
Case Study: ECHONET Lite Applications based on
Embedded Component Systems

JieYing Jiang1,a) Hiroshi Oyama2 Hiroaki Nagashima3 Takuya Azumi1

Abstract: Nowadays, various electrical devices have not only offered convenience to people, but also increased the
complexity of developing various devices in smart homes. Additionally, the number and type of the pieces of house-
hold electrical equipment pose a significant challenge for developers. Therefore, one must improve the development
efficiency of electrical equipment in smart homes and facilitate the subsequent maintenance work by developers. To
that end, this study proposes a development method based on embedded components (i.e., component-based develop-
ment) to develop the devices in smart homes. The method can reduce the complexity of development, improve the
development efficiency, increase the scalability, and facilitate future function update and maintenance. We develop
and control smart-home devices based using the component description language TOPPERS Embedded Component
System (TECS). When expanding new components or functions, TECS can automatically generate template C files
and implement the functions contained in them, thereby offering improved scalability, while reducing the complexity
of future redevelopment.

Keywords: Component-based development, Smart home, Internet of Things, ECHONET Lite

1. Introduction
Recently, the rapid development of the Internet of Things (IoT)

has led to the continuous expansion of the scale of embedded
control system software. There are different lifestyles in different
parts of the world, thereby resulting in different types and num-
bers of the pieces of electrical equipment in each home. This
causes a huge problem for developers, and the number and types
of electrical devices are a substantial development burden for de-
velopers. Additionally, the functions of the IoT systems have be-
come more powerful than before, although the structure is be-
coming increasingly complicated. By 2022, there will be approx-
imately 29 billion Internet-enabled connected objects [1] that will
fall under the IoT label. Therefore, the requirements associated
with the abilities of the developers of IoT components have also
become higher, and the development time and costs have also in-
creased. Because of the increasingly complex structures of huge
embedded systems, it will become more inconvenient to maintain
and develop the components in the future.

We, therefore, should propose a development method that de-
velopers find convenient to maintain and expand the embedded
systems. Because assembly languages are not universal and mod-
ular, they are highly non-portable. Therefore, in embedded soft-
ware applications, assembly languages should be used to the least
possible extent, and using high-level languages with good porta-
bility for development can effectively improve the portability and
reusability of application software programs. Therefore, it be-
comes important to find an effective development method to assist

1 Graduate School of Science and Engineering, Saitama University,
Sakura-ku, Saitama 338–8570, Japan

2 OKUMA Corporation
3 Cores Co., Ltd.
a) jan.k.413@ms.saitama-u.ac.jp

developers, improve the development efficiency and reusability,
reduce the development costs, and promote future maintenance
and expansion. Reducing the complexity of design is particu-
larly important to ensure swift development and a correct soft-
ware product. To this end, component-based software develop-
ment approaches are particularly appropriate [2].

The component-based development (CBD) method empha-
sizes the separation of concerns with respect to the wide-ranging
functionality available throughout a given software system. It is
a reuse-based approach to defining, implementing, and compos-
ing loosely coupled independent components into systems. It is
highly flexible, as developers can add or delete components as
needed to quickly build the application software, thereby facili-
tating initial development and maintenance.

To make people’s lives more convenient, with the support of
smart homes, the electrical equipment in the home is developed to
facilitate its easy usage. With the implementation of the integra-
tion technology, communication technology, interoperability and
cabling standards, smart home networks will continue to improve.
This includes the operation and management of all the smart fur-
niture, equipment, and systems in the home network by the ap-
plication of integrated technologies. The technical characteristics
of a smart home are as follows. Through the home gateway and
its system software, a smart home platform system is established.
The home intelligent terminal uses the computer technology, mi-
croelectronic technology and communication technology to inte-
grate all the functions of the home intelligence, and thus a smart
home is built on an integrated platform. The external expansion
components realize the connection and control of the household
appliances. The development board and all the components are
connected through an embedded system.

This study proposes a method for developing embedded com-

Asia Pacific Conference on Robot IoT System Development and Platform 2020 (APRIS2020)

ⓒ 2021 Information Processing Society of Japan 19

Smart home
Application

(c)

Communication
middleware

RTOS (TOPPERS/ASP3)

Hardware (GR-PEACH)

The Proposed Framework

Component
Description

for the Proposed
Framework

ECHONET_Object

Smart home
Application

(c)

Communication
middleware

ECHONET_Object

TECS Generator

Fig. 1: System model of the proposed framework

ponents based on TOPPERS Embedded Component System
(TECS). The method uses the Temple code generated by TECS
generator to develop and extend the components in the smart
home.

The contributions of this study are as follows.
• Improves the scalability of smart homes: The development

framework of TECS for smart homes is appropriate for local
smart homes. It can compile the device files, and then con-
nect and control the smart home system through the embed-
ded board. This will enhance the scalability of local smart
home systems.

• Reduce the difficulty of redevelopment and maintenance:
When updating and maintaining the functions of the exist-
ing equipment in smart homes, there is no need to perform
complete compilation and debugging, thereby reducing the
complexity of redevelopment.

• Easy to add and delete: The development method is highly
configurable, and thus the device functions extended by the
framework are easy to add and delete.

Organization: Section 2 introduces the system model and the
basic technologies involved, including TECS. Section 3 describes
the process and method of realization. Section 4 discusses the de-
velopment methods of smart home development frameworks and
components in related works. Section 5 introduces future work
and research directions.

2. SYSTEM MODEL
This section describes the system model of the proposed frame-

work (see Fig. 1). It contains two main parts. The first part intro-
duces the basic information based on TECS and the basic devel-
opment framework. The second part introduces ECHONET Lite.

2.1 TOPPERS Embedded Component System
TECS is a component system designed for developing embed-

ded systems [3]. Its development method is to firstly divide the
project into components and subsystems, and then develop ap-
plications into components by using subsystems. This method
of the development can improve the reusability of the embedded
software, thereby improving the production efficiency and reduc-
ing the development costs. TECS can be used in several domains
of embedded systems because it supports multi-sized and diverse
components [4].

TECS has statically developed components, which will not

tLight
Light

tTask
Task

tTaskMain
TaskMain

cTaskMain eLight

sLight

cTaskBody eTaskMain

sTaskBody

Fig. 2: Component diagram

1 signature sLight{
2 ER onOffPropertySet ([in,size is (size)] uint8 t *src, [in]int size, [out]

bool t *anno);
3 };

Fig. 3: Signature description

generate any excessive overhead when running, thereby effec-
tively reducing the memory resource requirements. The control
of a smart home and the detection of its status are performed in
real-time, and thus we also develop components based on a real-
time system. TECS can deal with real-time OS (RTOS) resources
(such as tasks and semaphores) as components [5], and the TECS
generator plugin can componentize RTOS features, thereby re-
quiring complex static API generation using the proposed plu-
gin [6]. Thus, TECS meets the requirements of smart home de-
velopment. The TECS design is as follows.

(1) Component model: Figure 2 shows an example of a com-
ponent. It can help developers better understand the structure of
the component. Each cell is an instance of a TECS component,
and it includes entry ports, call ports, attributes, and variables.
Each celltype defines the entry ports, call ports, attributes, and
internal variables. The entry port is an interface that provides
functions to other cells. The call port is an interface that uses the
services of other cells. A cell communicates in the environment
through these interfaces. The ports of each component are de-
fined by its signature (i.e., sets of functions), which defines the
component’s interface.

(2) Component description: We use the component description
language (CDL) to describe the components in TECS. In TECS,
a component comprises a signature, celltype, and single cell de-
scription specified using CDL, as shown follows.

a) Signature description: Its function is to declare the name of
the signature and its related functions. The keyword ”signature”
is followed by the signature name, which is prefixed with ”s,”
e.g., sLight (see Fig. 3). The signature body includes a set of unit
interface functions, each of which is described in the C language.
The function parameters must contain specifiers for the input and
output, such as ”[in]” and ”[out].”

b) Celltype description: It defines a component’s celltype, in-
cluding the component’s entry port, call port, attributes and vari-
ables, as shown in Fig. 4. The call port is used to call the en-
try function of other units, and the entry port is used to pro-
vide functions. We use the keyword ”entry” to define the call
port, followed by the signature (e.g., sLight) and port name (e.g.,
cTaskMain). The definition of the inlet port is similar to that of
the call port. The attributes and variables are defined using key-
words ”attr” and ”var,” followed by a name.

c) Cell description: It is used to instantiate and connect cells,
as shown in Fig. 5. The keyword “cell ” is followed by the cell-

Asia Pacific Conference on Robot IoT System Development and Platform 2020 (APRIS2020)

ⓒ 2021 Information Processing Society of Japan 20

1 celltype tTaskMain{
2 entry sTaskBody eTaskMain;
3 call sLight cTaskMain;
4 };
5 celltype tLight{
6 entry sLight eLight;
7 attr {
8 uint8 t propertyCode;
9 ATR propertyAttribute;

10 uint8 t propertySize;
11 intptr t extendedInformation;
12 };
13 };

Fig. 4: Celltype description

1 celltype tMain{
2 cell tTask Task{
3 cTaskBody =Main.eMain;
4 stackSize = 4096;
5 priority = 11;
6 attribute = C EXP("TA�ACT");
7 };

Fig. 5: Cell description

type e.g., tTask, and name, e.g., Task. The cells are linked by
specifying the call port, caller name, and entry port, in the same
order. For example, in Fig. 5, the eMain entry port of the Main
cell is connected to the cTaskBody call port of the Task cell.

(3) Namespace: TECS uses namespaces to prevent name con-
flicts. The namespace is similar to other languages, such as C++.
In the given namespace of TECS, one can define other names-
paces, so that the naming becomes hierarchical. Figure 6 shows
an example of TECS component description. In this example, the
celltype and signature are defined in the namespace. This names-
pace is nLight, followed by the keyword “namespace” with the
prefix “n.” We then define the required celltype and signed con-
tent in this namespace. Namespace identifiers are used to refer to
signatures and celltypes from different namespaces.

(4) Region: We introduce the concept of region to control the
layout of the unit. It has the function of preventing name conflicts
between units including namespaces. A region is a meaningful
unit in programs, and it can be used to separate the core structure
and memory structure, from one another. We define a region by
using the keyword “region,” followed by the name of the region,
prefixed with “r,” as shown in Fig. 6. We then set the unit required
in the region. The region identifier is used to refer to the cells in
other regions.

(5) Development flow: Figure 7 shows the development pro-
cess when using TECS. Notable, the TECS development can be
divided into two modules, namely, component design and appli-
cation development. First, the TECS generator generates RTOS
configuration files (*.cfg) from CDL files. We then define the
signature and celltype through component design, and use the C
template code (celltype code) generated by the TECS generator
to implement the component functions. We use application dia-
grams and predefined celltype to develop applications. The ap-
plication module is generated by connecting the header file, and
compiling the interface code, and the celltype code.

2.2 ECHONET Lite
Energy conservation and homecare network (ECHONET) [7]

1 namespace nLight {
2 celltype tTaskMain{
3 entry sTaskBody eTaskMain;
4 call sLight cTaskMain;
5 };
6 celltype tLight{
7 entry sLight eLight;
8 };
9 };

10 region rLight {
11 cell tTask Task{
12 cTaskBody = TaskMain.eTaskMain;
13 priority = 1;
14 stackSize = 81920;
15 attribute = C EXP("TA_ACT");
16 };
17 cell tTaskMain TaskMain{
18 cTaskMain = Light.eLight;
19 };
20 cell tLight Light{
21 };
22 };

Fig. 6: Description of namespace and region

Fig. 7: Development flow

has become a home network standard certified by ICE and ISO.
ECHONET device objects not only provide simple interaction at
the level of remote control commands (such as the ”ON/OFF”
button), but also standardize the functions of highly complex de-
vices, thereby enabling the advanced control required by energy
management applications [8]. However, the ECHONET protocol
is not widely used. First, the ECHONET specification requires
that the system configuration for multiple controllers and multi-
ple devices to be fairly complex. Second, the overall complexity
of the ECHONET protocol results in some compliance imple-
mentations. Therefore, the ECHONET protocol was redesigned
as the substantially simplified ECHONET Lite protocol in 2011.

The ECHONET Lite network protocol provides a standard
method of controlling the household appliances to achieve inter-
operability between devices that are from different manufacturers
in the smart home. The development concept of ECHONET Lite
is based on the ECHONET standard, but its structure can be easily
tackled by home network system builders and service system de-
velopers [9]. Although devices that comply with the ECHONET
Lite Specification and those that comply with the ECHONET
Specification cannot be interconnected, they may coexist in the
same system.

Asia Pacific Conference on Robot IoT System Development and Platform 2020 (APRIS2020)

ⓒ 2021 Information Processing Society of Japan 21

Table 1: Specifications of the board

Board GR-PEACH

CPU Cortex-A9 RZ/A1H 400MHz

Flash ROM 8MB

RAM 10MB

LAN Controller Controller LAN87

ECHONET Lite has emerged as a leading interface used in
smart homes in Japan, and accordingly the number of devices
compatible with the ECHONET Lite protocol is steadily grow-
ing [7]. Figure 8 shows the basic concept of ECHONET Lite.
The network of ECHONET Lite node is a collection of devices.
A node is a physical device connected to the network. Each node
contains the network address, profile file objects that identify a
node, and a list of device objects. Notably, the device objects
provide a standardized method to represent the device resources
and services through attribute lists and the constraints of each
attribute. The latest ECHONET specification [10] released in
March 2020 defines 116 different device objects.

Figure 9 shows the ECHONET Lite system architecture. The
largest area that ECHONET Lite can manage is referred to as a
domain. A domain is specified as the variety of controlled re-
sources (e.g., home equipment, appliances and consumer elec-
tronics, sensors, controllers, and remote controls) present within
the network range determined by ECHONET Lite [9]. A system
performs communication and linked operations between devices
and controllers, which monitor/control/operate the devices them-
selves. Because a domain might include one or more systems,
the same device or controller can exist in more than one systems.
When connecting a system to another system that lies outside the
domain, an ECHONET Lite gateway is used as an interface.

The ECHONET Lite standard defines the communication be-
tween components called ECHONET objects. The ECHONET
object has certain properties, and the actual device is operated on
the basis of this property. This middleware provides 1) a static
API that defines ECHONET objects, and 2) a static API that de-
fines the properties. User-defined ECHONET objects and their
properties in the static API are converted to C source codes in the
TOPPERS kernel configurator, and the code is then compiled and
linked with the application software.

3. DESIGN AND IMPLEMENTATION
This section compares some methods of smart home develop-

ment with one another and introduces our development frame-
work. It also introduces the software and hardware parameters
involved.

Kadima et al. proposed hardware implementation of a multi-
platform control system for home automation [11]. Such systems
belong to a domain commonly referred to as smart home systems.
By using a Raspberry Pi microcomputer to design IoT home au-
tomation system equipment, and by using an Arduino Uno board
as the controller and relay to connect the bulb and circuit, in wire-
less communication, radio frequency waves are used to transmit
signals, and in wired communication, wires are used to transmit
signals. This method makes IoT easy to use and reduces the com-

plexity via the ability of one device to control various other de-
vices. Additionally, it combines hardware and software technolo-
gies and can be easily used in smart home automation applica-
tions.

Einarsson et al. proposed a SmartHomeML based modular lan-
guage, which is a domain-specific modeling language for smart
home applications [12]. SmartHomeML uses model-to-text con-
version templates to generate smart home adaptation services
that meet the target provider’s specifications, thereby allowing
users to define new skills, and utilize template-based model-to-
text conversion to automatically generate adapters and connect to
smart home devices. It can be used on other development plat-
forms, such as the Amazon Alexa platform. Through the map-
ping relationship between the module language and development
platform, SmartHomeML can be applied to smart home develop-
ment, thereby reducing the difficulty of development, although it
takes time to sort out the mapping relationship.

Our proposed development framework is based on the devel-
opment of embedded components, and it can be extended to local
smart home devices. Compared with the development methods
of Kadima and Einarsson, our development process and structure
are clearer. While extending the functions of any equipment that
belongs to the ECHONET Lite protocol, we need not spend too
much time to familiarize ourselves with the mapping relationship
between the module language and development platform. We can
create the celltype code by using the template code created by the
generator, and then we can use the template code to implement
the functions we need.

This section describes the design and method of development.
GR-PEACH is a development board used to implement functions.
The detailed specifications of the demo board are presented in Ta-
ble 1. We connected the board to a host PC via a LAN cable and
evaluated the data sending and receiving.

In this experiment, the development board was connected to
the PC through the Ethernet, following which the PC could con-
trol the development board through the Ethernet. The PC need
not be connected to Wi-Fi. Our example is to connect the GR-
PEACH development board to a PC via LAN. The PC can then
access and control the IP address of GR-PEACH through the su-
per speed node generator (SSNG) for ECHONET Lite .

3.1 Super Speed Node Generator
The SSNG software was developed by Smart Home Research

Center, Kanagawa Institute of Technology Engineering. As
shown in Fig. 10, in the SSNG software, EHD stands for the
ECHONET Lite header, TID the Transaction Id, SEOJ the Source
ECHONET Lite object, DEOJ the destination ECHONET Lite
object, ESV the ECHONET Lite service, OPC the Operation
count, EPC the ECHONET Lite Property code, PDC the Prop-
erty data count, and EDT the ECHONET Lite data.

In the example provided in this study, the goal is to control the
Light connected to GR-PEACH. Therefore, in the SSNG soft-
ware, SEOJ selects the controller, and DEOJ selects the general
lighting class. The other parameters are maintained at their de-
fault states.

We can also install SSNG in Node.js. SSNG for Node.js is

Asia Pacific Conference on Robot IoT System Development and Platform 2020 (APRIS2020)

ⓒ 2021 Information Processing Society of Japan 22

Asia Pacific Conference on Robot IoT System Development and Platform 2020 (APRIS2020)

ⓒ 2021 Information Processing Society of Japan 23

1 signature sLight{
2 ER onOffPropertySet ([in,size is(size)]uint8 t *src, [in]int size,
3 [out] bool t *anno);
4 };
5 celltype tTaskMain{
6 entry sTaskBody eTaskMain;
7 call sLight cTaskMain;
8 };
9 cell tTaskMain TaskMain{

10 cTaskMain = Light.eLight;
11 };
12 celltype tLight{
13 entry sLight eLight;
14 attr {
15 uint8 t propertyCode;
16 ATR propertyAttribute;
17 uint8 t propertySize;
18 intptr t extendedInformation;
19 };
20 };
21 cell tLight Light{
22 propertyCode = 0;
23 propertyAttribute = 0;
24 propertySize = 0;
25 extendedInformation = 0;
26 };

Fig. 11: TECS code

sLight is defined between tTaskMain and tLight. There is a func-
tion header of the called cell in sLight.

In the signature, there will be a call port and an entry port.
Each cell calls the functions in other cells through the call port.
The call port defined in the TaskMain cell is cTaskMain, and the
entry port is called eTaskMain. The entry port defined in the
Light cell is named eLight. Functions are called only in the Light
cell, and thus there is no need to set the call port, but just provide
the entry port for other cells to call the functions.

We defined a function named onOffPropertySet to control the
Light connected to GR-PEACH. This function can control the on
and off of the lights. The onOffPropertySet function is essentially
a switch to control the open and close state of the lights. When the
input is 0x30, GPIO outputs 1 and the light turns on. However,
when the input is 0x31, GPIO outputs 0 and the light is turned
off, as shown in Fig. 12.

3.4 TECS GENERATOR
After defining the celltype, cell and signature in the cdl file,

execute the make operation, and then the TECS generator will
generate tTaskMain and tLight template files in the gen folder, as
shown in Fig. 7. The generated C file contains several template
codes. In the tTaskMain template code, all the header functions
can call the functions in the generated file. We then use the TEC-
Smerge which is used to create the required celltype codes for
each celltype.

The TECSmerge command is mainly used in the following two
situations.
• To create the first version of the celltype code based on the

template code created by the generator.
• To reflect the changes in the CDL code to the existing cell-

type code.
A template C file is generated through the TECSmerge com-

mand, and its named after is the name of the cell we defined. All
the header functions can call the functions in the file. We then
call the required function in the main function of the C file of the
call port. The required function is defined in the C file of the en-

1 ER eLight onOffPropertySet (CELLIDX idx, [in, size is(size)] uint8 t
src, int size, bool t anno){

2 ER ercd = E OK;
3 CELLCB *p cellcb;
4 if (VALID IDX(idx)) {
5 p cellcb = GET CELLCB(idx);
6 }
7 else {
8 return(E ID);
9 } /* end if VALID IDX(idx) */

10 gpio t pow led;
11 gpio t relay sw;
12 gpio t sw1, sw2;
13 if (size != 1)
14 return 0;
15 *anno = *((uint8 t *)ATTR extendedInformation) != *((uint8 t *)src);
16 switch (*(uint8 t *)src) {
17 case 0x30:
18 *((uint8 t *)ATTR extendedInformation) = *((uint8 t *)src);
19 gpio write(&pow led, 1);
20 gpio write(&relay sw, 1);
21 break;
22 case 0x31:
23 *((uint8 t *)ATTR extendedInformation) = *((uint8 t *)src);
24 gpio write(&pow led, 0);
25 gpio write(&relay sw, 0);
26 break;
27 default:
28 return 0;
29 };
30 };

Fig. 12: onOffPropertySet code

try port. Then the file is compiled using the C compiler. After
successful compilation, this function has been realized.

In this example, we need to generate a bin file to write to
the embedded board. After writing the bin file to the embedded
board, connect the embedded board to the computer via USB and
LAN. Simultaneously, we need to use the Tera Term software. In
Tera Term, select the serial port at which the embedded board is
connected to the PC. Because the embedded board is connected to
the computer via Ethernet, the PC needs to be disconnected from
the Internet. Subsequently, find the IP address of the embedded
board connected to the PC through the ipconfig command. Fi-
nally, enter the IP address of the embedded board in the SSNG
application, and then we can control the embedded board through
SSNG.

The final result is shown in Fig. 13. From Fig. 13 (a), it is
evident that when EDT is 0x31, sending a command through
SSNG to GR-PEACH, the light connected to GR-PEACH will
turn off. In Fig. 13 (b), when EDT is 0x30, send a command
through SSNG to GR-PEACH, and the light will turn on.

4. RELATED WORK
This section introduces the development and design of the

mainstream smart home system models. There exist various
smart home development platforms and methods, such as de-
velopment through integrated modeling language [13], indepen-
dent custom development [14], and design and implementation
through open-source platforms [15]. Table 2 compares the cur-
rent component development methods with smart home develop-
ment methods.

Shirata et al. proposed a component framework for obtain-
ing the information about component systems [3]. The proposed
framework supports obtaining static the information of the gen-
erated components and runtime component information during
generation and execution periods. It uses a plugin to automati-

Asia Pacific Conference on Robot IoT System Development and Platform 2020 (APRIS2020)

ⓒ 2021 Information Processing Society of Japan 24

(a)

(b)

Fig. 13: The light application of ECHONET Lite on GR-PEACH

Table 2: Comparison among the related work

EBD ML SC CBD RO

[4] [16] [5]
√ √ √

[11] [17]
√ √ √

[13] [15]
√ √ √

[18]
√

[2]
√ √ √

[19]
√ √

[20]
√ √ √ √

Our research
√ √ √ √ √

EBD : Embedded-based development

ML : Modeling language

SC : Scalability

CBD : Component-based development

RO : Reduce overhead

cally perform this operation, thereby automatically generating a
unit that saves the information of the system. Plugin and dynamic
connections can effectively reduce the number of lines of code,
thereby improving the productivity and reusability. They are im-
plemented as a set of components, so the developers can easily
add or remove them in the project.

Yamamoto et al. presented an extended mruby on TECS
framework for its application in developing software for IoT de-
vices [20], including sensors and actuators. Each mruby pro-
gram runs on a RiteVM mapped to a componentized task of an
RTOS. Notably, mruby programs can call the TINET functions
required for network software through the mruby-TECS bridge,
and TINET+TECS can be applicable to various embedded sys-
tems. Thus, the software to be embedded in IoT devices can be
developed. TINET+TECS for IoT devices improves the config-
urability and scalability and offers software developers high lev-
els of productivity through variable network buffer sizes and also
offers the ability to add or remove various TCP (or UDP) func-

tions. Therefore, developers can easily add, remove, or reuse their
functionalities as required.

Doan et al. described an IoTivity-based software architecture
that is used to implement RES-Hub in a flexible and proposed
the use of RES-Hub to ensure that the required functionalities
were provided even when the cloud is unavailable [21]. During
the normal functioning of the system, RES-Hub will receive reg-
ular status updates from the cloud. However, when the cloud is
unavailable, RES-Hub uses the most recent state of the devices
and services to continue the operation according to user specifi-
cations.

Guan et al. presented a novel integration test strategy
(CREMTEG) for component-based real-time embedded software
[16]. The strategy examines the states of all the components in-
volved in a collaboration to exercise component interactions in
the context of integration testing. This strategy solves the ob-
servability problems by recording the average value of each test
pass, and it makes the difference between the expected and actual
diagnosis results easily.

Banerjee et al. presented a centralized framework for manag-
ing the heterogeneous subsystems in a smart home. Additionally,
they incorporated human-system interaction in this framework,
by developing an Android application that received input in the
form of motion gestures [22]. This framework allows multiple
users to control different smart home appliances through their
smartphones via a common platform. This framework is scal-
able, and new smart devices can be easily integrated into the smart
home environment. A controller is the core entity of this frame-
work, as it acts as a middleware between users and smart home
appliances. It accepts user commands and translates them into
device-specific instructions using their embedded APIs. Only
users can access the smart appliances by using the instructions
provided.

Einarsson et al. introduced SmartHomeML [12], a domain-
specific modeling language for smart home applications, which
allows users to define new functionalities. SmartHomeML com-
prises a model designer and a model generator, which use
template-based transformation to automatically generate smart
home device adapters and connectors for the target home control
system.

Nandi et al. presented a statistical inference based approach
for computing real-time contracts for component-based real-time
control applications [19]. By verifying this system and checking
the functionality and real-time properties, component-based real-
time applications can be merged in an efficient and easy manner.

Steffen et al. proposed a component-based description lan-
guage(CoDel) [17], which enabled system designers to use the
parameterizable attributes of components, models, and intercon-
nectivity to represent components as reusable building blocks of
the system. CoDel can improve the usability, reusability, and
scalability of the application components and models.

Khalilzad et al. proposed a framework that supported multi-
resource, end-to-end resource reservation [2]. The framework uti-
lizes a multiple-input multiple-output controller that coordinates
the reserve size to track the dynamic resource requirements of the
software components.

Asia Pacific Conference on Robot IoT System Development and Platform 2020 (APRIS2020)

ⓒ 2021 Information Processing Society of Japan 25

The SLASH framework [18] was proposed to design and im-
plement an adaptive and self-learning smart home system. Big
data and cloud computing technology were used as the main
methods of analyzing the smart home data. Such a framework
provides an effective model for designing the architecture and in-
tegration of smart home systems, thereby achieving scalability,
maintainability, user-friendliness, and service combinations in an
easy manner.

Mukendi et al. proposed the design and implementation of a
customized IoT smart home [11]. By individually designing and
implementing the functions of the smart home system, without
considering devices with different regions or protocols, the com-
plexity of the smart home system can be reduced. Mukendi used
the Raspberry Pi microcomputer to design the IoT automation
system, and used the Arduino development board as the controller
to connect the circuits. The home automation system is equipped
with a Wi-Fi module and LCD, which displays when the system is
turned on or off. The user can control the on/off of various house-
hold appliances through a device, and can confirm the operating
status of the device through the LED screen.

5. CONCLUSIONS
This study proposed a development method based on embed-

ded components (i.e., CBD) to develop devices in smart homes.
Through the embedded development technology, the software
and hardware development of smart homes can be integrated in a
quick and convenient manner. By developing CBD based smart
homes, development modeling such as language modeling can
be performed even before application development, and then the
smart homes can be gradually developed using the established
model diagram, thereby reducing the complexity of development.
The development framework proposed is based on the develop-
ment of embedded components to develop smart homes. It can
reduce the complexity of development, improve the scalability
of smart homes, and promote the update and maintenance of the
device functions.

The purpose of this study was to develop components con-
nected to the circuit board through CBD, and then control the
components through the circuit board. Additionally, we aimed to
improve the reusability and scalability of the components through
CBD, and promote the update and maintenance of the compo-
nent functions. In this case study, we have also developed USB
watt meter, Light, Human detector, Air conditioning, Tempera-
ture sensor, Hot water pot, and Buzzer applications as compo-
nents based on TECS.

On the basis of the current research, future research could im-
prove the applicability of this development framework. Nowa-
days, it is becoming increasingly common to develop and control
cloud-based smart homes, such as Amazon Alexa, and Google
home. Our next research direction is to improve the adaptability
of the framework to different development methods. Addition-
ally, we wish to attempt at adapting the framework to various
development environments, such as platform development and
cloud development environments, to improve the scalability of
smart homes.

References
[1] Gatouillat, A. and Badr, Y.: Verifiable and Resource-Aware Compo-

nent Model for IoT Devices, in Proc. of Association for Computing
Machinery, p. 235–242 (2017).

[2] Khalilzad, N., Ashjaei, M., Almeida, L., Behnam, M. and Nolte, T.:
Adaptive multi-resource end-to-end reservations for component-based
distributed real-time systems, in Proc. of IEEE Symposium on Embed-
ded Systems for Real-time Multimedia (ESTIMedia), pp. 1–10 (2015).

[3] Shirata, S., Oyama, H. and Azumi, T.: Runtime Component Informa-
tion on Embedded Component Systems, in Proc. of International Con-
ference on Embedded and Ubiquitous Computing (EUC), pp. 166–173
(2018).

[4] Azumi, T., Yamamoto, M., Kominami, Y., Takagi, N., Oyama, H. and
Takada, H.: A new specification of software components for embed-
ded systems, in Proc. of IEEE International Symposium on Object and
Component-Oriented Real-Time Distributed Computing (ISORC’07),
IEEE, pp. 46–50 (2007).

[5] Azumi, T., Takada, H., Ukai, T. and Oyama, H.: Wheeled inverted
pendulum with embedded component system: a case study, in Proc.
of IEEE International Symposium on Object/Component/Service-
Oriented Real-Time Distributed Computing, IEEE, pp. 151–155
(2010).

[6] Kawada, T., Azumi, T., Oyama, H. and Takada, H.: Componentizing
an Operating System Feature Using a TECS Plugin, in Proc. of the 4th
IEEE International Conference on Cyber-Physical Systems, Networks,
and Applications (CPSNA), IEEE, pp. 95–99 (2016).

[7] Pham, C., Makino, Y., Lim, Y. and Tan, Y.: Semantic Service Gate-
way for ECHONET based Smart Homes, in Proc. of Conference on
Innovation in Clouds, Internet and Networks and Workshops (ICIN),
pp. 175–179 (2019).

[8] Kodama, H.: The ECHONET Lite specifications and the work of the
ECHONET consortium, in Proc. of New Breeze-Quarterly of the ITU
Association of Japan, Vol. 27, No. 2, pp. 4–7 (2015).

[9] ECHONET: ECHONET-Lite Ver.1.13(01) E, https://echonet.
jp/spec_v113_lite_en/.

[10] ECHONET: APPENDIX Detailed Requirements for ECHONET De-
vice objects, https://echonet.jp/spec_object_rm_en/.

[11] Kadima, M. N. and Jafari, F.: A Customized Design of Smart Home
Using Internet-of-Things, in Proc. of the 9th International Conference
on Information Management and Engineering, ICIME 2017, in Proc.
of Association for Computing Machinery, p. 81–86 (2017).

[12] Einarsson, A. F., Patreksson, P., Hamdaqa, M. and Hamou-Lhadj, A.:
SmartHomeML: Towards a Domain-Specific Modeling Language for
Creating Smart Home Applications, in Proc. of IEEE International
Congress on Internet of Things (ICIOT), pp. 82–88 (2017).

[13] Einarsson, A. F., Patreksson, P., Hamdaqa, M. and Hamou-Lhadj,
A.: SmarthomeML: Towards a domain-specific modeling language
for creating smart home applications, in Proc. of IEEE International
Congress on Internet of Things (ICIOT), IEEE, pp. 82–88 (2017).

[14] Samuel, S. S. I.: A review of connectivity challenges in IoT-smart
home, in Proc. of MEC International conference on big data and smart
city (ICBDSC), pp. 1–4 (2016).

[15] Cicirelli, F., Fortino, G., Giordano, A., Guerrieri, A., Spezzano, G.
and Vinci, A.: On the design of smart homes: A framework for ac-
tivity recognition in home environment, Journal of medical systems,
Vol. 40, No. 9, p. 200 (2016).

[16] Guan, J. and Offutt, J.: A model-based testing technique for
component-based real-time embedded systems, in Proc. of IEEE
Eighth International Conference on Software Testing, Verification and
Validation Workshops (ICSTW), pp. 1–10 (2015).

[17] Peter, S. and Givargis, T.: Component-Based Synthesis of Embedded
Systems Using Satisfiability Modulo Theories, in Proc. of ACM Trans.
Des. Autom. Electron. Syst., Vol. 20, No. 4 (2015).

[18] Sultan, M. and Ahmed, K. N.: SLASH: Self-learning and adaptive
smart home framework by integrating IoT with big data analytics, in
Proc. of Computing Conference, pp. 530–538 (2017).

[19] Nandi, C., Monot, A. and Oriol, M.: Stochastic contracts for runtime
checking of component-based real-time systems, in Proc. of Interna-
tional ACM SIGSOFT Symposium on Component-Based Software En-
gineering (CBSE), pp. 111–116 (2015).

[20] Yamamoto, T., Hara, T., Ishikawa, T., Oyama, H., Takada, H. and
Azumi, T.: Component-Based mruby Platform for IoT Devices, Jour-
nal of Information Processing, Vol. 26, pp. 549–561 (2018).

[21] Doan, T. T., Safavi-Naini, R., Li, S., Avizheh, S. and Fong, P. W.: To-
wards a resilient smart home, in Proc. of the 2018 Workshop on IoT
Security and Privacy, pp. 15–21 (2018).

[22] Banerjee, A., Sufyanf, F., Nayel, M. S. and Sagar, S.: Centralized
framework for controlling heterogeneous appliances in a smart home
environment, in Proc. of International Conference on Information and
Computer Technologies (ICICT), IEEE, pp. 78–82 (2018).

Asia Pacific Conference on Robot IoT System Development and Platform 2020 (APRIS2020)

ⓒ 2021 Information Processing Society of Japan 26

