ooooooooooooobboooboog 2011

Regular Paper

Performance Evaluation of A Testing Framework
using QuickCheck and Hadoop

YUsuKE WaDAT! and SHIGERU KUSAKABE!?

Formal methods are mathematically-based techniques for specifying, devel-
oping and verifying a component or system, in order to increase the confidence
regarding the reliability and robustness of the target. Formal methods can
be used at different levels with different techniques, and one approach is to
use model-oriented formal languages such as VDM languages in writing spec-
ifications. During model development, we can test executable specifications
in VDM-SL and VDM++4. In a lightweight formal approach, we test formal
specifications to increase our confidence as we do in implementing software
code with conventional programming languages. While the specific level of
rigor depends on the aim of the project, millions of tests may be conducted in
developing highly reliable mission-critical software in a lightweight formal ap-
proach. In this paper, we introduce our approach to supporting large volume of
testing for executable formal specifications using Hadoop, an implementation
of MapReduce programming model. We are able to automatically distribute
interpretation of specifications in VDM languages by using Hadoop. We also
apply a property-based data-driven testing tool, QuickCheck, over MapReduce
so that specification can be checked with thousands of tests that would be in-
feasible to write by hand, often uncovering subtle corner cases that wouldn’t
be found otherwise. We observed effect to coverage and evaluate scalability in
testing large amount of data for executable specifications in our approaches.

1. INTRODUCTION

Formal methods are mathematically-based techniques for the specification, de-
velopment and verification of the target systems. Performing appropriate math-
ematical analysis of methods is effective in increasing the confidence regarding
to the reliability and robustness of a design of the target system. We can choose
a specific technique from various formal methods, such as model checking tech-
niques.

11 Graduate School of Information Science and Electical Engineering, Kyushu University
12 Faculty of Information Science and Electrical Engineering, Kyushu University

Instead, in order to increase confidence in our specifications, we use adequately
less rigorous means, such as testing executable specifications. We test executable
specifications to increase our confidence in the specifications as we do in imple-
menting software systems with conventional programming languages. While the
specific level of rigor depends on the aim of the project, millions of tests may be
conducted in developing highly reliable mission-critical software. For example,
in an industrial project using VDM++, a model-oriented formal specification
language), they developed formal specifications of 100,000 steps including test
cases (about 60,000 steps) and comments written in the natural language, and
they carried out about 7,000 black-box tests and 100 million random tests®.

The attitude of coverage which represents the degree to which the source code
has been tested, can be applied to executable specifications. We can get higher
confidence in executable specifications if we have higher test coverage for the
specifications. We expect higher coverage rate when we increase the number of
test cases in lightweight formal approach.

In this paper, we discuss our approach to testing executable formal specifica-
tions, whose naive execution is rather expensive, for large volume of test data
in an elastic way. We try to automatically distribute thousands of test runs of
executable specifications in VDM languages over elastic computing resources by
using Hadoop, an implementation of MapReduce programming model. Generat-
ing so large number of test data seems difficult to perform by hand, which can
provide higher confidence by effectively uncovering subtle corner cases that might
be overlooked by small test data. We apply a property-based data-driven testing
tool over MapReduce so that we can generate large volume of test data, satis-
fying the pre-condition for the specification under test, in an efficient way. We
use a property-based testing tool QuickCheck®, which was originally developed
to support a high-level approach to testing Haskell programs by automatically
generating random input data. We can distribute generation of large number of
test data, as well as test-runs of executable specification for the large number
of test data, and collect coverage information as well as test results from the
distributed environment while observing scalable performance.

The rest of this paper is organized as follows. We briefly explain the VDM
languages in Section 2. In Section 3, we discuss several issues to reduce the cost

© 2011 Information Processing Society of Japan

20 Performance Evaluation of A Testing Framework

of large amount of testing of VDM formal specification using emerging cloud
technology. We outline our framework in Section 4 and evaluate our framework
in Section 5. Finally we conclude in Section 6.

2. VDM: VIENNA DEVELOPMENT METHOD

VDM (The Vienna Development Method) is one of the model based formal
methods, a collection of techniques for developing computer system from formally
expressed models. While VDM was originally developed in the middle of 1970s
at the institution of IBM in Vienna, its support tools, VDM Tools, are currently
maintained by CSK Corporation in Japan. In order to allow machine-supported
analysis, models have to be formulated in a well-defined notation. The for-
mal specification language, VDM-SL, has been used in VDM, which became the
ISO standard language (ISO/IEC 13817-1) in 1996, and VDM++ is its object-
oriented extension version. The VDM Tools provide functionality of dynamic
check of formal specifications in the formal specification languages VDM-SL and
VDM-++, such as interpretation of executable specifications, in addition to static
checks such as syntax check and type check of formal specifications. By using
the interpretor of VDM tools, we can test executable specifications in VDM-SL
and VDM++ to increase our confidence in the specifications as we do in imple-
menting software systems with conventional programming languages. There are
no definitive usage pattern. This paper contains the example of a guideline to
developing a formal model in VDM++V.

In this paper, we especially focus on the step, in which we validate the spec-
ification using systematic testing and rapid prototyping. In light-weight formal
methods, we do not rely on highly rigorous means such as theorem proofs, and
we use testing of executable specification in order to increase confidence in our
specifications. While the specific level of rigor depends on the aim of the project,
thousands of tests may be conducted in developing highly reliable mission-critical
software. When we consider with a performance, it is time-consuming to execute
the specification for large number of test data, and the performance degradation
seems accelerated as the number of tests increases in this case.

ooooooooooooobboooboon 2011

3. LARGE AMOUNT OF TESTING FOR EXECUTABLE SPEC-
IFICATION

Software testing plays an important role in gaining confidence for quality, ro-
bustness, and correctness of software. In this section, first we discuss software
testing. Testing executable specifications share issues with software testing, such
as cost and running time.

A Reducing the cost of testing

As the size and complexity of software increase, its test suite becomes larger
and its execution time becomes a problem in software development. Several
approaches have been used to reduce the cost of time consuming test phases.
Selecting a representative subset of the existing test suite reduces the cost of
testing®?®. In prioritizing tests we execute test cases with higher priority earlier
than lower priority ones®9.

Large software projects may have large test suites. There are industry reports
showing that a complete regression test session of thousands lines of software
could take weeks of continuous execution”™. While each test is independent with
each other, the very high level of parallelism provided by a computational grid
can be used to speed up the test execution®. Distributed tests over a set of
machines aims at speeding up the test stage by simultaneously executing a test

910) A tool aims at executing software tests on Grid by distributing the

suite
execution of JUnit'? test suites over Grid, without requiring modification in the
application and hiding the grid complexity from the user®.

VDMUnit is a framework for unit testing for VDM++ specifications, and it
seems possible to distribute the execution of VDMUnit over Grid like JUnit over
GridUnit. However, we consider an approach to leveraging the power of testing
framework by using MapReduce'® to perform large amount of testing on elastic
cloud computing platform rather than on Grid platform. In our approach, we
will be able to automatically distribute the execution of testing specifications by
using Hadoop over an elastic cloud computing platform. Using a cloud computing
platform may also lower the cost of acquisition and maintenance cost of the test
environment,.

© 2011 Information Processing Society of Japan

30 Performance Evaluation of A Testing Framework

B Elastic platform

We consider an approach to leveraging the power of testing by using elastic
cloud platforms to perform large scale testing. Increasing the number of tests
can be effective in obtaining higher confidence, and increasing the number of
machines can be effective in reducing the testing time. The cloud computing
paradigm seems to bring a lot of changes in many fields. We believe it also has
impact on the field of software engineering and consider an approach to leveraging
light-weight formal methods by using cloud computing which has the following
aspects'®:

(1) The illusion of infinite computing resources available on demand, thereby
eliminating the need for cloud computing users to plan far ahead for pro-
visioning;

(2) The elimination of an up-front commitment by cloud users, thereby allow-
ing organizations to start small and increase hardware resources only when
there is an increase in their needs; and

(3) The ability to pay for use of computing resources on a short-term basis
as needed and release them as needed, thereby rewarding conservation by
letting machines and storage go when they are no longer useful.

We can prepare a platform of arbitrary number of machines and desired con-
figuration depending on the needs of the project.

C Property-based data-driven testing

Since increasing the number of tests is effective in obtaining higher confidence,
huge number of tests may be performed especially in developing mission-critical
software. Conceptually, we can increase the number of test cases on elastic cloud
computing platforms. However, generating test cases by hands can be a bottle-
neck in software development.

In this paper, we use a property-based testing tool QuickCheck®, which sup-
ports a high-level approach to testing Haskell programs by automatically gener-
ating random input data. Property-based data-driven testing encourages a high
level approach to testing in the form of abstract invariants functions should sat-
isfy universally, with the actual test data. Code can be checked with thousands
of tests that would be infeasible to write by hand, often uncovering subtle corner
cases that would not be found otherwise. We try to automatically distribute the

ooooooooooooobboooboon 2011

input elements

© 0000

o
t X { Ty
S AW

output elements _ R)
O0000
Map

Reduce .
inputelements © O O O O

AN EANE A £

 (F) (F)(R) (F
e (Wig Ji)) tf,f’ :ft) Qty result
ini

accumulator(l O O O O O

Fig.1 Concept of map/reduce programming model.

generation of test data for formal specification in addition to the execution of
formal specification.

D MapReduce

While we can prepare a platform of an arbitrary number of computing nodes
and generate an arbitrary number of test cases, we need to reduce the cost of
managing and administrating of the platform and runtime environment.

MapReduce programming model is proposed in order for processing and gen-
erating large data sets on a cluster of machines'®. Input data-set is split into
independent elements, and each mapper task processes the corresponding ele-
ment in a parallel manner as shown in Fig. 1. Data elements are typically data
chunks when processing huge volume of data. The outputs of the mappers are
sorted and sent to the reducer tasks as their inputs. The combination of map/re-
duce phase has flexibility, thus, for example, we can align multiple map phases
in front of a reduce phase.

MapReduce programs are automatically parallelized and executed on a large
cluster of machines. The runtime system takes care of the details of partitioning
the input data, scheduling the program’s execution across a set of machines, han-
dling machine failures, and managing the required inter-machine communication.
Its implementation allows programmers to easily utilize the resources of a large

© 2011 Information Processing Society of Japan

40 Performance Evaluation of A Testing Framework

distributed system without expert skills for parallel and distributed systems.

When using this map/reduce framework, input elements can be test cases, £ can
be an executable specification in VDM languages or actual code fragment under
test, and output elements test results, contains test coverage of an executable
specification.

4. OUR APPROACH

Increasing the number of tests can be effective in obtaining higher confidence,
and increasing the number of machines can be effective in reducing the testing
time. Regarding the number of test cases, preparing an arbitrary large number of
test cases by hand is possible but impractical. Among many tools for testing, a
property-based testing tool, QuickCheck, supports a high-level approach toward
testing Haskell programs by automatically generating random input data as de-
scribed later. We modify QuickCheck to fit to our approach for testing formal
specification with Hadoop. As formal specification languages, such as VDM-SL
for example, share features with functional programming languages, we can ob-
tain formal description necessary to use QuickCheck to generate test data in
VDM-SL. There have been work focusing on their relations!®1%.

We consider an approach to use QuickCheck on elastic cloud platforms. We
can perform testing of arbitrary scale by exploiting such a combination. We can
automatically distribute the generation of test data and the execution of tests in
a scalable manner with Hadoop. We employ Hadoop framework to easily execute
tests in a data-parallel way.

A QuickCheck

QuickCheck is an automatic testing tool for Haskell programs. It defines a for-
mal specification language to state properties. Properties are universally quanti-
fied over their arguments implicitly. The function quickCheck checks whether the
properties hold for randomly generated test cases when they are passed as its ar-
guments. QuickCheck has been widely used and inspired related studies'®'71®),

For the explanation, we use a simple gsort example from a book!®.
gsort :: Ord a => [a]l -> [al]
qsort [] =[]

gsort (x:xs) = gsort 1lhs ++ [x] ++ gsort rhs
where 1lhs = filter (< x) xs

ooooooooooooobboooboon 2011

rhs = filter (>= x) xs

We use idempotency as an example invariant to check that the function obeys
the basic rules a sort program should follow. Applying the function twice has the
same result as applying it only once. This invariant can be encoded as a simple
property. The QuickCheck convention in writing test properties is prefixing with
prop- to distinguish them from normal code. This idempotency property is writ-
ten as a following Haskell function. The function states equality that must hold
for any input data that is sorted.

prop_idempotent xs = gsort (gsort xs) == gsort xs

QuickCheck generates input data for this prop_idempotent and passes it to the
property via the quickCheck function. Following example shows the property
holds for the 100 lists generated.

> quickCheck (prop_idempotent
0K, passed 100 tests.

[Integer] -> Bool)

While the sort itself is polymorphic, we must specify a fixed type at which
the property is to be tested. The type of the property itself determines which
data generator is used. The quickCheck function checks whether the property is
satisfied or not for all the test input data generated. QuickCheck has convenient
features such as quantifiers, conditionals, and test data monitors. it provides an
embedded language for specifying custom test data generators.

Conceptually, we can evaluate property expressions in property-based random
testing in a data-parallel style by using MapReduce framework. Each mapper
evaluates the property for one of the test data and reducer combines the results
from mappers. By applying an automatic testing tool such as QuickCheck on
MapReduce framework, we expect we can greatly reduce the cost of a large scale
testing.

B Implementation

We developed our testing environment by customizing QuickCheck and de-
veloping glues to connect components for testing executable specifications on
Hadoop framework. In this section, we discuss implementation issues.

Fig. 2 outlines this approach. Our approach to implementing property-based
testing on Hadoop is to separate the testing process into two phases. We generate

© 2011 Information Processing Society of Japan

50 Performance Evaluation of A Testing Framework

test data generation (map) test execution (map) foldingtest results(reduce)

’—; L i
1 f 1 i 1

1[Aggregator l
1 Generator } . -| Evaluator } :
@ <~ Aggregator .
<1 Generator } g TestData -| Evaluator i X -
Nl (HDFS) >
pmpenv{ Senaratos] [Evaluator I : Test Result

Side Outputs
(HDFs)

Fig.2 Outline of our approach to propeerty-based data-driven testing.

test data by using mappers, and store the data into a file in the first phase. Then
we can read and split the file, and distribute the data to mappers, where the
property function written in Haskell is evaluated.

Hadoop streaming: Hadoop, open source software written in Java, is a software
framework implementing MapReduce programming model®”). We write mapper
and reducer functions in Java by default in this Hadoop framework. However,
Hadoop distribution contains a utility, Hadoop streaming, which allows us to cre-
ate and run jobs with any executable or script as the mapper and/or the reducer.
The utility will create a mapper/reducer job, submit the job to an appropriate
cluster, and monitor the progress of the job until it completes. When an exe-
cutable is specified for mappers, each mapper task will launch the executable as a
separate process when the mapper is initialized. When an executable is specified
for reducers, each reducer task will launch the executable as a separate process
when the reducer is initialized. This Hadoop streaming is useful in implementing
our testing framework.

Fig.3 shows an overview of our property-based data-driven testing. The
overview of Property-based data-driven testing is as follows: First, we gener-
ate test data according to the specified property. Next, we store the generated
data in a file on HDFS. Finally, in the evaluation phase, we pass the test data to
mappers through the standard input, and the mappers output the results to the
standard output.

Distribution of test data generation: We generate the specified number of ran-
dom test data with mappers in Hadoop framework in a distributed way. However,

ooooooooooooobboooboon 2011

property —— |
main= generator gen_sortinput ‘| Generator | I';]']]
gen_sortinputx =
(not nullx) ==» True

Lo | | * |- RS
= SRS (HDFsS)
where types x::[Int] Generator 152

1- Eval or d
E or

(map)
(2.2,1] Passed 7 4 g I
gnfdf)]' Evaluator |~ Failed 0 :
TestData {22] 1 { Evaluator |- Faled O |
(HDFS) Ry Passd 9 | :
[0,4,-1] Evaluator Falled 0] —3 Side Outputs
=~ (HDFS)
(reduce)
]
Passed 7 [Aggregator .| Passed 24 |
Passed 9 __n e _—— | Failed 0 |
Faled 0
Failed 0O
Failed 0O = & S Map
| Side Outputs o

(HDFS)

Map

Fig. 3 Progress of property-based data-driven testing.

naively splitting the number and assigning the sub-numbers to mappers lead to
useless computing due to overlap of test data generated among different mappers.
We need to avoid increasing the number of redundant test data from the view
point of efficiency and coverage. We modified the generator in QuickCheck to
avoid this problem. We add one extra parameter to check function in QuickCheck
module. The parameter represents the start index of test data and is passed to
test function. After the total number of tests is determined, each mapper is
given different start index according to the number of tests assigned to mappers.

5. PERFORMANCE EVALUATION

In order to examine the effectiveness of our approach, we measured performance

© 2011 Information Processing Society of Japan

60 Performance Evaluation of A Testing Framework

Table 1 The ratio of unique data and standard deviation in generating random data of Int

and float
Original | Native Ours
Unique(%) 34.5 8.3 34.4
Int Std.Dev. 7754.1 966.3 7656.2
Unique(%) 99.6 95.7 99.6

Float Std.Dev. 7684.5 962.0 7729.8

in testing specification of Enigma in VDM++ written in the book". The Enigma
cipher machine is basically a typewriter composed of three parts: the keyboard
to enter the plain text, the encryption device and a display to show the cipher
text. Both the keyboard and the display consist of 26 elements, one for each
letter in the alphabet.

A Distribution of test data generation

In order to see the effectiveness of our distribution of test generation, we com-
pare the number of unique (non-redundant) test data in generating 80000 data for
Int and Float type. Table 1 is the result. ”Original” means using the QuickCheck
original data generator on non-Hadoop environment. ”Naive” means each data
generator for subset starts its index from 1 in generating random test data on
mappers in Hadoop environment. ”Ours” means each data generator knows its
own starting index, each of which is different from each other. According to
the result, we can see effectiveness of our modification as we see no outstanding
difference between ”Original” and ”Ours” while we have some degradation in
"Naive”.

B Coverage

Higher test coverage for a software component leads to the higher confidence
in the component, while coverage rate represents the degree to which the source
code has been tested. This also applies to our approach. We can get higher
confidence in executable specifications if we have higher test coverage for the
specifications. Getting higher coverage is important in our approach, since our
approach is a kind of light-weight formal methods that rely on testing, not formal
proof, in gaining confidence in a formal specification. We expect higher coverage
rate when we increase the number of test cases in our property based approach.

We examine the effectiveness of our approach. VDMTools can report coverage

ooooooooooooobboooboon 2011

of an executable specification, and we can gather coverage data in our approach

as described later. We can observe the change in coverage rate while we change

the number of test cases by changing the parameter value of QuickCheck.

We examined impact of changing test cases on coverage rate in our approach
through the following steps:

(1) We used VDM++ executable specification files for enigma cipher.

(2) We performed property-based data-driven test, in which we generate test
cases by using customized QuickCheck and executed specifications with
VDMTools through command line interface.

(3) Observe the VDM++ class coverage while we alter amount of input test
data.

We run our property-based test ten times for each configuration. We changed the

number of test cases as one, ten, one hundred and one thousand. Fig.4 shows

the results for Rotor.vpp in this experiment.

By using one of the features of VDMTools, we collected coverage information
through this experiment. As we can see from the figure, the larger number of test
cases we use, the higher coverage we have, and the specification file is covered
completely when we use one thousand of test cases.

However, it took long time to execute the specification files for one thousand
of test cases. Next, we examine the effectiveness of parallel and distributed
execution of formal specifications using Hadoop.

C Speedup in Property-based Testing

The configuration of the platform is shown in Table Table 2. We show the
result of elapsed time in Table 3 and in Fig.5. As we can see from the results,
the elapsed time of Hadoop version became shorter when the number of tests was
four hundreds and over. Since Hadoop framework is designed for large scale data
processing, we have no advantage in elapsed time for small set of test data. The
computation node has four processor cores, and we can achieve speedup even
on a single node as Hadoop can exploit thread-level parallelism on multi-core
platforms. Fig. 6 shows the scalability with the changing number of nodes. The
speedup ratio is calculated against the result of the sequential execution for the
tests on a single node. It means the higher the ratio, the more the platform is of
advantage in our testing. As we see in Fig. 6, the increase of the number of slave

© 2011 Information Processing Society of Japan

70 Performance Evaluation of A Testing Framework

coverage

120
100

20

Rotor.wpp coverage [%)
3

10

100
#tests

B average of coverage

1000

Fig.4 Coverages of four configuration of patterns in ten trial.

Table 2 Configuration of the platform in performance evaluation.

NameNode JobTracker Slave
CPU Xeon E5420T | Xeon E5420' | Xeon X33202
Memory 3.2GB 8.0GB 3.2GB
Disk 2TB 1TB 140GB
Table 3 Elapsed time in tests of Enigma specification
Nodes/Tests 100 200 300 400 500 600 800 1000
Single 21.1 67.4 158.1 334.5 492.1 6724 1392.3 2285.5
1 2329 230.1 272.4 267.0 246.2 262.0 369.9 434.4
2 163.8 160.4 179.3 183.2 168.1 160.1 233.5 285.7
3 | 126.4 120.2 123.1 127.3 123.9 126.2 157.2 211.1
4 | 102.9 104.1 104.4 106.1 110.0 114.0 135.1 170.7
5 91.2 90.2 93.9 95.6 99.0 100.0 119.7 145.5
6 86.4 84.7 88.5 88.6 93.5 94.4 110.9 136.0
7 90.3 84.8 85.2 84.4 86.9 91.5 104.4 127.4
8 83.8 78.4 79.4 79.9 83.0 83.9 99.2 117.6

machines is effective in reducing testing time.

1 Intel(R) Xeon(R) CPU EL5410 @ 2.50GHz Quad Core
2 Intel(R) Xeon(R) CPU X3320 @ 2.50GHz Quad Core

ooooooooooooobboooboon 2011

Elapsed time - Enigma

seconds
Serial

=1 node
1000 —*=2 nodes
~8-3 nodes
_/,’—\,/ 4 nodes
M ——5 nodes

= -9
100 — — 6 nodes
~—7 nodes
—E&nodes
10
0 200 400 600 800 1000 4 tects

Fig.5 Elapsed time in increasing the number of tests of VDM++ enigma specification on
the various number of nodes.

6. Concluding Remarks

In this paper, we explained our approach to testing executable formal spec-
ifications in lightweight formal method framework using VDM languages. In
order to increase confidence in the specification, we increase the number of test
cases with a property-based data-driven approach on a cloud computing oriented
programming framework. We apply a property-based data-driven testing tool,
QuickCheck, so that specification can be checked with hundreds of tests that
would be infeasible to write by hand. We investigated coverages of executable
VDM++ model. We can increase of high coverage possibilities by multiplying
test data. However, large amount of test data gains long executing time. Our
framework can deal with this probrem. We observed scalable performance in
conducting large amount of testing for executable specifications. Therefore, we
can both of acquiring high coverage because of large amount of test data and
tuning our platform so that execute the test in time.

As one of future work, we will investigate more detailed performance breakdown
to achieve more efficient environment. We will also try to improve usability of
our framework. VDMTools include test coverage printout tool. We will extend

© 2011 Information Processing Society of Japan

80 Performance Evaluation of A Testing Framework

Speedup - Enigma

20
18 ——1000
16 ——800
o 14 ~8—600
12 ——500
[=%
g 1: ——400
0 —8-1200
j ——200
3 —100
. #tests

Single 1 2 3 4 5 6 7 8
Nodes (4-core each)

Fig.6 Speedup ratio in increasing the number of tests of VDM++ enigma specification on
the various number of nodes. Please note each node has a 4-core processor.

our framework to exploit this tool in a parallel and distributed way to inform
detail coverage information, such as a VDM++ statement covered but another
is not, for more usability.

References

1) Larsen, P.G., Mukherjee, P., Plat, N., Verhoef, M. and Fitzgerald, J.: Validated
Designs For Object-oriented Systems, Springer Verlag (1998).

2) Kurita, T., Chiba, M. and Nakatsugawa, Y.: Application of a formal specificaton
language in the development of the mobile felica IC chip firmware for embedding
in mobile phone, FF'M 2008: FORMAL METHODS, pp.425-429 (2008).

3) Claessen, K. and Hughes, J.: Quickcheck: a lightweight tool for random testing of
haskell programs, ACM SIGPLAN Notices, pp.35(9):268-279 (2000).

4) Graves, T.L., Harrold, M.J., Kim, J.-M., Porter, A. and Rothermel, G.: An em-
pirical study of regression test selection techniques, ACM Transactions on Software
Engineering and Methodology, pp.10(2):184-208 (2001).

5) Wong, W., J.R.Horgan, London, S. and Agrawal, H.: A study of effective regression
testing in practice, Proceedings of the Eight International Symposium on Software
Reliability Engineering (1997).

ooooooooooooobboooboon 2011

6) Kim, J.-M. and Porter, A.: A history-based test prioritization technique for re-
gression testing in resource constrained environments, Proceedings of the 24th In-
ternational Conference on Software Engineering (2002).

7) Elbaum, S., Malishevsky, A.G. and Rothermel, G.: Prioritizing test cases for re-
gression testing, In Proceedings of the International Symposium on Software Testing
and Analysis, pp.102-112, ACM Press (2000).

8) Duade, A., Cirne, W., Brasileiro, F. and Macado, P.: Gridunit: Software testing
on the grid, In Proceedings of the 28th ACM/IEEE International Conference on
Software Engineering, Vol.28, pp.779, ACM (2006).

9) Kapfhammer, G.M.: Automatically and transparently distributing the execution
of regression test suites, In Proceedings of the 18th International Conference on
Testing Computer Software (2001).

10) Hughes, D., Greenwood, P. and Coulson, G.: A framework for testing distributed
systems, In Proceedings of the 4th IEEE International Conference on Peer-to-Peer
computing(P2P’04) (2004).

11) Gamma, E. and Beck, K.: Junit: A cook’s tour, Java Report, pp.4(5):27-38 (May
1999).

12) Dean, J. and Ghemawat, S.: MapReduce: simplified data processing on large clus-
ters, Commun ACM, pp.51(1):107-113 (January 2008).

13) Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.H., Konwinski, A., Lee,
G., Patterson, D.A., Rabkin, A., Stoica, I. and Zaharia, M.: Above the clouds: A
berkeley view of cloud computing, Technical report, UCB/EECS-2009-28, Reliable
Adaptive Distributed Systems Laboratory (February 2009).

14) Borba, P. and Meira, S.: From vdm specifications to functional prototypes, J. Syst.
Softw, pp.21(3):267-278 (June 1993).

15) Visser, J., Oliveira, J.N., Barbosa, L.S., Ferreira, J.F. and Mendes, A.S.: Camila
revival: VDM meets haskell, First Overture Workshop (2005).

16) Arts, T., Hughes, J., Johansson, J. and Wiger, U.: Testing telecoms software with
quviq quickcheck, ERLANG’06: Proceedings of the 2006 ACM SIGPLAN workshop
on Erlang, pp.2-10, New York, NY, USA (2006).

17) Boberg, J.: Early fault detection with model-based testing, Erlang Workshop, pp.
9-20 (2008).

18) Claessen, K., Palka, M., Smallbone, N., Hughes, J., Svensson, H., Arts, T. and
Wiger, U.: Finding race conditions in erlang with quickcheck and pulse, ICFP, pp.
35(9):268-279,2000 (2009).

19) O’Sullivan, B., Goerzen, J. and Stewart, D.: Real World Haskell, Oreilly & Asso-
ciates Inc (2008).

20) Apache: Hadoop, http://hadoop.apache.org/core/ (As of Jun.1, 2009).

© 2011 Information Processing Society of Japan

