Separate Compilation of Type-parameterized Modules

TAICHI YUASA*

An implementation technique is presented for separate compilation of type-parameterized modules with
constraints on permissible actual types. This technique provides a simple and straightforward way to achieve
dynamic type-parameter binding at run-time without loss of execution efficiency.

1. Introduction

Separate compilation of program modules is a key
issue with regard to implementation of modular
programming languages. It reduces compile time by
avoiding reprocessing of those modules which are used
in several programs. It also enhances modular pro-
gramming in that internal modification of a module does
not require reprocessing of other modules. In addition,
use of separately generated object code facilitates
efficient debugging as seen in some LISP programming
systems (e.g. Interlisp[6]).

The type-parameterization mechanism, incorporated
in several languages such as CLU[2], (3], and Ada[9],
has been regarded as one of the important structuring
concepts for modular programming. It may save
programming labor because a class of related modules
can be defined by a single type-parameterized module.

In particular, explicit description of constraints on
permissible actual types is significant for the mechanism
as it clarifies what is essential in each parameterized
module. It enables the programmer to write a
parameterized module independent of actual types while
focusing on the fundamental structure common to all
permissible actual types. Such constraints are described
by ‘sypes’ [5] in ¢ and by ‘while clauses’ in CLU.

The type-parameterization mechanism causes a
problem in attaining separate compilation. That is,
operations on actual types to be performed during
execution of parameterized modules are determined
only when actual types are supplied to the modules.
Solutions to this problem are classified into compile-
time and run-time schemes, according to the time of
type-parameter binding. (The compile-time scheme for
separate compilation will be discussed later in Sec. 3.)
A CLU implementation[1] adopts a run-time scheme, in
which a new ‘object module’ of a parameterized module
is created once for each distinct set of actual types.
Another possible run-time scheme is to perform dynamic
type-parameter binding at run-time each time a param-
eterized module is invoked. The idea behind this scheme
is fairly simple: When a parameterized module is

*Research Institute for Mathematical Sciences, Kyoto Univer-
sity, Kyoto, Japan.

Journal of Information Processing, Vol. 5, No. 3, 1982

invoked with some actual type, the module receives
information on the actual type so that actual opera-
tions can be determined by the object code for the
module. It may be observed that with this scheme,
language processing is simpler and more straightforward
than with the former run-time scheme. The crucial point,
however, is how to reduce run-time overhead attendant
on run-time parameter binding with this scheme. Thus
an efficient technique has to be developed for this
purpose.

This paper presents such a technique adopted in the
language processing of (, along with discussions on
implementation problems raised by the type-param-
eterization mechanism. (The language processing system
of t is embedded in an integrated programming system,
called the t system[4], which supports development of
programs written in the language (. For the overall
language system, refer to [8].) Some features of the
technique are:

1. It reduces run-time overhead by making the language
processor do as much processing as possible during
compile time.

2. It provides a simple and straightforward algorithm
for compile-time processing as well as for type-parameter
binding at run-time.

3. As we will see later, it is possible to write pathologi-
cal programs with type-parameterization mechanisms.
Although of course, the language processor ought to be
able to deal with any possible cases, the technique
provides efficient execution in normal and realistic
cases.

The next section provides program examples used
throughout this paper, along with preliminary remarks.
In Sec. 4 there is a discussion of the kinds of information
required for actual type parameters, and in Sec. 5, we
explain how such information is constructed during
execution time.

2. Concepts and Terminology

In order to locate the problem discussed in this paper,
we list some programs written in the language ¢,
along with preliminary remarks. For a detailed explana-
tion of the language, refer to [3].

Fig. 2.1 illustrates the interface part of the type module
RAT which defines the type of rational numbers,

Separate Compilation of Type-parameterized Modules

interface type RAT

fn ZERO: -@
ONE: -@
ADD: (@, @)—@

MULT: (@, @)—@
NEG: @ -@
INV: @ -@

end interface

Fig. 2.1 Interface part of type module RAT.

interface sype RING

fn ZERO: -@
ONE: —-@
ADD: (@, @)—@

MULT: (@, @)—@
NEG: @ -@
end interface

Fig. 2.2 Sype module RING.

where the primitive functions on RAT are declared with
domain and range types. In the interface part of a type
module, the type defined by the module, which is RAT
in this case, is denoted as ‘@’.

Fig. 2.2 gives an example of another kind of modules
called sype modules. The sype module RING here
is supposed to define the class of types which have ring
(in mathematical sense) as their substructure. If a type T
belongs to the class defined by a sype S, we denote SST.
(Refer to [3] for the formal definition of the relation ‘ <’.)
From the viewpoint of the language processor of {, the
sype-type relation S<T holds if, for each primitive
function F of S, a function is defined on T with the
same name and with the same domain and range. Thus
RING <RAT holds.

Using the sype RING, we define a type module POLY
(P: RING) which defines the type of polynomials in
one variable with any coefficient type T satisfying
RINGKT.

Any type T such that RING ST can be used as the
actual type parameter for POLY(P: RING). For
instance, since RINGSRAT, POLY(RAT) is a type
of polynomial whose coefficients are of type RAT.
Thus P, which we call a type parameter of sype RING,
represents the indefinite (formal) type parameter and
POLY(P: RING) is said to be a type-parameterized
module or simply a parameterized module. We call
POLY(RAT) a definite module-instance of POLY(P:
RING) since the actual type parameter RAT is a
definite type. On the other hand, ARRAY(P) in the
realization part of POLY(P: RING) is called an in-
definite module instance because it contains the formal
type parameter P of POLY(P: RING).

The realization part gives an implementation of POLY
(P: RING). ‘rep=ARRAY(P)’ specifies that each object
of type POLY(P: RING) is represented by ARRAY(P)
or array of type P. (E.g. POLY(RAT) is represented by
ARRAY(RAT).) In the rest of the realization part,
‘rep’ denotes ARRAY(P). |ADD implements the

177

interface type POLY (P: RING)

fn ZERO: -@
ONE: —-@
ADD: (@, @) —@
MULT: (@, @) —@
NEG: @ -@
COEF: (@, INT)—P

DEG: @ —INT

end interface
realization type POLY (P: RING)
rep=ARRAY (P)

fn |ADD (X, Y: rep) return (Z: rep)
var I: INT;
if HIGH (X)<HIGH (Y) then (X, Y):=(Y, X) end if;
for I from 0 to HIGH (Y) do
X[:=P#ADD (X[I], YIID-.eeeeveeeeeorieiieeiiaennaennns Q)]
end for;
Z:=X
end fn

end realization
Fig. 2.3 Type module POLY (P: RING).

(abstract) function ADD.

The line marked “** in Fig. 2.3 states that the I-th
components of X and Y are ‘added’ and the result
replaces the /-th component of X. Since the components
of X and Y are of type P, the addition must be that of
P (i.e. P#ADD). Those functions which are actually
executed in run-time at the line ‘*’ are said to be actual
ADD’s for P#ADD. If the actual type parameter is
RAT, the actual ADD is the ADD on rational numbers,
ie. RAT#ADD.

From the interface part of POLY(P: RING), we find
another sype-type relation RING SPOLY(P: RING).
Remember that any type T such that RING ST can be
used as the actual type parameter for POLY(P: RING).
This indicates that POLY(POLY(RAT)) is a permissible
module instance.

The relation ‘<’ is also defined between two sypes in
the language (. For example, suppose we have another
sype module FIELD (Fig. 2.4). Since all primitive
functions defined in RING are also defined in FIELD,
we can denote RING<SFIELD. In the body of STP
(P2: FIELD)# |ADD in Fig. 2.5, POLY(P2)#ADD
(abbreviated as rep#ADD) is called. That is, the
actual type parameter which STP(P2: FIELD) receives
during execution time is passed to POLY(P: RING).
This is permissible since RING S FIELD.

interface sype FIELD
fn ONE: —-@
ZERO: -@
MULT: (@, @)—@
ADD: (@, @)@
INV: @ -@
NEG: @ -—@
end interface
Fig. 2.4 Sype module FIELD.

178

realization type STP (P2: FIELD)
rep=POLY(P2)

fn |ADD(X, Y: rep) RETURN (Z: rep)
Z:=rep#ADD(X, Y)
end fn

end realization

Fig. 2.5 Type module STP (P2: FIELD).

3. The Problem and a Possible Solution

Let us return to the module POLY(P: RING) (in
Fig. 2.3) and focus on the following problem: What
should the compiler do in processing the realization part
of POLY(P: RING), especially for the function call
of P# ADD (marked “*’)? Also what kind of information
should be sent to POLY(P: RING) at execution time?

One possible solution is to do almost nothing with
POLY(P: RING) itself until P is bound to some actual
type parameter. When POLY/(T7) is used in other modules
(i.e. when P is bound to an actual definite type instance
T), the instance of the realization part of POLY(P:
RING), with all occurrences of P replaced by 7, is
processed.

For example, when POLY(RAT) is used, the line
marked ‘¥’ is replaced by:

Z[I] :=RAT#ADD(X[/], Y[I])

Then the processor knows that RAT#ADD is to be
called.

Thus the processor actually regards module-instances
of POLY(P: RING) as different type modules. In this
sense, this method is nothing more than the conventional
way of processing modules without the type-param-
eterization mechanism, and enables the language
processor to generate simple and efficient object code.

However, this solution has the following deficiencies.
1. If there exists a situation where the number of
module instances is infinite, the method does not work.
As an example, suppose M(M(P)) is used in a param-
eterized module M(P: S). When P is bound to some
type T, M(T) is processed. During the process another
instance M(M(T)) is used. Since P is bound to M(T) this
time, another instance M(M(M(T))) is used during the
process of M(M(T)), and so on. In this way, the processor
encounters an infinite number of instances of M(P: S).
Fortunately, in the case of the language {, the number
of instances of a single module is always finite because
dependency relationships among modules cannot be
circular. (Refer to [3]. The proof of finiteness is found in
[7].) However, this is not necessarily the case with other
languages. See [1] for the case of CLU.

2. The bookkeeping of all instances of all parameterized

T. Yuasa

modules is not a trivial task. See, for example, in Fig.
2.5 when STP(RAT) is defined, POLY(RAT) is to be
automatically and implicity defined.
3. The compilation time tends to be long with multiple
iterations of similar processing. In addition, a large
amount of storage is required since each instance of a
single parameterized module must be allocated
separately.

Thus we would rather have module-wise processing
where each module is independently compiled and type-
parameter bindings are done dynamically.

4. Information on actual type parameters

In order to perform dynamic type-parameter binding,
each parameterized module M(P:S) is supposed to
receive data containing sufficient information on the
actual type parameter T. Let us call the data the type
description for T. In this section, we discuss what kind
of information should be included in type descriptions.

Procedure tables for sype-type relations

Suppose in the realization part of the module M1,
POLY(P: RING)#ADD is called with the actual type
parameter RAT (see Fig. 4.1).

The actual ADD for P#ADD in the body of POLY
(P: RING)# |ADD is RAT#ADD in this case. Thus
the type-parameter information sent to POLY(P:
RING) must include the location of RAT # ADD (more
precisely, the entry point of the object code for
RAT#ADD). Any function in RAT, corresponding
to a primitive function in the sype RING, may be used
in POLY(P: RING), and the functions actually used
cannot be determined when compiling M1. Therefore
a table must be sent to POLY(P: RING), which consists
of the locations of all functions in RAT corresponding
to the primitive functions in RING. We call such a
table procedure table for RINGSRAT and denote it
as PT(RING, RAT).

In order to reduce the time for table look-up, we
make use of the order of primitive functions presented
in the interface of RING. That is, the location of the
function in RAT corresponding to the i-th primitive

realization M1
POLY(RAT)#ADD(X, Y)

end realization

Fig. 41 Module M1.

——>{ location of RAT#ZERO
location of RAT#ONE
location of RAT#ADD
location of RAT#MULT
location of RAT#NEG

Fig. 4.2 Procedure table PT(RING, RAT).

Separate Compilation of Type-parameterized Modules

function in RING is contained in the i-th entry of the
table PT{(RING, RAT). For instance, since ADD is
the third function presented in sype RING (see Fig. 2.2),
the third entry of PT(RING, RAT) contains the loca-
tion of RAT # ADD. Thus the table in Fig. 4.2 is con-
structed while processing M1 and is sent to POLY(P:
RING) at run-time when POLY(RAT) 4 ADD is called.
The object code for P4 ADD in the realization of POLY
(P: RING) is constructed so that the third entry of the
procedure table is used in order to find the actual
ADD by an indexing mechanism.

It seems that for most actual programs using type
parameters, type-parameter passing is as simple as in
the case of M1, and only procedure tables are necessary.
Since procedure tables are generated in compile time and
table look-up is done by indexing, run-time overhead
attendant upon type-parameter passing appears to be
fairly small.

Adaptor tables for sype-sype relations

Since the order of primitive functions in the interface
of a sype is essential for a procedure table, we face a
problem when sype-sype relations are used in programs.
To illustrate, suppose we have a module M2 in the
realization part of which STP(RAT)#ADD is called.
(See Fig. 4.3. STP(P2: FIELD) is given in Fig. 2.5.)

As explained before, PT(FIELD, RAT) in Fig. 4.4
is sent to STP(P2: FIELD) when STP(RAT)#ADD is
called in executing M2. During execution of STP
(RAT)#ADD, POLY(RAT)#ADD may be caelld
and PTC(RING, RAT) is to be sent to POLY(P:
RING). If the order of primitive functions in the
interface of TING were just the same as the ones
in the interface of FIELD, PT{FIELD, RAT) could be
used as PT(RING, RAT), i.e. STP(P2: FIELD) could
send the procedure table it received, to POLY(P:
RING) directly. However, this is not the case. The
location of RAT# ADD is found in the fourth entry in
PT{FIELD, RAT) while ADD is the third function in
the interface part of sype RING (see Fig. 2.2).

Since it seems inefficient to construct PT(RING,
RAT) from PT(FIELD, RAT) each time POLY(P:

realization M2
STP(RAT)#ADD

end realization

Fig. 4.3 Module M2.

——> location of RAT#ONE
location of RAT#ZERO
location of RAT#MULT
location of RAT#ADD
location of RAT#INV
location of RAT#NEG

Fig. 44 Procedure table PT(FIELD, RAT).

179

RING)# ADD is called from STP(RAT)#ADD, we
would rather use PT(FIELD, RAT) in POLY(P:
RING) with some adaptations. To this end, we introduce
another kind of tables, called adaptor tables. For each
pair of sypes S and S’ such that S<§’, an adaptor table
AT{S, S”) is constructed as follows. If the i-th primitive
function of § is presented as the j-th primitive function
in the interface part of S’, then the i-th entry of AT(S,
S’> has the value of j. In the above example, AT{RING,
FIELD) in Fig. 4.5 is constructed during compile time
of STP(P2: FIELD). During execution of STP(RAT) #
ADD, this table AT(RING, FIELD) is linked together
with the procedure table PT(FIELD, RAT) to form the
type description to be sent to POLY(P: RING) when
POLY(RING)# ADD is called (Fig. 4.6). To find the ac-
tual ADD in the body of POLY(P: RING)# |ADD,
since the third entry of AT(RING, FIELD) has the
value 4, the fourth entry of PTC(FIELD, RAT) is
searched, where the location of RAT # ADD is contained.

This kind of run-time linkage is necessary only when
executing a parameterized module M(P: S) in which a
sype-sype relation S’ < .S is used for some sype S’ and the
order of primitive functions in the interface part of S’
differs from the one in the interface of S.

Information on type parameters to actual type
parameters

So far, we have considered only those cases where the
actual type parameters to POLY(P: RING) are not
type-parameterized. Now we explain how to deal with
the cases where the actual type parameters to POLY(P:
RING) are also parameterized.

Consider the case where POLY(M(T))# ADDscalled,
where M(P:S) is a type-parameterized type module
and T is the actual type parameter to M(P: S). When
evaluating P# ADD(X[I], Y[/]) in the body of POLY(P:
RING)# |ADD in Fig. 2.3, M(P: S)# ADD may be
called with the actual type parameter 7. In order for
M(P: S)#ADD to be called properly with the actual
type T, the type description sent to POLY(P: RING)
must include information on T. Thus POLY(P: RING)
is supposed to receive the type description shown in
Fig. 47. When M(P: S)#ADD is called during the
execution of POLY(P: RING), the type description for

__—.9‘

Chkd1£= -1 N

Fig. 4.5 Adaptor table AT(RING, FIELD).

AT<RING,FIELD>

Fig. 4.6 Dynamic linkage of type description.

PT<RING M(P:S)> type description for T
v::}A—-*Aﬂ |

Fig. 4.7 A type description for M(T).

PT<FIELD,RAT>

180

realization N(P1: S)
POLY(M(P1))#ADD

end realization

Fig. 48 Module N(P1: S).

PT(RING;ZSE:SE)

Fig. 4.9 Incomplete type description.

T is retrieved and sent to M(P: S)#ADD.

The type description for M(T) cannot be prepared in
compile time if T is not determined in compile time. Sup-
pose that in parameterized module N(P1:S), POLY
(M(P1)) is used (see Fig. 4.8). In this case, the processor
prepares an ‘incomplete’ type description (Fig. 4.9) in
compile time of N(P1: S). Then, when N(P1: S) receives
the actual type parameter T at run-time, the type descrip-
tion for T is linked from the cell marked ‘*’ in Fig. 4.9
to form a complete type description for M(T).

5. Run-time Linkage of Type Descriptions

As explained in the previous section, given a
parameterized module M(P:S), some of the type
descriptions prepared during the compile time of M(P:
S) may be incomplete. To form complete type descrip-
tions, they must be linked to the type description for the
actual type T to which P is bound. The complete type
descriptions constructed in this way must be retained
during execution of M(T). The problem here is that,
during execution of M(T), another instance M(T’) of
the same module M(P: S) may be used. If the incomplete
type descriptions were simply linked to the type descrip-
tion for 77, the old type descriptions might be lost.

As an example, suppose that STP(STP(RAT))# ADD
is called in the module M3 (see Fig. 5.1). Let us consider
how STP(STP(RAT))# ADD is executed. Since POLY
(P2)#ADD is used in the realization part of STP
(P2: FIELD) (See Fig. 2.5) and the actual type parame-
ter is STP(RAT), POLY(STP(RAT))#ADD will be
called in executing STP(STP(RAT))#ADD. Then the
actual ADD for P#ADD in the realization part of
POLY(P: RING) is STP(RAT)#ADD. Thus, during
execution of STP(STP(RAT))# ADD, another instance
of STP(P2: FIELD), namely STP(RAT), is used.

In compile time of M3, a type description for STP
(RAT) is prepared and is sent to STP(P2: FIELD) at

realization M3
STP(STP(RAT))#ADD

end realization

Fig. 5.1 Module M3,

T. Yuasa

type description for STP(RAT)
type description for RAT

,~~® PT<SFIELD,STP s:FIELD)>
L PT<FIELD,RAT>

type description to be sent to POLY(P:RING)
Fig. 5.2 Relinkage of type descriptions.

run-time (see Fig. 5.2). Then it is combined with the
AT(RING, FIELD) to form the complete type de-
scription to be sent to POLY(P: RING). This type
description might be lost if, when STP(P2: FIELD)4
ADD is entered with the actual type parameter RAT,
AT(RING, FIELD) were combined with the type de-
scription for RAT.

One possible solution to this problem is to make
copies of incomplete type descriptions whenever new
type descriptions are required.

In the case of the language t, which does not allow
circularity in dependency relationships among modules,
it is proved that: Given a parameterized module M(P:
S) and distinct types T and T’, suppose that M(T") is
used during execution of M(T). Then the execution of
M(T") does not require the information that the formal
type parameter P of M(P: S) was previously bound to T.
This fact suggests a simpler and more efficient solution
to the problem above. For a parameterized module
M(P: S), a stack is prepared which is used locally for
M(P: S). When P is bound to 7", the type description
for T is pushed on to the local stack. At the end of
execution of M(T"), the type description for T is retrieved
and relinked to the incomplete type descriptions so
that the type descriptions, which existed before execu-
tion of M(T’), will be recovered. Fig. 5.3 illustrates how
the local stack is used in the example above.

Note that, even when a number of instances of a
single module M(P: S) may be used, the local stack for
the module need not be large, since the number of
module instances of M(P: S) that are used during execu-
tion of a certain module instance of M(P: S) is small.

PT<FIELD,RAT>

R
AT<RING,FIELD>

local stack for
STP(P2:FIELD)

(a) When STP(STP(RAT))#ADD is called

A PT<FIELD,RAT>

(b) When STP(RAT)#ADD is called

Fig. 5.3 Using local stack.

Modul,

Separate Compilation of Type-p terize

Note. Treatment of equality

Every sype or type in ! is supposed to have its own
EQUAL function. The truth value of the equality
between two objects of a type T is determined by the
EQUAL of T, ie. T#EQUAL. T#EQUAL may be
defined explicitly in the type module 7, or the system
automatically generates code for T#EQUAL so that
the EQUAL of the type by which objects of the type T
are represented, is called. Thus T# EQUAL is regarded
as one of the primitive functions on 7.

In executing POLY(P: RING), if P#EQUAL is
required, the actual EQUAL must also be retrieved from
the type description that POLY(P: RING) receives.
Thus we extend each procedure table PT{S, T) so that
its ‘0’-th entry contains T#EQUAL. For example,
PT(RING, RAT) in Fig. 4.2 is extended as shown in
Fig. 6.1.

It is not necessary to use intermediate adaptor
tables to find the actual EQUAL, since the location of
EQUALs are always contained in the fixed entry of
procedure tables. Therefore the retrieval of the actual
EQUAL is faster than that of other primitive functions.

Conclusion

Problems in attaining separate compilation of type-
parameterized modules with constraints on permissible
actual types have been discussed and a simple and
efficient implementation technique has been presented.

Although we have dealt with the type-parameterization
mechanism in ¢ by the notion of sypes, the sype notion

"Tocation of RAT#EQUAL]

—— > "Tocation of RAT#ZERO
| location of RAT#ONE_ |
location of RAT#ADD

“location of RAT#MULT

[Tocation of RATNEG |
Fig. 6.1 Procedure table PT{(RING, RAT) extended.

181

itself is not essential to the discussion and can be sub-
stituted by other language constructs for constraints on
permissible actual types, such as where clauses in CLU.
In order to perform efficient run-time typepara-
meter binding, the implementation technique takes
full advantage of the fact that the language ¢ does not
allow circularity in dependency relationships among
modules. Without this restriction on inter-module
relationships, however, the efficiency of the technique
would not be reduced excessively. Thus it should be
observed that the discussions in this paper are general
enough to apply to other languages with similar features.

The technique presented in this paper has been
implemented in the (programming system, which runs
on DECsystem-20 and IBM 370 compatible machines.

Acknowledgements

The author wishes to express his appreciation to
Professor Reiji Nakajima for patiently supervising this
research.

References

1. ATKINSON, R., Liskov, B. and SCHEIFLER, B. Aspects of im-
plementing CLU. Computation Structures Group Memo 167,
MIT Laboratory for Computer Science (1978).

2. Liskov, B., Moss, E., SCHAFFERT, J. C., SCHEIFLER, B., and
SNYDER, A. CLU reference manual. Computation Structures Group
Memo 161, MIT Laboratory for Computer Science (1978).

3. NakammMa, R., Honpa, M. and NAKAHARA, H. Hierarchical
program specification and verification—a many-sorted logical
approach—. Acta Informatica (1980).

4. NAKAJIMA, R,, Yuasa, T., and Koima, K. The ¢ programming
system-—a support system for hierarchical and modular pro-
gramming—. Proc. of IFIP Congress 80, ed. S. H. Lavington,
North-Holland Pub. Co. (1980).

5. NakAiMma, R. Sypes—partial types—for program structuring
and first order system ¢ logic. Research Report No. 22, Institute
of Informatics, Univ. of Oslo (1977).

6. TerreLMaN, T. Interlisp reference manual. Xerox Palo Alto
Res. Cen. (1978).

7. Yuasa, T. Supports for hierarchical software development—
systems and mathematical methods—. Master’s Thesis (1978).

8. Yuasa, T. Design and implementation of the ¢ language system
—an interactive environment for modular programming—.
(submitted for publication).

9. ADA reference manual. SIGPLAN Notices 6 (1979).

(Received November 26, 1981)

