
Analysis of Code Clone Ratios over Version Evolution in
Open-Source Projects Written in C and C++

Anfernee Goon1,†1,a) YuhaoWu2,b) Makoto Matsushita2,c) Katsuro Inoue2,d)

Abstract: A code clone is a fragment of code which is duplicated throughout the source code of a project and have
been shown to make a project less maintainable because all code clones will share potential bugs and problems. This
study analyzes the code clone ratios over the entire development lifetime of Git, a widely used open-source project
written in C/C++ to understand development habits and the changing maintainability of the software. The study uti-
lizes bash scripting in conjunction with CCFinderX and GitHub to automate the detection of clones across development
history. The results showed very stable ratios across development history, with the code clone ratios only fluctuating
greatly during the beginning of development mostly, which can imply design choices not being concrete during the
beginning of development as well as considerably more functionality being added at the beginning of development rel-
ative to the rest of the development cycle. Overall, the clone ratios over the development of Git has given some insight
on the different aspects of the development process such as refactoring and how Git handles such aspects. Developers
should be able to improve on their approach to development and increase their software’s maintainability by looking
at code clone ratios over the version evolution of their own projects.

Keywords: Clone ratios, refactoring, maintainability, software development

1. Introduction

A code clone is a duplicated fragment of code. Having many
code clones in a project makes it much less maintainable because
all of these code clones will share potential bugs and problems
[4]. These problems will propagate throughout the software with
continued use of the problematic code clone fragment, and a fix
for this bug may have to be applied to every one of these frag-
ments present in the code. In this study, we analyze the code
clone metrics of software over the entire development process.
The changing maintainability of software over development can
be tracked through such an analysis. In turn, many development
habits and a greater understanding of the software development
process is possible, such as the frequency of code cleanup to im-
prove maintainability, also known as refactoring. In this paper,
we seek to understand software development through the analysis
of code clone metrics throughout the entire development process
of Git, an open source version control system primarily written
in C/C++. More specifically, we will investigate the following
research questions in our analysis:RQ1. How do the code clone

ratios throughout development characterize development of Git?

andRQ2. What does this code clone characterization indicate

about software development in general?.

1 Department of Computer Science and Engineering, University of Cali-
fornia San Diego

2 Graduate School of Information Science and Technology, Osaka Univer-
sity

†1 Presently with Osaka University
a) agoon@ucsd.edu
b) wuyuhao@ist.osaka-u.ac.jp
c) matusita@ist.osaka-u.ac.jp
d) inoue@ist.osaka-u.ac.jp

2. Approach

We decided to use Git for our analysis because it is a widely
used software which is known to be well developed which should
lessen the chance of it producing abnormal data. Along with this,
it appeared on GitHub, allowing easy access to version break-
points (commits) to analyze. Git starts at around 950 lines of
code, and grows to around 200000 lines of code over around
40000 commits (we analyze about 14000 of those commits).

To detect clones and clone metrics in the source code, we used
CCFinderX, a token-based clone detector [2] [4]. Using bash
scripting, we automated the use of CCFinderX on every impor-
tant commit in the master branch of Git by using git log with
the first-parent flag. This allows for a set of commits which lin-
early trace Git’s development. For each commit, we collected
number of C/C++ files, total lines of code (LOC), total lines of
code not including whitespace or comments (SLOC), total code
clone lines (CLOC), as well as the tag of the commit if applicable.
Along with these metrics we collected the actual clone ratios of
each commit, including the clone ratios including whitespace and
comments (CCR) and the clone ratios not including whitespace
or comments (CVRL). These ratios are derived from the lines
of code metrics, with CCR being CLOC divided by LOC, and
CVRL being CLOC divided by SLOC. The scripts were designed
to exclude test and example files whenever possible in order to
keep analysis limited to functionality related files, and only in-
cludes .c and .cpp files. Header files are not included because
most header files will be similar, and may be picked up as false
positives by CCFinderX. The minimum number of tokens that a
fragment needs to be considered a clone is 50 in our study.

 ソフトウェアエンジニアリングシンポジウム 2016
 IPSJ/SIGSE Software Engineering Symposium (SES2016)

 ©2016 Information Processing Society of Japan 255

Fig. 1 CVRL, SLOC, and CLOC changes over all commits of Git in chronological order. The blue line
represents CVRL, with the orange points along it displaying release points. The yellow line rep-
resents SLOC and the green line represents CLOC. The CVRL adheres to the left axis, while the
other two metrics adhere to the right axis.

3. Results

For our analysis, we make use of a graph containing the met-
rics CVRL, SLOC, and CLOC discussed in Section 2 displayed
by commits in chronological order. The main metric we focus
on is CVRL, which we initially expected to have mostly grad-
ual increases with periodic sharp declines. The gradual increases
would be a result of functionality being added over time, which
naturally increases CVRL because more code is being written so
more clones will be introduced [1]. Refactoring would be the
cause of the sharp declines, because the initial additions of func-
tionality may not be clean and would be in need for maintenance
to ensure maintainability before the next round of functionality is
added.

Unlike our initial expectation, Git’s CVRL sees a large growth
towards the beginning of development, but after a certain point
sees a gradual but consistent decrease up to the present state of
development. After its large growth over around 2000 commits,
the CVRL is around 9%. The gradual decrease sees the CVRL
decrease to 4% over the course of about 8000 commits, and af-
terwards there is stability near 4% until the present state of de-
velopment. The initial growth can be attributed to many addi-
tions of functionality at the beginning of development. The large
amount of fluctuations at the beginning may also be a result of de-
sign choices not being concrete, causing refactoring to be needed
more often and sloppier code to be written. After that initial stage,
the CLOC barely increases while the SLOC continues to grow at
a fast rate, which is what causes the gradual decline in CVRL,
which indicates functionality is still being added. The gradual
decrease may be due to better code being written or code be-
ing refactored before being committed, thus having the CVRL
shrink and the CLOC grow only to maintain the 4% CVRL dur-
ing the stable period. Even at its peak, Git’s CVRL is significantly
smaller than the average CVRL of 12% [3], which may also be
due to code being refactored before commits. We also analyzed

two other open-source C/C++ projects and found a similar trend
of initial instability followed by a very stable period of clones
ratios and overall low CVRL.

4. Conclusion

Git represents a very ideal development situation based on the
CVRL graph, where the ratios are consistently very low through-
out continual development. Developers can analyze their own
software in a similar manner to discover how close they are to
this ideal development structure. Depending on the style of de-
velopment, good refactoring practices which Git’s results infer
may not always be possible. The code clone ratios can still be
of use in determining the best frequency with which to refactor
based on resource constraints. An efficient way to construct code
to avoid excessive refactoring is also possible by looking at past
projects mistakes in the form of these clone metrics. Assumptions
aside, looking at the code clone ratios over version evolution does
give insight on how well a developer is maintaining their project.
This data can also help a developer improve on certain aspects of
the development process by allowing them to analyze instances
of large CVRL changes, understand what these changes meant to
the project during past development phases, and utilize this past
data to make better development decisions in the future.

References

[1] Dagenais, M., Merlo, E., Laguë, B. and Proulx, D.: Clones Occurence
in Large Object Oriented Software Packages,Proceedings of the 1998
Conference of the Centre for Advanced Studies on Collaborative Re-
search, CASCON ’98, IBM Press, pp. 10– (online), available from
⟨http://dl.acm.org/citation.cfm?id=783160.783170⟩ (1998).

[2] Kamiya, T.: CCFinderX, http://www.ccfinder.net/.
[3] Koschke, R. and Bazrafshan, S.: Software-Clone Rates in Open-Source

Programs Written in C or C++, 2016 IEEE 23rd International Con-
ference on Software Analysis, Evolution, and Reengineering (SANER),
Vol. 3, pp. 1–7 (online), DOI: 10.1109/SANER.2016.28 (2016).

[4] Sheneamer, A. and Kalita, J.: Article: A Survey of Software Clone De-
tection Techniques,International Journal of Computer Applications,
Vol. 137, No. 10, pp. 1–21 (2016).

c⃝ 1992 Information Processing Society of Japan

 ソフトウェアエンジニアリングシンポジウム 2016
 IPSJ/SIGSE Software Engineering Symposium (SES2016)

 ©2016 Information Processing Society of Japan 256

	paper 49

