
IPSJ SIG Technical Report

An Out-of-order Vector Processing Mechanism

for Multimedia Applications

Ye Gao,†1 Ryusuke Egawa,†2,†3

Hiroyuki Takizawa†1,†3 and Hiroaki Kobayashi †2,†3

Nowadays, multimedia applications (MMAs) form an important workload
for general purpose processors. The vector processing is considered as the most
potential approach for MMAs due to plenty of data level parallelism involved in
them. However, the tradition vector architectures obey an in-order issue policy
(IIP). The IIP issue policy blocks the following instructions to be issued, no
matter whether they are ready to be issued or not.

This paper proposes a media-oriented vector architectural extension with
an out-of-order vector processing mechanism (OVPM). The OVPM overcomes
the inefficiency on utilization of the memory bandwidth and vector functional
units. As a result, the proposed architecture achieves a higher performance
with lower hardware cost than the traditional one. This paper evaluates the
proposed architecture with architectural design parameters and finds out the
most efficient size for the vector architecture when performing MMAs.

1. Introduction

Various multimedia applications (MMAs), such as speech recognition, video

encoder/decoder, provide extraordinarily fantastic services to consumers. The

next generation MMAs have at least two requirements for the coming hardware

devices. One is that they require a higher performance hardware device to match

the demand of high speed and high quality media processing. The other is that

different MMAs are required to perform on the same device because of rapid

development on their varieties. Therefore, the next generation processor that

executes MMAs should have both high performance and high programmability.

In order to meet these two demands, we expand the design space of the vec-

†1 Graduate School of Information Sciences, Tohoku University
†2 Cyberscience Center, Tohoku University
†3 JST CREST

tor architecture to enhance the potential of general purpose processors (GPPs)

on MMAs. The vector architecture is able to accelerate MMAs by effectively

exploiting DLP [1], which is massively involved in MMAs. However, traditional

vector processors have been mainly designed for scientific and engineering do-

mains [2] [3]. They have extremely long vector registers and obey the in-order

issue policy. The in-order issue policy leads to the inefficiency use of memory

bandwidth and functional units, because it prevent the following instructions

from being issued.

Regarding scientific applications, they have very long vector lengths in their

algorithms, they can efficiently use the long vector registers to hide the latency

of pipeline stalls caused by in-order policy. However, MMAs own shorter vector

lengths than scientific applications. Short vector lengths lead to exposing the

latencies caused by pipeline stalls due to in-order issue policy. Therefore, the

traditional vector processor cannot execute MMAs efficiently.

This paper proposes a media-oriented vector architecture with an out-of-order

(OoO) vector processing mechanism (OVPM) to overcome the inefficiency on

processing short vectors. First, we analyze the behavior of the traditional vector

architectures which obey an in-order issue policy and clarify their inefficiencies in

performing MMAs. Second, a vector microarchitecture with OVPM is proposed

to improve the inefficiency of the in-order issue policy. Third, two kinds of OoO

issue policies are proposed in this paper. One is a load-forwarding policy (LFP),

which means that only a memory access instruction can be issued in an OoO

fashion. The other is a complete OoO policy (COP), meaning that all the vector

instructions enable to be issued in an OoO fashion. Fourth, the proposed vector

architecture is evaluated with several architectural design parameters to find out

an efficient configuration.

The rest of the paper is organized as follows. Section 2 illustrates the related

work of this paper. Section 3 discusses the limitations of the in-order policy

when performing MMAs. Section 4 proposes a novel vector architecture with an

OVPM for MMAs in order to overcome the inefficiencies of the in-order policy.

Section 5 evaluates the proposed mechanism, and Section 6 gives the conclusions

of this paper.

1 c© 2010 Information Processing Society of Japan

Vol.2010-ARC-190 No.24
2010/8/4

IPSJ SIG Technical Report

2. Related Work

A popular approach to high-performance computing of MMAs with high pro-

grammability is to extend GPPs with SIMD instructions. The modern SIMD

extensions support 4-way parallel processing [4] [5], even though the next gener-

ation product such as AVX [6] only supports 16-way parallel processing. For this

kind of approach, the limited parallel processing ability of hardware cannot sat-

isfy the requirement of high performance for the next generation MMAs, which

own a large amount of DLP.

Compared with the SIMD architectural extension, a vector architectural exten-

sion has higher ability to process data parallelism by using parallelized arithmetic

pipelines and large capacity vector registers [7]. It employs a latency-tolerant

load/store unit with an interleaved memory system that has a contribution to

hide long memory latency. In this way, the vector architectural extension can be

expected to achieve much higher performance than the SIMD extension.

Graphics processing units (GPUs) are the emerging high performance proces-

sors by using the SIMD and MIMD. GPUs employ context switching approach

to hide the pipeline stalls. A group that constituted by several threads is a ba-

sic switching unit [8]. When a group is blocked in a GPU, the context will be

switched to execute another group to hide the stall. The ability of hiding stalls

depends on the number of groups. The more groups are, the higher the abil-

ity of hiding stalls is. The number of groups is determined by the number of

each group’s execution context size, which is assigned by hardware thread sched-

uler according to the number of registers in the group. Therefore, sometimes, the

number of groups is not big enough to hide the pipeline stalls. In that case, GPUs

will expose the pipeline stalls latencies and their performance will be decreased.

The vector architecture is one of the most potential candidates for media pro-

cessing. Kozyrakis et al. [9] have proposed the Vector IRAM (VIRAM) architec-

ture, which is a register-to-register vector architecture. The VIRAM architecture

supports small data sizes and flexible vector length controlled by a dedicated reg-

ister. It also provides various memory access patterns such as strided and indexed

accesses. Although VIRAM is modified to include the memory latency in pipeline

stages, it underutilizes the memory bandwidth due to the in-order issue policy,

for(i = 0; i < N; i += vectorLength)
{

1: vload va0, addr1
2: vload va1, addr2
3: vadd va2, va0, va1
4: vstore va2, addr3

}

(a) Simple Example of Application Kernel

Pipeline stage

vload

vload

vadd

vstore

vload vload

vstore

vadd

vload

vstore

vload vload

vadd
vstore

vload vload

vadd
vstore

vload vload

vadd
vstore

vload

vadd

Pipeline stage

cycles

VLSU Pipeline

VFUs Pipeline

VLSU Pipeline

VFUs Pipeline

cycles

VLSU Pipeline

VLSU Pipeline

(b) Time Chart of the Conventional Vector Architecture with Long Vector Register

(c) Time Chart of the Conventional Vector Architecture with Short Vector Register

Fig. 1 Time Chart of the Behavior of In-order Issue Policy.

which makes the vector pipelines frequently stalled.

3. Inefficiency of In-order Issue Policy

Most of the modern vector architectures such as [10] obey the in-order issue

policy. Figure 1(a) presents an example of a simple loop to illustrate the inefficient

memory accesses of in-order vector architectures, and its time chart is shown in

Figure 1(b). Each parallelogram in Figure 1 shows a vector pipeline operation.

The behavior of the traditional vector architecture is summarized as follows.

(1) The first and second instructions: Vector load instructions, vload, are de-

coded and executed by generating the memory addresses at the address

generation unit (AGU).

(2) The third instruction: A vector addition instruction, vadd, is decoded and

then stalled in the issue stage until va0 and va1 are ready.

(3) The fourth instruction: A vector store instruction vstore is stalled in the

2 c© 2010 Information Processing Society of Japan

Vol.2010-ARC-190 No.24
2010/8/4

IPSJ SIG Technical Report

I Cache Fetcher

IFQ

Decoder

GPP

LSUFUs

General Purpose
Registers

D Cache

Main Memory

Vector Extension

VMIBVAIB

VRIB

Vector Registers

VLSU VFUsAGU

Vector Execution Units

Fig. 2 Block Diagram of Proposed Vector Micro-Architecture.

decode stage unless the previous instruction vadd is issued, because of the

in-order execution policy for the traditional vector architectures. Then, it

is stalled in the issue stage to wait for the results from the vadd due to the

input data dependency.

(4) The fifth instruction: The first instruction of the second iteration (vload) is

stalled in the decode stage, unless the last instruction (vstore) of the first

iteration is issued, no matter whether its operands are ready or not. This

makes the first vload of the second iteration expose the memory latency.

The exposure of memory latency occurs in each iteration. The following

instructions show the same behavior as these five instructions.

As a result, the vector store instruction is held in the issue stage. It blocks the

following instructions, such as the vector load instruction for the second loop,

from being issued. The same stall will occur in each iteration, resulting in a large

performance loss. In addition, as shown in Figure 1(c), since the problem size is

fixed, a long vector register means that the number of data can be processed by

Table 1 New Hardware Units for Proposed Vector Architecture.

Hardware Unit Abbreviation
Vector Arithmetic Instruction Buffer VAIB

Vector Memory Instruction Buffer VMIB
Vector Ready Instruction Buffer VRIB

Vector Function Units VFUs
Vector Load and Store Unit VLSU

Address Generation Unit AGU

one instruction increases and the number of iterations decreases. Therefore, for

the traditional vector architectures, it is needed to use long vectors to keep the

performance.

However, long vector registers have several drawbacks for executing MMAs as

follows.

• Not all of MMAs have a very long vector length. This means that the applica-

tions with a short vector length would underutilize the long vector registers.

• Long vector registers lead to a high hardware cost on occupation areas, power

consumption and access latency [11].

• Long vector registers imply a small number of vector registers due to the

restrictions of area, power consumption and so on. A small number of vector

registers lead to register conflicts which would decrease the performance.

Therefore, a newly-designed vector architecture for MMAs is required to effi-

ciently process short vectors in terms of hardware efficiency.

4. OoO Vector Processing Mechanism

This section proposes a novel media-oriented vector architecture as illustrated

in Figure 2. In order to perform a vector instruction, the proposed architecture

introduces new hardware units listed in Table 1. Those units are colored dark

blue in Figure 2. In Figure 2, I Cache, IFQ, FUs, LSU, and D Cache represent

an instruction cache, an instruction fetch queue, functional units, a load/store

unit, and data cache, respectively.

4.1 Hardware of OVPM

The OVPM is proposed in order to overcome the problem caused by the in-

order issue policy. There are three main hardware units that are renaming unit,

reorder unit and commit unit to realize the OVPM. The renaming unit is used to

3 c© 2010 Information Processing Society of Japan

Vol.2010-ARC-190 No.24
2010/8/4

IPSJ SIG Technical Report

remove the false data dependence including the write-after-write and write-after-

read. It is also responsible for checking the true data dependence read-after-write

among instructions [12].

Regarding the reorder unit, we add two new instruction buffers, VAIB and

VMIB, in the vector datapath as the reorder buffers. The proposed OVPM

adopts a physical register file based approach, which just contains a few bits

to identify instructions and input/output registers without the value of vector

registers. In this way, the VAIB and VMIB can be implemented at a small

hardware cost.

The commit unit is used to retire the renamed register in a register alias table

contained in the rename unit and instructions in VAIB and VMIB by instruction

sequence if the corresponding instruction is finished.

In order to decrease the hardware overhead of OVPM, the proposed vector ar-

chitectural extension use the GPP’s the commit unit and rename unit to perform

the renaming and commit process.

4.2 Instruction Issue Policies

Two kinds of issue polices are proposed in this paper: LFP and COP. LFP only

supports memory instruction to be issued in an OoO fashion in order to improve

the utilization efficiency of memory bandwidth. While, COP allows both memory

instruction and arithmetic instruction to be issued in an OoO fashion, aiming at

the efficient use of the vector function units as well as memory bandwidth.

The vector instructions are fetched, decoded, and renamed in the scalar. Then

the vector memory instructions and arithmetic instructions are delivered to

VMIB and VAIB, respectively. In the issue stage, for both LFP and COP,

VMIB issues an instruction to VRIB as long as all of its operands are ready.

The difference between LFP and COP is that the former policy issues arithmetic

instructions in order while the latter does out-of-order. In this way, these policies

can prevent underutilization of memory bandwidth and vector function units that

is caused by the conventional in-order policy. Figure 3 uses the same example

as shown in Figure 1 to compare the behavior of the LFP OoO mechanism with

that of in-order execution. The procedure is described as follows.

(1) The first and second instructions: A vector load instruction vload is de-

coded and executed as long as the memory addresses for vload are generated

Table 2 Processor Configuration.

Vector ALU operation latency/issue latency 10/1 cycles
Vector multiplier operation latency/issue latency 10/1 cycles
Vector division operation latency/issue latency 15/1 cycles

Vector ALU number/pipeline number 1/8 cycles
Vector multiplier number/pipeline number 1/8 cycles
Vector division number/pipeline number 1/8 cycles

Vector register num/size 8/8192 bits
Frequency / Peak Performance 1 GHz / 16 Gflop/s

by AGU.

(2) The third instruction: A vector addition vadd is decoded and stalled in the

issue stage due to the dependency between va0 and va1. The vadd is not

issued until its input data from two vload instructions become ready.

(3) The fourth instruction: A vector store instruction vstore is decoded and

stored in VMIB. The vstore stays in VMIB to wait for the results from the

vadd due to data dependency.

(4) The fifth instruction: The first instruction of the second iteration (vload)

is decoded and dispatched to VMIB. As long as its operands are ready, it

is delivered to VRIB, no matter whether it is the first element in VMIB

or not. In this way, the first vload of the second loop can be issued rather

than be stalled by the previous instruction that has not been issued yet.

As mentioned above, the proposed vector architecture can keep executing mem-

ory access instructions and efficiently hide the memory latency. Therefore, as

Figures 3 (a) and (b) show, the proposed load-forwarding mechanism can handle

the short vectors efficiently to take advantage of memory bandwidth.

5. Performance Evaluations

5.1 Experimental Setup

5.1.1 Processor Model

We developed a simulator of the proposed architectural extension based on

the SimpleScalar toolset [13] to investigate its performance on media workloads.

The vector instruction set is implemented by manually inserting vector instruc-

tions as instruction annotations to PISA instruction set. Table 2 summarizes

the parameters of the vector architectural extension. The peak computational

4 c© 2010 Information Processing Society of Japan

Vol.2010-ARC-190 No.24
2010/8/4

IPSJ SIG Technical Report

Pipeline stage

vload

vadd

vstore

vload vload

vstore

vadd

vload

vstore

vload

vadd
vstore

vloadvload

vadd
vstore

vloadvload

vadd
vstore

vload

vadd

cycles

VLSU Pipeline

VFUs Pipeline

VLSU Pipeline

VFUs Pipeline

cycles

vload vload

Pipeline stage

VLSU Pipeline

VLSU Pipeline

(b) Time Chart of the Proposed Vector Architecture
with Short Vector Register

(a) Time Chart of the Proposed Vector Architecture
with Long Vector Register.

Fig. 3 Time Chart of Load-Forwarding Mechanism.

performance of the vector extension is achieved when both vector adder and mul-

tiplier are working at the same time by a chaining mechanism. Accordingly, the

peak computational performance of a vector extension is 16 Gflop/s.

The baseline processor whose frequency is 3.2 GHz is a 4-way superscalar pro-

cessor without vector architectural extensions. We assume that it can achieve

peak computational performance when four floating point function units work

simultaneously. Therefore, the peak computational performance of the baseline

scalar processor is 12.8 Gflop/s.

5.1.2 Benchmark Programs

Six multimedia benchmarks are introduced to evaluate the architectural im-

plications of GPPs with vector extensions. Table 3 lists the benchmarks along

with their brief descriptions. Those benchmark programs are selected from the

PARSEC benchmark suite [14] and ALPbench benchmark suite [15]. Both of

them include emerging MMAs containing massive DLP.

The evaluation is performed in the following steps. First, in advance of the

performance evaluation, hot kernels of each benchmark program are detected

by using the profiling tool, Gprof. Second, the kernel codes efficient for vector

processing are extracted from the benchmark programs. Third, these kernels are

compiled to assembly codes by the sxcc [16], which is a C compiler for NEC

Table 3 The Descriptions of Benchmarks.

Vectorization Vector
Benchmarks Domain Ratios Length

sphinx3 speech recognition 99.4% 4096
faceRec face recognition 98.3% 173

raytracer animation 99.6% 1080
vips image processing 98.3% 79

M x M matrix-matrix multiplication 98.9% 1000
V x M vector-matrix multiplication 99.1% 1000

0

1

2

3

4

5

6

7

8

9

sphinx3 faceRec raytrace vips MxM VxM

G
fl
o
p
/s

Scalar Processor In-order Issue Vector Architecture Proposed Vector Architecture with LFP

Fig. 4 Sustained Performance (Gflop/s) Evaluation.

SX series vector supercomputers. Using the optimized assembly codes generated

by sxcc, the key computation part of each kernel is manually replaced with the

embedded assembly code of vector extension instructions. Fourth, the source

code is cross-compiled to the binary code by using the Simplescalar’s C compiler.

Finally, the binary codes with embedded vector instructions are used for the

simulation.

5.2 Evaluation Results

5.2.1 Base Performance

We compared the sustained performance of proposed architectural extension

with LFP, the baseline scalar processor and the traditional one. The maximum

vector length (MVL) is 256, which value is used in most of traditional vector

processors. In this paper we use MVL to represent length of a vector register,

because their values are often the same. VAIB and VMIB store up to 512 entries

5 c© 2010 Information Processing Society of Japan

Vol.2010-ARC-190 No.24
2010/8/4

IPSJ SIG Technical Report

0

2

4

6

8

10

12

14

sphinx3 faceRec raytrace vips MxM VxM

G
fl
o
p
/s

Proposed Vector Architecture with LFP Proposed Vector Architecture with COP

Fig. 5 Impact on Different Issue Policies.

in the proposed vector architecture.

Figure 4 shows Gflop/s for each benchmark program and each architecture.

The proposal achieves 28x higher performance than the baseline scalar processor

and 5x higher performance than the traditional one on average. This is not only

because the proposed architectural extension has a higher peak performance, but

also because it achieves a higher computational efficiency as shown in Figure 4.

This indicates that the proposal takes advantage of massive DLP involved in

MMAs and utilizes memory bandwidth efficiently. The benchmark vips has

performance reduction on the traditional vector architectural extension. This

is because the vector length of the kernel is so short (the vector length is 79)

that the kernels cannot hide the start-up overhead, which implies the traditional

vector architecture cannot handle short vectors efficiently. On the other hand,

proposed vector architectural extension still attains significant performance gain,

compared to the traditional one.

The evaluation results imply that the vector architectural extension can achieve

a high performance to execute MMAs even with a low frequency. The proposed

vector architecture achieves a higher computational efficiency than the traditional

one due to efficient utilization of memory bandwidth, which will be analyzed in

subsection 5.2.3.

vloadvload
vstore

vload
vstore

vload

vadd vadd
LSU Pipeline

VFUs Pipeline

Pipeline
stage

cycles
c1 c2 c3

Fig. 6 The Defination of VMBC.

5.2.2 Impact on Issue Policies

Figure 5 depicts the sustained performance of OoO vector architectural exten-

sion with LFP and COP. These simulations compare the performance (Gflop/s)

of the different instruction issue policies for OVPM.

The results show that there is no performance improvement in the cases of

sphinx3, faceRec, MxM and V xM , even if the issue policy is changed from

LFP to COF. These benchmarks are memory -intensive programs, whose perfor-

mances are mainly influenced by memory access instructions. Therefore, OoO

issue for arithmetic instruction has few effects on them. On the other hand,

in the cases of raytrace and vips, the COP works effectively on them. These

benchmarks are computation-intensive programs, which involve a large amount

of arithmetic instructions. Therefore, OoO issue for arithmetic instructions al-

lows the benchmarks to efficiently use vector function units. Therefore, COP

improves the performance for the benchmarks.

Although COP enables to improve the performance for some benchmarks, it

also takes more power consumption than LFP. Compared with LFP, it needs to

more frequently wake up VAIB so as to find out an operand-ready instruction to

be issued, to access the renaming unit, and to use the commit unit. All of these

behaviors will lead to power dissipation. Therefore, it is necessary to evaluate

trade-off between performance and power dissipation for COP in the future.

6 c© 2010 Information Processing Society of Japan

Vol.2010-ARC-190 No.24
2010/8/4

IPSJ SIG Technical Report

0.00E+00

1.00E+08

2.00E+08

3.00E+08

4.00E+08

5.00E+08

6.00E+08

MVL32 MVL64 MVL128 MVL256 MVL512

V
M

B
C

 (
cy

cl
e

s)

Vector Register Length

Sphinx3

sphinx3-in sphinx3-out

Fig. 7 VMBCs Evaluation.

5.2.3 Memory Bandwidth Utilization

In this paper, vector memory blank cycles (VMBCs) are evaluated to prove that

the main contribution of performance improvement of the proposed architecture

comes from the efficient utilization of memory bandwidth. VMBCs are the accu-

mulation of cycles between every two memory access instructions. For example,

in Figure 6, VMBCs are obtained by summing up c1, c2, and c3. VMBCs in-

dicate the utilization efficiency of memory bandwidth and VLSU pipelines. For

the same program, smaller VMBCs means that the underutilizing cycles of mem-

ory bandwidth are short. Therefore, smaller VMBCs imply the more efficient

utilization of memory bandwidth.

Figure 7 shows that VMBCs for a benchmark, sphinx3, change as MVL in-

creases for example. In the figure, sphinx3-in and sphinx3-out mean VMBCs

of the traditional vector architecture and the proposed architecture, respectively.

The VMBCs of the proposed architecture are always smaller than those of the

traditional architecture with any MVL. This implies that the proposed archi-

tecture is more efficient to use the memory bandwidth and the VLSU pipelines.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

50 100 200 300 400 500 600 700 800 900 1000

R
e

la
ti

v
e

 P
e

rf
o

rm
a

n
ce

Memory Latency (cycles)

VxM sphinx face MxM ray vips avg.

Fig. 8 Memory Latency Impact on Performance Degradation.

Moreover, VMBCs decrease as the speedup ratio increases. This proofs that the

main factor of performance improvements on the proposed architecture is the

efficient use of the memory bandwidth.

5.2.4 Tolerance of Memory Latency

Over the years, CPU frequencies have been rising faster than those of the mem-

ory, so memory access latencies in CPU cycles are increasing. The long memory

latencies will degrade the CPU performance. Therefore, the processors that ex-

ecute the upcoming MMAs should be able to tolerate long memory latencies in

order to reduce the performance loss and improve the efficiency of using hardware

resources.

Figure 8 depicts the performance with increasing memory latencies from 50

cycles to 1000 cycles. The y-axis shows the performance relative to the case

where memory latency is 50 cycles.

The results show a clear trend: although the performance decreases with the

memory latency increasing, the proposal can tolerate a quite long memory la-

tency. In the case where the latency is 500 cycles, the performance degradation

7 c© 2010 Information Processing Society of Japan

Vol.2010-ARC-190 No.24
2010/8/4

IPSJ SIG Technical Report

0

5

10

15

20

25

30

35

40

45

128 256 512 1024 2048

VxM

MVL32 MVL64 MVL128 MVL256 MVL512

Fig. 9 Effects of the Instruction Buffer Size.

is less than 17% of the performance achieved with the latency of 50 cycles. Even

in the case of a very long latency of 1000 cycles, performance degradation is 51%

on average. Therefore, these results suggest the proposed architecture is tolerant

of memory latency because vector processing can efficiently hide the latency.

5.2.5 Effects of Instruction Buffer Size and MVL

In this subsection, different instruction buffer sizes and MVLs are evaluated

in order to find out an appropriate architectural design configuration. Figure 9

shows the relative performance of proposal with LFP using VxM as an example,

when the buffer sizes and MVLs are changed. The Y axis indicates the speedup

of proposed vector extension normalized by the baseline scalar processor. The

performance improves with the increase in the instruction buffers size, until the

buffers size reaches 512 entries. When the buffers size is larger than 512, no more

performance gain is obtained in any length of vector register. When the length

of the vector registers equals to 128, and buffer size is 512 entries, the proposed

vector architecture attains a comparable or better performance in comparison

with the other situations.

Pipeline
stage

vload

vadd

vload
vstore vstore

LSU Pipeline

VFUs Pipeline

cycles

vadd

for(i = 0; i <N; i += vectorLength)
{

1: vload va0, addr1
2: vload va1, addr2
3: vadd va2, va0, va1
4: vstore va2, addr3

}

Register
Conflict

vload vload

Pipeline
Latency

Execution
Time

Fig. 10 Register Conflict.

When the MVL is shorter than 128, the vector register conflicts occur and affect

the performance improvement. Figure 10 illustrates the vector register conflicts

by using an simple example in the case of MVL32. The execution time of vector

instructions is four cycles because the MVL is 32 and the number of vector

pipelines is eight. The latency of the vector pipeline for an addition is assumed

as 10 cycles. Therefore, the vload operation in the second iteration would have

stored to the vector register va0 before the vadd operation in the first iteration.

However, the vadd operation does not release the va0 registers until it is finished.

Thus, the VLSU pipeline has to stall several cycles (6 cycles in this case) to wait

for the completion of the vadd operation. In every iteration, this kind of stall

happens when the execution time is shorter than the pipeline latency. Although

the renaming mechanism is able to alleviate the influnce of vector register conflicts

on the performance, it also occurs frequently when the MVL is short, due to only

eight vector register in the proposed vector architecture.

When the buffer size is smaller than 512, the performance decreases because of

the limited capacity of instruction buffers. The vector instructions are decoded

8 c© 2010 Information Processing Society of Japan

Vol.2010-ARC-190 No.24
2010/8/4

IPSJ SIG Technical Report

at one time and stored in the instruction buffers. Small size of instruction buffers

indicates that the instruction buffers are easily to be filled up. If the instruction

buffers become full, the decode stage stalls until it can send instructions to the

instruction buffers again. Therefore, the performance decreases.

5.2.6 Hardware Cost

The additional hardware cost is mainly required for implementing VMIB and

VAIB. The rough calculation of the components of VAIB and VMIB mentioned

in Section IV is as follows. ID costs 10 bits in the case of 512 entries. opcode

uses 7 bits. Checking the output dependency and input dependency are 1 bit

and 2 bits, respectively. Since VAIB and VMIB own the same components, it

takes (10+7+2+1)*512*2 = 20480 bits. Actually, the proposal employs shorter

vector registers than traditional ones. The hardware cost reduced from shorter

vector registers is larger than that increased caused by VAIB and VMIB.

6. Conclusions

The media-oriented vector architecture with OVPM as presented above aims

at realizing a vector extension to enhance the potential of GPPs on MMAs. It

overcomes the inefficiencies in MMAs for the conventional vector architectures

which obey in-order issue policy. The OVMP is implemented by using two in-

struction buffers. It overcomes the inefficiencies in MMAs for the traditional

vector architectures, which obey an in-order policy.

With this approach, the proposed vector architecture obtains up to 28x speedup

on average. The evaluations of VMBC prove that the efficient utilization of mem-

ory bandwidth is the main contribution to the high performance on proposed ar-

chitecture. Finally, the evaluation shows the proposed vector architecture whose

MVL is 128 and instruction buffer sizes are 512 attains a comparable or better

performance.

The ability of data transportation between the off-chip memory and the chip

has a large influence on the performance. It is difficult to increase off-chip memory

bandwidth because of limited pin count of the chip. In the future work, we will

explore a way to efficiently use on-chip memories (or caches) and their high

on-chip memory bandwidth. Moreover, the hardware cost of proposed vector

extension is not will be evaluated, in terms of power dissipation and chip area.

Acknowledgments

The authors would like to thank Dr. Akihiro Musa for valuable discussions.

This research was partially supported by Core Research for Evolutional Science

and Technology (CREST), Japan Science and Technology Agency (JST).

References

1) Smith, J.: The Best Way to Achieve Vector-Like Performance, the 21st Intl. Sym-
posium on Computer Architecture (1994).

2) Soga, T., Musa, A., Shimomura, Y., Egawa, R., Itakura, K., Takizawa, H., Okabe,
K. and Kobayashi, H.: Performance evaluation of NEC SX-9 using real science and
engineering applications, SC ’09: Proceedings of the Conference on High Perfor-
mance Computing Networking, Storage and Analysis, pp.1–12 (2009).

3) Abts, D., Bataineh, A., Scott, S., Faanes, G., Schwarzmeier, J., Lundberg, E.,
Johnson, T., Bye, M. and Schwoerer, G.: The Cray BlackWidow: a highly scalable
vector multiprocessor, SC ’07: Proceedings of the 2007 ACM/IEEE conference on
Supercomputing, pp.1–12 (2007).

4) Thakkar, S. and Huff, T.: The Internet Streaming SIMD Extensions, IntelTech-
nology Journal, pp.26–34 (1999).

5) Gschwind, M.: Chip Multiprocessing and the Cell Broadband Engine, CF ’06:
Proceedings of the 3rd conference on Computing frontiers, New York, NY, USA,
ACM, pp.1–8 (2006).

6) Intel: Intel Advanced Vector Extensions Programming Reference, http://www.intel.com/.
7) Gebis, J. and Patterson, D.: Embracing and Extending 20th-Century Instruction

Set Architectures, IEEE Computer, Vol.40, No.4, pp.68–75 (2007).
8) Lefohn, A., Houston, M., Andersson, J., Assarsson, U., Everitt, C., Fatahalian,

K., Foley, T., Hensley, J., Lalonde, P. and Luebke, D.: Beyond programmable shad-
ing (parts I and II), SIGGRAPH ’09: ACM SIGGRAPH 2009 Courses, pp.1–312
(2009).

9) Kozyrakis, C.: Vector vs. Superscalar and VLIW Architectures for Embedded Mul-
timedia Benchmarks, Proceedings of the 35th Annual IEEE/ACM International
Symposium on Microarchitecture, pp.283–293 (2002).

10) Christoforos, K.: A Media-Enhanced Vector Architecture for Embedded Memory
Systems, Master’s thesis, University of California at Berkeley (1999).

11) Rixner, S., Dally, W.J., Khailany, B., Mattson, P.R., Kapasi, U.J. and Owens,
J.D.: Register Organization for Media Processing, HPCA, pp.375–386 (2000).

12) Hennessy, J.L. and Patterson, D.A.: Computer Architecture: A Quantitative Ap-
proach, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2003).

13) Austin, T., Larson, E. and Ernst, D.: SimpleScalar: An Infrastructure for Com-

9 c© 2010 Information Processing Society of Japan

Vol.2010-ARC-190 No.24
2010/8/4

IPSJ SIG Technical Report

puter System Modeling, Computer, Vol.35, No.2, pp.59–67 (2002).
14) Bienia, C., Kumar, S., Singh, J.P. and Li, K.: The PARSEC Benchmark Suite:

Characterization and Architectural Implications, Technical report, Princeton Uni-
versity (2008).

15) Li, M., Sasanka, R., Adve, S.V., Chen, Y. and Debes, E.: The ALPBench Bench-
mark Suite for Complex Multimedia Applications, Proceedings of the IEEE Inter-
national Workload Characterization Symposium (2005).

16) Yokoya, Y., Kudoh, Y., Hayasaka, T., Traeff, J., Ritzdorf, H. and Hayashi, Y.: The
Compilers and MPI Library for SX-9, Technical report, NEC Corporation (2008).

10 c© 2010 Information Processing Society of Japan

Vol.2010-ARC-190 No.24
2010/8/4

