulnerability. A vulnerability is a security weakness
that could be exploited to cause loss of or harm to the assets of a
system. In line with the IT definition of risk, we consider risk as
being the likelihood of a vulnerability being exploited times the
impact of the previous case happening as highlighted in Eq. (1).

Risk = Likelihood × Impact. (1)

In the remainder of this section, we shed the light into our pro-
posal. First we enumerate the security issues we want to tackle.
Afterwards we explain in detail the methodology and the different
tools that helped us to reach our goal.

3.1 Security Risks in Cloud Computing
It is a truism to single out the security issues of cloud comput-

ing as the main obstacles to its adoption, but that does not make it
any less true. Indeed, since the inception of cloud computing as
we know it in the modern era, until now, where it has matured, its
security issues are still alarming. The most obvious security issue
is the loss of control. The main feature of cloud computing is its
capability to host users’ computing resources. The users perceive
that feature as a risk to their data. While it is really attractive,
users are not yet ready to delegate the control of their data to the
cloud administrators who can be malicious. The users’ data can
be leaked inadvertently or consciously to their competitors. In
this research, we do not offer a direct solution for this security
issue. However, we believe that the security issues that we are
directly tackling can lead to a loss of control issue.

The other security point of contention is multi-tenancy. Cloud
computing promotes cheap services for the users. But that implies
some other concessions from the cloud service provider (CSP). In
fact, to be able to host the users’ data at the cheapest price possi-
ble, CSPs host their data on the same platform. In the early days
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of cloud computing, Ristenpart et al. [8] demonstrated that attack-
ers can take advantage of that shared platform to steal the data of
their neighboring tenants. This nagging security issue of cloud
computing is still unresolved. A tenant is quasi-totally oblivious
of the maliciousness (respectively, honesty) of their other fellow
tenants. They do not want to give to each other the benefit of the
doubt and request the CSP to meticulously isolate their interests
from other tenants’ interests.

Another motivating issue is cloud computing ranking systems
based on security. Indeed, as seen in numerous surveys, the main
concern for users is security. Yet researchers continue to focus
on proposing cloud computing ranking systems that are mainly
based on the performances of the cloud service providers. We
are not trying to undermine that valuable research by any means
as they are important to a certain extent, but what really matters
for the adopters of cloud computing is security. Thus, a secu-
rity ranking system that allows users to securely evaluate a CSP
before requesting its services is primordial nowadays. We look
forward to propose a viable solution for this matter.

Recently, we are assisting the rapid development of new tech-
nologies in cloud computing called cloud management stacks.
These technologies facilitate the management of cloud infrastruc-
ture platforms by providing different layers of software solutions
that permit a cloud administrator to easily handle the different
required tasks in their datacenter. Organizations that are looking
forward to building private clouds are euphorically adopting these
software products without evaluating their security. This reminds
us of the beginning of the Internet where researchers developed a
flurry of applications without any care about their security. The
result is that we are continuously trying to fix those early mis-
takes. We want this paper to serve as a wake-up call for all the
aficionados of cloud management stacks to be more security ori-
ented.

3.2 Fault Tree Analysis
A fault tree [35], [39] is a basic tool used as part of a quanti-

tative analysis of a system. It gives rise to a pictorial represen-
tation of an undesirable event in a system in Boolean logic. The
analysis of the fault tree is the process of developing a determin-
istic description of the occurrence of an undesirable event, the
top event, in terms of the occurrence or non-occurrence of other
events called intermediate events. Furthermore, the intermediate
events are deeply explored until the basic events, which represent
the lowest events of the tree, are reached. Each node in a fault
tree represents either an event or a logic gate. The logic gates de-
termine the logical relationship among the events. The events can
be fundamentally different but should belong to the same family,
i.e., when the top event is a successful attack on an infrastructure,
the basics events are successful attacks on some of the compo-
nents that constitute the infrastructure. Additionally, since fault
trees are expressions in Boolean logic, their usage implies that
the events are binary, that is, true or false. Fault tree construc-
tion requires different symbols and notations, some of them are
illustrated in Fig. 2. Practically, the use of various gates can be
helpful to construct a well-detailed fault tree but, in principle, it
is possible to construct any fault tree from the combination of

Fig. 2 List of standard fault tree symbols.

AND and OR gates. Hereafter, we provide some definitions that
are necessary for a better comprehension of fault tree analysis.

Definition 1: A cut set is a collection of basic events such
that if these events occur together then the
top event will certainly occur.

Definition 2: A minimal cut set is a collection of basic
events forming a cut set such that if any of
the basic events are removed, then the re-
maining set is no longer a cut set.

Definition 3: A path set is a collection of basic events
such that if none of these events occur then
the top event will certainly not occur.

Definition 4: A minimal path set is a path set such that
if any of the events are removed then the
remaining set will no longer be a path set.

The minimal cut and path sets are primordial for quantifying
the probability of the top event. Suppose that we have a fault
tree representation with a top event T and several cut sets C1, . . . ,
Cn. From the aforementioned definitions, we know that T is a set
composed of all the possible cut sets of the fault tree:

T = C1 ∪C2 ∪ . . . ∪Cn. (2)

By applying the inclusion-exclusion law of probability [39] to
Eq. (2), we obtain Eq. (4):

P[T ] = P(C1 ∪C2 ∪ . . . ∪Cn). (3)

P[T ] =
n∑

i=1

P[Ci] −
∑

i< j<k

P[Ci ∩C j ∩Ck]

− . . . + (−1)n+1P[C1 ∩C2 ∩ . . . ∩Cn]. (4)

In the subsequent security analysis, we will use this formulation
to perform the security quantification. The Impact and Likelihood

equations are defined as follows:

I[T ] =
n∑

i=1

I[Ci] −
∑

i< j<k

I[Ci ∩C j ∩Ck]

− . . . + (−1)n+1I[C1 ∩C2 ∩ . . . ∩Cn]. (5)

L[T ] =
n∑

i=1

L[li] −
∑

i< j<k

L[li ∩ l j ∩ lk]

− . . . + (−1)n+1L[l1 ∩ l2 ∩ . . . ∩ ln]. (6)
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We will also write vulnerability instead of a fault tree in order
to be more in line with security, but the intrinsic concepts of
fault tree remain intact. In the following section, we explain how
we use the vulnerabilities in the National Vulnerability Database
(NVD) and the Common Vulnerability Scoring System (CVSS)
to achieve our proposal.

3.3 National Vulnerability Database and Common Vulnera-
bility Scoring System

The National Vulnerability Database is a publicly available
database for computer-related vulnerabilities. It is a property of
the United States (US) government, which manages it throughout
the computer security division of the U.S. National institute of
Science and Technology (NIST). The NVD is also used by the
U.S. government as a content repository for the Security Content
Automation Protocol (SCAP). The primary sources of the NVD
are as follows: Vulnerability Search Engine (Common Vulner-
ability Exposure (CVE) and CCE misconfigurations), National
Checklist Program (automatable security configuration guidance
in XCCDF and OVAL), SCAP and SCAP compatible tools, Prod-
uct dictionary (CPE), Common vulnerability Scoring System for
impact metrics, and Common Weakness Enumeration (CWE).

The Common Vulnerability Scoring System (CVSS) [15] is
a vendor-neutral open source vulnerability scoring system. It
was established to help organizations to efficiently plan their re-
sponses regarding security vulnerabilities. The CVSS is com-
prised of three metric groups classified as base, temporal, and
environmental. The base metric group contains the quintessential
characteristics of a vulnerability. The temporal metric group is
used for non-constant characteristics of a vulnerability, and the
environmental metric group defines the characteristics of a vul-
nerability that are tightly related to the user’s environment. We
want our proposal to be sufficiently generic so that it can be uti-
lized at any time by any organization which expressly desires to
adopt a secure cloud computing system. For that reason, we opted
to make exclusive use of a base metric group which provides the
constant characteristics of a vulnerability. In doing so, the vulner-
abilities will not change in relation to either time or organization.
Consequently, the temporal and environmental metric groups do
not feature prominently in our research. The base metric group
regroups essential metrics that are used to compute the score of a
vulnerability: Access Vector (AV) is the metric reflecting how the
vulnerability is exploited; Access Complexity (AC) is the metric
that defines how difficult it is to exploit a vulnerability once an
attacker has gained access to the target system; Authentication
(Au) is the metric that reflects the number of times an attacker
must authenticate to a target in order to exploit a vulnerability;
Confidentiality Impact (C) is the metric that measures the im-
pact on confidentiality of a successfully exploited vulnerability;
Integrity Impact (I) is the metric that measures the impact to in-
tegrity of a successfully exploited vulnerability; and Availability
Impact (A) is the metric that measures the impact to availability
of a successfully exploited vulnerability. The base equation is the
foundation of CVSS scoring; it contains two sub-equations that
are of particular interest in our proposal:

Fig. 3 CVSS parameter details.

Impact = 10.41 × (1−(1−Con f Impact) × (1−IntegImpact)

× (1−AvailImpact)) (7)

Exploitability = 20 × AccessVector × AccessComplexity

× Authentication (8)

We are constrained to slightly amend the previous sub-
equations because their default values range between 0 to 10
whereas we are looking for probabilities like values. The amend-
ment results in Eq. (9) and Eq. (10).

Impact = 1.041 × (1−(1−Con f Impact) × (1−IntegImpact)

× (1−AvailImpact)) (9)

Likelihood = 2 × AccessVector × AccessComplexity

× Authentication (10)

In this research, we consider an impact tree and a Likelihood
tree. The analysis of the aforementioned trees lead to the Eqs. (5)
and (6). Precious information about the parameters used in the
CVSS equations are displayed in Fig. 3. In the subsequent sec-
tions, we will explore three distinct cases that we deem as popular
IaaS cloud deployment. The first case will feature the classic vir-
tualization architecture where we have a server, a virtual machine
monitor and virtual machines. We use that case to epitomize how
to perform a security analysis of a multi-tenant cloud platform.
Our second use case represents a modern architecture that allows
users to compare the security of different cloud service providers
(CSPs). The result of the ranking will give the user a good insight
on which CSP they should use. The final use case focuses on the
security quantification of OpenStack.

4. Multi-tenancy Security Quantification

Computing resources in Infrastructure as a Service (IaaS) cloud
computing are typically consumed using virtual machines. By the
magic of virtualization, a physical machine is represented by sev-
eral virtual machines running their own operating system. The
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Table 1 Vulnerabilities of this example and their impact and likelihood val-
ues.

Components Vulnerabilities Renaming Impact Likelihood

Xen 4.1
CVE-2011-1898 VX1 1 0.44
CVE-2011-1583 VX2 1 0.34

VM1 (Apache 2.0)
CVE-2011-3192 V11 0.69 1
CVE-2011-4317 V12 0.29 0.86
CVE-2011-4415 V13 0.29 0.19

VM2 (MySQL) CVE-2010-1626 V21 0.49 0.39

VM7 (Bind 9.8.0)
CVE-2011-2465 V71 0.29 0.49
CVE-2011-2464 V72 0.29 1

Fig. 4 Vulnerability tree of the use case.

virtual machines are isolated from each other in a multi-tenant
environment. The system providing the abstraction of the hard-
ware and managing the virtual machines is called the Hypervisor
or Virtual Machine Monitor (VMM). Thus, the hypervisor plays
a pivotal role in IaaS (machine virtualization) as it represents the
most important link of the entire infrastructure chain system. The
level of security of the shared resources significantly depends on
the corresponding strength or weakness of the hypervisor. These
factors culminate into the following hypothesis:

Hypothesis 1 In a multi-tenant IaaS cloud, unauthorized
access occurs if and only if the attacker suc-
ceeds in exploiting a vulnerability on the
virtual machine monitor.

This hypothesis is a pretext that we use to define complex attacks,
which are any kind of attacks that involve multiple vulnerabilities
(at least two). This hypothesis constitutes the cornerstone of this
section and is only limited to this section.
Case study
In this case study, we use a cloud infrastructure that is running
XEN-4.1 as hypervisor and has multiple virtual machines. After
a security vulnerability scanner, the administrator discovers the
vulnerabilities exposed in Table 1 with their impact and likeli-
hood values derived from Eq. (9) and Eq. (10) respectively.

The results of the scanner revealed that there are vulnerabilities
in the hypervisor, VM1, VM2, and VM7. The vulnerability tree
of this scenario is shown in Fig. 4.

The significance of this scenario is the presence of multiple
vulnerabilities in some components of the infrastructure: hyper-
visor (two), VM1 (three), and VM7 (two). Before applying our
global formula to the entire system, we do the partial quantifica-

Table 2 Use case: results summary.

Components impact likelihood

Xen 4.1 1 0.6304

VM1 0.8437 1

VM2 (MySQL) 0.49 0.39

VM7 0.4959 1

I[T] 0.9598 0

L[T] 0 0.6304

Risk 0.605

tions for those specific components. For each of the aforemen-
tioned components, we use the equations that we developed ear-
lier to perform the partial Impact and Likelihood quantifications.
Afterwards, we proceed to generate the actual risk quantification.
The results are summarized in Table 2. We consider the vulnera-
bilities to be independent but not mutually exclusive.

The NVD provides a vulnerability severity ratings which is as
follows:
• “Low” for CVSS base scores that range from 0.0 to 3.9
• “Medium” if the vulnerabilities have base scores of 4.0–6.9
• “High” if the CVSS base scores range from 7.0 to 10

As we opted to work with probability-like values, we reduced the
vulnerability severity rating of the NVD to the following:
• “Low” if the risk values range between 0.0–0.39
• “Medium” if the risk values range between 0.4–0.69
• “High” if the risk values range between 0.7–1

Therefore, the risk of this particular use case can be considered to
be MEDIUM. This means that the administrator of the system has
to take rapid actions to patch the vulnerabilities, especially if the
reasons for not updating the system are mission or cost factors.

5. IaaSecEval: Cloud Security Evaluation Ar-
chitecture

In this section, we propose a unique mechanism called IaaSe-
cEval, that can allow a user to evaluate the security of a cloud
service provider before using its services.

As stated in the Introduction of this paper, by a large margin,
the first hurdle to the adoption of cloud computing is security.
However, to the best of our knowledge most of the work that has
been done in ranking cloud providers focuses more prominently
on pricing, performance, sustainability, reliability and neglects
security [40], [41], [42], [43]. We felt that this is a big issue in
cloud computing that needed to be addressed.

Our ultimate motivation is to guide the customer to make a
choice of provider solely based on security. The reality is that
the customer should not worry about the prices of cloud services
because there is a war of cloud prices between the providers [44]
i.e., cloud services are getting cheaper. What it comes down to is
performance versus security. In this work we have opted to fur-
nish security evaluation to the user so that he can make a wiser
choice of CSP.

The CSPs can also use our proposal to evaluate the security of
their platform and make decisions on, for instance, which hyper-
visor they should deploy as primary hypervisors and which ones
they should deploy as secondary hypervisors and so on.

The architecture of our framework is depicted in Fig. 5. The
architecture is dispatched into 13 steps, which we explain here-
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Fig. 5 IaaSecEval architecture.

Fig. 6 Use case data and results.

after: Steps 1, 2, and 3 represent the users inputs. Actually, they
can be done in no particular order. Once the user submits his
requests, the system transfers the queries to the database (Steps
4, 5, and 6). In the database, the system executes the query to
retrieve all the vulnerabilities associated with the hypervisor, the
VM OS, and the Applications that the user inputted but also per-
forms queries regarding the vulnerabilities of all the hypervisor
(respectively VM OS and Applications) that are in the same fam-
ily than the one that the user specified. Afterwards, the results of
the queries are forwarded to the modules that are responsible of
the partial evaluation (steps 7, 8, and 9). Finally, the modules in
charge of the computation do their job, and forward their result to
the interface of the user (steps 10, 11, 12, and 13).

We propose a use case where a user wants to use cloud services
for his data. They have a choice between CLOUD A and CLOUD
B and they use our architecture to compare the two cloud service
providers. Figure 6 contains the details of the use case and the
final results.

6. Security Risk Quantification of OpenStack

In this section, we shed the light on the security levels of the
most popular cloud management stack currently available in the
market. We will elucidate the security interconnections that exist
in OpenStack logical architecture.

6.1 Overview of OpenStack Security Analysis
OpenStack logical architecture [16] is made of seven main

components (note that we use component instead of service to
fit more into the spirit of vulnerability tree analysis). The com-
ponents make use of their application programming interfaces
(APIs) to communicate with each other. We use that architec-
ture to run our security evaluation mechanism, which consists of
using vulnerability trees into the different components of Open-
Stack. The architecture helps us understand the degree of inter-

Fig. 7 Swift vulnerability tree.

connectedness that exists between the different components. The
interconnectedness can compromise the security of the entire ar-
chitecture as it favorites vulnerability propagation. The back-
ground of the main components has already been clarified in the
previous section. We mostly used the Boolean operator OR to
construct our vulnerability trees. That choice is made to give us
more flexibility. The use of other Boolean operators like AND,
for instance, would suggest a very strong dependency between
the subcomponents, which implies that the failure of the entire
component happens if and only if all the subcomponents are vul-
nerable. Nevertheless, we consider the Boolean operator used in
our analysis to be inclusive. We made the assumption that all
the components (respectively subcomponents) that have a direct
connection to the Internet (the end users) are susceptible to being
attacked. That assumption led to the construction of 7 vulnerabil-
ity trees that we examine hereafter. Due to space limitations and
the fact that the process of evaluation is similar, we only provide
details of the top events for one case. A clear comprehension of
Section 3 allows a better understanding of this section. Figure 2
shows a non-exhaustive list of standard fault tree symbols that we
use to construct our vulnerability tree.

6.2 Security Evaluation of Swift
Swift or OpenStack Object Store, is intrinsically composed of

seven subcomponents that are named: memcached, account, con-

tainer, object, account DB, container DB, and Object DB. The
three last mentioned subcomponents are respectively bound to the
three other subcomponents that precede them. The resulting vul-
nerability tree is described in Fig. 7. As Swift is attached to Key-
stone, the vulnerability tree can be developed further in respect to
that attachment.
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Fig. 8 Glance vulnerability tree.

Fig. 9 Nova vulnerability tree.

6.3 Security Evaluation of Glance
Glance is very simple in its composition, consequently the vul-

nerability tree, which is schematized in Fig. 8, is easy to gen-
erate. Glance has connections with Swift, Horizon, Nova, and
Keystone. As a result, the tree can be further expanded in any of
those directions.

6.4 Security Evaluation of Nova
OpenStack Compute or Nova turns out to be the most com-

plicated component of OpenStack in terms of the high level of
interconnection between its contents plus the fact that it can be
accessed from the Internet in two ways. We have constructed
one vulnerability tree that describes the former situation. The
subcomponent nova-api, which we consider as the main subcom-
ponent, is linked to the subcomponents nova-database, Queue,
and nova-cert/objectstore. Queue, in its turn, is linked to the sub-
components nova-consoleauth, nova-scheduler, nova-conductor,
nova-compute, nova-console. The vulnerability tree that resumes
this narrative is depicted in Fig. 9. We indicate that the tree can be
extrapolated due the connections that Nova has with other com-
ponents.

6.5 Security Evaluation of Cinder
The vulnerability tree of OpenStack Block Storage, also known

as Cinder, is simple to construct and is represented in Fig. 10.
Cinder is composed of the subcomponents cinder-api, cinder vol-

ume, volume provider, cinder database and cinder scheduler. The
tree can be developed further as Cinder has connections with
Nova and Keystone.

Fig. 10 Cinder vulnerability tree.

Fig. 11 Neutron vulnerability tree.

Fig. 12 Keystone vulnerability tree.

6.6 Security Evaluation of Neutron
OpenStack Network Service, codenamed Neutron, also has a

simple composition that facilitates the construction of the vul-
nerability tree showed in Fig. 11. Neutron has connections with
Horizon, Nova, and Keystone. Consequently, the tree can be ex-
tended further towards those components.

6.7 Security Evaluation of Keystone
Keystone, which is the security guard of OpenStack, is com-

posed of the subcomponents tocken backend, catalog backend,
policy backend, and identity backend. The vulnerability tree is
described in Fig. 12. Keystone is connected to all the other com-
ponents in that manner. The tree is subject to be developed fur-
ther to accomplish a deeper analysis. We denote the top event
(Keystone vulnerable) K, the basics events: Token backend vul-
nerable, Catalog backend vulnerable, Policy backend vulnerable,
and Identity backend vulnerable, are respectively denoted K1, K2,
K3, and K4. By following the details in Section 3, we are able to
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Fig. 13 Horizon vulnerability tree.

derive the security evaluation, which is given by Eq. (11).

P[K]=P[K1] + P[K2] + P[K3] + P[K4] − P[K1]P[K2]

− P[K1]P[K3] − P[K1]P[K4] − P[K2]P[K3]

− P[K2]P[K4] − P[K3]P[K4] + P[K1]P[K2]P[K3]

+ P[K1]P[K3]P[K4] + P[K1]P[K2]P[K4]

+ P[K2]P[K3]P[K4] − P[K1]P[K2]P[K3]P[K4]. (11)

Let us reiterate that to compute the risk quantification for Key-
stone, we compute first the Likelihood and Impact by using the
previous equation. With the values of the impact and the like-
lihood for each vulnerability derived as explained in Section 3.
Unfortunately, we cannot have a use case because of the vulnera-
bility issue (Section 7) we encountered in this study.

6.8 Security Evaluation of Horizon
Horizon or OpenStack dashboard is very intriguing because it

does not have any particular subcomponent but is linked to all the
other major components, which makes it one of the most critical
components of the architecture. Its vulnerability tree is depicted
in Fig. 13. All the events are deemed intermediate because they
could be extended further.

6.9 Summary
Overall, the security analysis of the logical architecture of

OpenStack is a daunting task. One must know the intricacies
of each component and their different liaisons to effectively per-
form the analysis. We decided to use the Boolean operator OR to
give ourselves more room to flexibly operate the security analysis
but a deeper analysis of the architecture can yield a more on-the-
point security analysis by using more precise Boolean operators.
Some components contain subcomponents that have redundant
connections with other subcomponents. That situation was hard
to design in the vulnerability tree, and we forcibly have to ignore
that redundancy while generating the likelihood and impact of the
top event.

7. Discussion and Future Work

We have developed our proposal based on industry and con-
sumer needs and evaluated its applicability with three different
application scenarios described in Sections 4, 5, and 6. Currently,
many administrators of cloud systems use the CVSS to evaluate
potential reported vulnerabilities, with the resulting score help-
ing to quantify the severity of the vulnerabilities and to prioritize
their responses. They do not have a response in case of mixed,
combined vulnerabilities. Our proposal is a response to these par-

Fig. 14 Current vulnerability naming of OpenStack.

ticular cases.
However, we do not argue that our proposal is the ultimate se-

curity solution that will solve all the security problems in IaaS
cloud systems. The fact that we are only using the base met-
ric group can be subject to discussion. In fact, in our proposal,
we completely omitted the temporal and environmental metric
groups. We believe that their presence in our proposal is a non-
sense as we want to solely use the intrinsic score of the vulnera-
bilities as reported in the NVD, plus the fact that they are optional
gives us a better leverage to ignore them. Nevertheless, if an or-
ganization wants to adopt our method, we recommend them to
include the two omitted metrics as they can help to generate more
accurate impact and likelihood values.

In Section 4, security quantification of multi-tenancy, we made
a strong assumption, which is represented by our hypothesis.
That assumption can be a polarizing notion. Some experts may
not agree that the hypervisor plays such a pivotal role in an IaaS
system. Researchers in academia and industry acknowledge that
the hypervisor is responsible of the security of the virtual ma-
chines but they would not go as far as we did in our argumenta-
tion.

In Section 6, we deployed our security analysis mechanism
and generated the different vulnerability trees that could allow
someone to quantify the security of OpenStack depending on how
many components they wish to use. One of the first issues we
noticed is the complication of the interconnectedness of the com-
ponents. Indeed, if they are taken individually, we can affirm that
the vulnerability trees developed are sound. But when we take
them collectively, we have some components that come back re-
dundantly, hence compromising our vulnerability tree. The result
of the security evaluation in this case will not be optimal because
we do not really know how that redundancy is impacting the eval-
uation.

The other point of contention, which is also considered as a
future work, is the nomenclature of the vulnerabilities. In our se-
curity evaluation, the equations depend heavily on the subcom-
ponents; whilst the naming of the vulnerabilities in the NVD
does not give any indication on which subcomponent was af-
fected by the vulnerability. The descriptions of OpenStack vul-
nerabilities often only indicate the components that are vulner-
able (Fig. 14). The naming of the vulnerabilities is effectuated
by using the Naming specification of the Common Platform Enu-
meration (CPE) [45]. CPE is a standard that is used for the iden-
tification and the description of classes of applications, operating
systems, and hardware devices. The latest version of CPE (CPE
2.3) uses the well-formed CPE name (WFN), which is an abstract
logical construction, to represent the name of the classes of prod-
ucts. There are two methods for binding WFNs into machine-
readable encodings: Uniform Resource Identifier (URI) binding
and formatted string binding. URI binding is used for backward
compatibility with CPE 2.2 [46]; that is why it has a monopo-

c© 2015 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.23 No.4

Fig. 15 Proposed nomenclature for OpenStack vulnerabilities.

listic presence in the NVD. Based on these facts, the equations
for each component would be ‘mono-parametric’. Additionally,
the equation of the entire architecture will be simpler yet hiding
much information i.e., it will not be accurate. Therefore, a new
way of naming OpenStack vulnerabilities is needed. The novel
enumeration should take into account all the different subcompo-
nents that compose OpenStack. As future work, we will propose
the use of a nomenclature system that is adequate to our secu-
rity evaluation. The formatted string binding appear to be a good
choice. Figure 15 gives a hint of what a better nomenclature for
OpenStack’s vulnerabilities should look like by using the format-
ted string binding. But, the intrinsic definition of the CPE forbids
the usage of its binding methods to name a class of product in
a very detailed way. That means that a new binding method is
definitely needed for our proposal.

Our last discussion point revolves around the case of vul-
nerability masking. Indeed, one might argue that in case of a
networked-system the vulnerabilities might not factor in i.e., the
security evaluation is useless in that situation. That theory is true,
and that is why in the introduction of Section 6, we made the
assumption that only the Internet-facing components are consid-
ered in our security evaluation. In our research, an Internet-facing
component is a component that has a direct connection to the
Internet-there is no intermediary infrastructure like a firewall.

Finally, the architecture we considered in this work does not
contain all the services of OpenStack. Indeed, Heat and Ceilome-
ter are not part of the architecture. Consequently, we did not con-
sider them in our security evaluation.

8. Conclusion

Cloud computing is a promising technology that needs to be
protected in order to sustain or further accelerate its adoption. In
that momentum, we proposed a unique mechanism to quantify se-
curity risks in cloud computing. Our solution consists of building
vulnerability (impact and likelihood) trees of IaaS systems and
perform an analysis that results in impact and likelihood formu-
las that lead to the quantified security risk. We built our vulner-
ability trees in regards to the rules and regulations of fault tree
analysis. We showed how our method works in a multi-tenant
cloud system. We made an assumption that hypothesizes that in
a multi-tenant system, an attacker cannot exploit a vulnerability
of a targeted virtual machine without bypassing the hypervisor.
The use case that we provided represents an archetype of how to
use our technique in that particular environment. Furthermore,
we proposed a security ranking architecture that allows users to
rank cloud service providers. The architecture allows the user
to input the features of the different cloud provider they want to
compare. Afterwards, the system automatically queries the vul-
nerabilities associated with those features and computes their risk
values. The example we provided represents an epitome. We

finished by applying the method on the logical architecture of
OpenStack. We were able to generate security vulnerabilities for
the different components of OpenStack but we were not able to
properly quantify the security risk due to the current nomencla-
ture of OpenStack vulnerabilities. We proposed the usage of a
new nomenclature scheme to allow better security quantification
of OpenStack and other similar software products.
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